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SOME REVERSES OF THE CAUCHY-SCHWARZ AND TRIANGLE
INEQUALITIES IN 2-INNER PRODUCT SPACES

MOHSEN ERFANIAN OMIDVAR1, HAMID REZA MORADI2,
SILVESTRU SEVER DRAGOMIR3, AND YOEL JE CHO4,5

Abstract. In this paper, we give some reverses of the Cauchy-Schwarz inequality
and triangle inequality in 2-inner product spaces. Applications for determinantal
integral inequalities are also provided.

1. Introduction

The Cauchy-Schwarz inequality plays an important role in the theory of inner
product spaces (see, for instance, [22, 23]), which is one of the classical inequalities.
It is well known that, in a semi-inner product space (X , 〈·, ·〉), the Cauchy-Schwarz
inequality has the form

|〈x, y〉|2 ≤ 〈x, x〉 〈y, y〉 ,
for all x, y ∈X .

In recent years, many authors have studied some related topics such as the reverse
of the Cauchy-Schwarz inequality, the triangle and Bessel inequality as well as Grüss
inequality (see [7, 10, 11, 18]). The probably first reverse of the Cauchy-Schwarz
inequality for positive real numbers was obtained by Pólya and Szegö in 1925 (see
[20, p. 57 and 213–214] and [21, p. 71–72 and 253–255]). Since then, there exist a
lot of generalizations of the reverse of the Cauchy-Schwarz inequality. For example,
in 2007, Dragomir [6, Chapter 2] contributed much to the reverses of the Cauchy-
Schwarz inequality and also similar results for integrals, isotonic functionals as well as
generalizations in the setting of inner product spaces are well-studied and understood
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(see the book [5]). Some other interesting inequalities for the reverse of the Cauchy-
Schwarz inequality can be found in [8, 9, 12].

In this paper, we continue and complement this research by proving some new
reverses of the Cauchy-Schwarz inequality in framework of 2-inner product spaces.
Furthermore, as applications, some reverse results for the generalized triangle inequa-
lity, i.e., upper bounds for the quantity

(0 ≤)
n∑
i=1

‖xi, z‖ −

∥∥∥∥∥
n∑
i=1

xi, z

∥∥∥∥∥
under various assumptions for the vectors z, xi ∈X , i ∈ {1, · · · , n}, are established
and also, some applications for the generalized triangle inequality are given.

2. Preliminaries

The concept of 2-normed spaces was introduced by Gähler [16] in 1963. After that,
in 1973 and 1977, Diminnie, Gähler and White introduced the concept of 2-inner
product spaces [3, 4]. For more details on 2-inner product spaces, see [2, 15, 17,19]. A
systematic presentation of the recent results related to the theory of 2-inner product
spaces as well as an extensive list of the related references can be found in the book [1].
Here we give the basic definitions and the elementary properties of 2-inner product
spaces.

Let X be a linear space of dimension greater than 1 over the field K = R of real
numbers or the field K = C of complex numbers. Suppose that 〈·, ·|·〉 is a K-valued
function defined on X ×X ×X satisfying the following conditions:
(2I-1) 〈x, x|z〉 ≥ 0, and 〈x, x|z〉 = 0 if and only if x and z are linearly dependent;
(2I-2) 〈x, x|z〉 = 〈z, z|x〉;
(2I-3) 〈y, x|z〉 = 〈x, y|z〉;
(2I-4) 〈αx, y|z〉 = α 〈x, y|z〉, for any α ∈ K;
(2I-5) 〈x+ x′, y|z〉 = 〈x, y|z〉+ 〈x′, y|z〉.
〈·, ·|·〉 is called a 2-inner product on X and (X , 〈·, ·|·〉) is called a 2-inner product

space (or 2-pre-Hilbert space). Some basic properties of 2-inner products 〈·, ·|·〉 can be
immediately obtained as follows:
(P-1) If K = R, then (2I-3) reduces to 〈y, x|z〉 = 〈x, y|z〉;
(P-2) 〈0, y|z〉 = 〈x, 0|z〉 = 〈x, y|0〉 = 0;
(P-3) 〈x, y|αz〉 = |α|2 〈x, y|z〉, for all x, y, z ∈X and α ∈ K.
Using the above properties, we can prove the Cauchy-Schwarz inequality

|〈x, y|z〉|2 ≤ 〈x, x|z〉 〈y, y|z〉 .

In any given 2-inner product space (X , 〈·, ·|·〉), we can define a function ‖·, ·‖ on
X ×X by

(2.1) ‖x, z‖ =
√
〈x, x|z〉,
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for all x, z ∈X . It is easy to see that this function satisfies the following conditions:
(2N-1) ‖x, z‖ ≥ 0 and ‖x, z‖ = 0 if and only if x and z are linearly dependent;
(2N-2) ‖x, z‖ = ‖z, x‖;
(2N-3) ‖αx, z‖ = |α| ‖x, z‖ for any scalar α ∈ K;
(2N-4) ‖x+ x′, z‖ ≤ ‖x, z‖+ ‖x′, z‖.

Any function ‖·, ·‖ defined on X ×X and satisfying the above conditions is called
a 2-norm on X and (X , ‖·, ·‖) is called a linear 2-normed space. Whenever a 2-inner
product space (X , 〈·, ·|·〉) is given, we consider it as a linear 2-norm space (X , ‖·, ·‖)
with the 2-norm defined by (2.1).

3. Some Reverses of the Cauchy-Schwarz Inequality

First, we have the following.

Theorem 3.1. Let (X , 〈·, ·|·〉) be a 2-inner product space over the real or complex
number field K and x, y, z ∈X , r1, r2 > 0 are such that

(3.1) r1 ≤ |‖x, z‖ − ‖y, z‖| ≤ ‖x− y, z‖ ≤ r2,

then

‖x, z‖ ‖y, z‖ −
∣∣〈x, y|z〉∣∣ ≤ ‖x, z‖ ‖y, z‖ − ∣∣Re 〈x, y|z〉

∣∣(3.2)
≤ ‖x, z‖ ‖y, z‖ − Re 〈x, y|z〉

≤ 1

2

(
r2

2 − r2
1

)
.

Proof. Taking the square in the third inequality in (3.1), we have

‖x, z‖2 − 2 Re 〈x, y|z〉+ ‖y, z‖2 ≤ r2
2,

which is equivalent to

(3.3) 2 (‖x, z‖ ‖y, z‖ − Re 〈x, y|z〉) + (‖x, z‖ − ‖y, z‖)2 ≤ r2
2.

Using the first inequality in (3.1), we have

(3.4) r2
1 ≤ (‖x, z‖ − ‖y, z‖)2.

Therefore, from (3.3) and (3.4), we have (3.2). This completes the proof. �

Corollary 3.1. With all the assumptions of Theorem 3.1, the following holds:

(3.5) ‖x, z‖+ ‖y, z‖ − ‖x+ y, z‖ ≤
√
r2

2 − r2
1.

Proof. It follows from (3.2) that

(‖x, z‖+ ‖y, z‖)2 − ‖x+ y, z‖2 = 2 (‖x, z‖ ‖y, z‖ − Re 〈x, y|z〉)
≤ r2

2 − r2
1

gives

(3.6) (‖x, z‖+ ‖y, z‖)2 ≤ ‖x+ y, z‖2 + r2
2 − r2

1.
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Taking the square root in (3.6) and taking into account that√
α + β ≤

√
α +

√
β

for all α, β ≥ 0, we have the desired inequality (3.5). This completes the proof. �

Theorem 3.2. Let (X , 〈·, ·|·〉) be a 2-inner product space over the real or complex
number field K. For any x, y, z ∈X ,

(3.7)
∥∥∥∥ x

‖x, z‖
− y

‖y, z‖
, z

∥∥∥∥ ≤ r

and
‖x, z‖ ‖y, z‖ − Re 〈x, y|z〉 ≤ 1

2
r2 ‖x, z‖ ‖y, z‖

are equivalent.

Proof. It is obvious by taking the square in (3.7) and performing the required calcu-
lations. �

Remark 3.1. Since∥∥∥‖y, z‖x− ‖x, z‖ y, z∥∥∥ =
∥∥∥‖y, z‖ (x− y) +

(
‖y, z‖ − ‖x, z‖

)
y, z
∥∥∥

≤ ‖y, z‖ ‖x− y, z‖+
∣∣∣‖y, z‖ − ‖x, z‖∣∣∣ ‖y, z‖

≤ 2 ‖y, z‖ ‖x− y, z‖ ,

the sufficient condition for (3.7) to hold is

‖x− y, z‖ ≤ r

2
‖x, z‖ .

Theorem 3.3. Let (X , 〈·, ·|·〉) be a 2-inner product space over the real or complex
number field K. Then, for any x, y, z ∈X and p ≥ 1,

0 ≤ ‖x, z‖ ‖y, z‖ −
∣∣〈x, y|z〉∣∣(3.8)

≤ ‖x, z‖ ‖y, z‖ −
∣∣Re 〈x, y|z〉

∣∣
≤ 1

2


(
(‖x, z‖+ ‖y, z‖)2p − ‖x+ y, z‖2p) 1

p ,(
‖x− y, z‖2p − |‖x, z‖ − ‖y, z‖|2p

) 1
p .

Proof. Firstly, observe that

2 (‖x, z‖ ‖y, z‖ − Re 〈x, y|z〉) = (‖x, z‖+ ‖y, z‖)2 − ‖x+ y, z‖2.

Denoting
D := ‖x, z‖ ‖y, z‖ − Re 〈x, y|z〉 ,

we have

(3.9) 2D + ‖x+ y, z‖2 =
(
‖x, z‖+ ‖y, z‖

)2
.
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Taking in (3.9) the power p ≥ 1 and using the elementary inequality

(a+ b)p ≥ ap + bp, a, b ≥ 0,

we have

(‖x, z‖+ ‖y, z‖)2p =
(
2D + ‖x+ y, z‖2)p ≥ 2pDp + ‖x+ y, z‖2p.

This implies that

(3.10) Dp ≤ 1

2p
(
(‖x, z‖+ ‖y, z‖)2p − ‖x+ y, z‖2p) ,

which is clearly equivalent to the first branch of the third inequality in (3.8).
With the above notation, we also have

(3.11) 2D + (‖x, z‖ − ‖y, z‖)2 = ‖x− y, z‖2.

Taking the power p ≥ 1 in (3.11) and using the inequality (3.10), we have

‖x− y, z‖2p ≥ 2pDp +
∣∣∣‖x, z‖ − ‖y, z‖∣∣∣2p

and so we have the last part of (3.8). This completes the proof. �

We state the following result that provides an invariant property for the constant
in the Cauchy-Schwarz inequality.

Theorem 3.4. Let (X , 〈·, ·|·〉) be a 2-inner product space over the real or complex
number field K. For any x, y, z ∈X and λ ∈ K,

‖x, z‖2‖y, z‖2 −
∣∣〈x, y|z〉∣∣2 = ‖x− λy, z‖2‖y, z‖2 −

∣∣〈x− λy, y|z〉∣∣2.
Proof. By properties of 2-inner product, it follows that, for any x, y, z ∈ X and
λ ∈ K,

‖x− λy, z‖2‖y, z‖2 −
∣∣〈x− λy, y|z〉∣∣2

=
(
‖x, z‖2 − 2 Re

(
λ 〈x, y|z〉

)
+ |λ|2‖y, z‖2) ‖y, z‖2

−
∣∣〈x, y|z〉 − λ‖y, z‖2

∣∣2
= ‖x, z‖2‖y, z‖2 − 2‖y, z‖2 Re

(
λ 〈x, y|z〉

)
+ |λ|2‖y, z‖4

−
∣∣〈y, x|z〉∣∣2 + 2‖y, z‖2 Re

(
λ 〈x, y|z〉

)
− |λ|2‖y, z‖4

= ‖y, z‖2‖x, z‖2 −
∣∣〈y, x|z〉∣∣2.

This completes the proof. �

Corollary 3.2. Let (X , 〈·, ·|·〉) be a 2-inner product space over the real or complex
number field K. For any x, y, z ∈X and λ ∈ K,

(3.12) ‖x, z‖2‖y, z‖2 −
∣∣〈x, y|z〉∣∣2 ≤ ‖x− λy, z‖2‖y, z‖2.

The equalities holds in (3.12) if and only if 〈x, y|z〉 = λ‖y, z‖2.

For two parameters, we can get the following.
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Theorem 3.5. Let (X , 〈·, ·|·〉) be a 2-inner product space over the real or complex
number field K. For any x, y, z ∈X and λ, µ ∈ K,(

‖x, z‖2‖y, z‖2 − | 〈x, y|z〉 |2
)
|µ− λ|2(3.13)

= ‖x− λy, z‖2‖x− µy, z‖2 −
∣∣〈x− λy, x− µy|z〉∣∣2.

Proof. Denote w := x− λy. Using some properties of a 2-inner product, we have∣∣〈x− λy, x− µy|z〉∣∣2 =
∣∣〈w, x− µy|z〉∣∣2(3.14)

=
∣∣〈w, x− λy + (λ− µ) y|z〉

∣∣2
=
∣∣〈w,w + (λ− µ) y|z〉

∣∣2
=
∣∣∣‖w, z‖2 + (λ− µ) 〈w, y|z〉

∣∣∣2
= ‖w, z‖4 + 2‖w, z‖2 Re (λ− µ) 〈w, y|z〉

+ |λ− µ|2
∣∣〈w, y|z〉∣∣2

= ‖w, z‖4 + 2‖w, z‖2 Re
(

(λ− µ) 〈w, y|z〉
)

+ |λ− µ|2‖w, z‖2‖y, z‖2

− |λ− µ|2
(
‖w, z‖2‖y, z‖2 − |〈w, y|z〉|2

)
.

Observe also that

‖w, z‖4 + 2‖w, z‖2 Re
(

(λ− µ) 〈w, y|z〉
)

+ |λ− µ|2‖w, z‖2‖y, z‖2(3.15)

= ‖w, z‖2
(
‖w, z‖2 + 2 Re

(
(λ− µ) 〈w, y|z〉

)
+ |λ− µ|2‖y, z‖2

)
= ‖w, z‖2‖w + (λ− µ) y, z‖2

= ‖x− λy, z‖2‖x− µy, z‖2.

Therefore, from (3.14) and (3.15), we have the desired result (3.13). This completes
the proof. �

Corollary 3.3. Let (X , 〈·, ·|·〉) be a 2-inner product space over the real or complex
number field K. For any x, y, z ∈X and λ, µ ∈ K,

‖x, z‖2‖y, z‖2 − |〈x, y|z〉|2 ≤ 1

|µ− λ|2
‖x− λy, z‖2‖x− µy, z‖2.

As an application of Theorem 3.5, we have the following.

Proposition 3.1. Let (X , 〈·, ·|·〉) be a 2-inner product space over the real or complex
number field K. Then, for all x, y, z, e ∈ X with ‖e, z‖ = 1 and λ, µ, γ, η ∈ K with
λ 6= µ and γ 6= η,

|〈x, y|z〉 − 〈x, e|z〉 〈e, y|z〉|(3.16)
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≤ 1

|λ− µ| |γ − η|
(‖x− λe, z‖ ‖x− µe, z‖ ‖y − γe, z‖ ‖y − ηe, z‖

−
∣∣〈x− λe, x− µe|z〉∣∣∣∣〈y − γe, y − ηe|z〉∣∣)

≤ 1

|λ− µ| |γ − η|
(‖x− λe, z‖ ‖x− µe, z‖ ‖y − γe, z‖ ‖y − ηe, z‖) .

Proof. Applying the Cauchy-Schwarz inequality for the vectors x − 〈x, e|z〉 e and
y − 〈y, e|z〉 e and taking into account that

〈x− 〈x, e|z〉 e, y − 〈y, e|z〉 e|z〉 = 〈x, y|z〉 − 〈x, e|z〉 〈e, y|z〉 ,
and

‖x− 〈x, e|z〉 e, z‖2 = ‖x, z‖2 − |〈x, e|z〉|2,
and

‖y − 〈y, e|z〉 e, z‖2 = ‖y, z‖2 − |〈y, e|z〉|2,
we have ∣∣〈x, y|z〉 − 〈x, e|z〉 〈e, y|z〉∣∣(3.17)

≤
(
‖x, z‖2 − |〈x, e|z〉|2

) 1
2
(
‖y, z‖2 − |〈y, e|z〉|2

) 1
2 ,

for any x, y, z, e ∈X with ‖e, z‖ = 1.
From (3.13), it follows that(

‖x, z‖2 − |〈x, e|z〉|2
) 1

2(3.18)

=
1

|µ− λ|
(
‖x− λe, z‖2‖x− µe, z‖2 − |〈x− λe, x− µe|z〉|2

) 1
2

and (
‖y, z‖2 − |〈y, e|z〉|2

) 1
2(3.19)

=
1

|γ − η|
(
‖y − γe, z‖2‖y − ηe, z‖2 − |〈y − γe, y − ηe|z〉|2

) 1
2 ,

for any x, y, z, e ∈X with ‖e, z‖ = 1 and λ, µ, γ, η ∈ K with λ 6= µ and γ 6= η.
Now, if we multiply (3.18) with (3.19), then we have(

‖x, z‖2 − |〈x, e|z〉|2
) 1

2
(
‖y, z‖2 − |〈y, e|z〉|2

) 1
2(3.20)

≤ 1

|µ− λ| |γ − η|

×
(
‖x− λe, z‖2‖x− µe, z‖2|〈x− λe, x− µe|z〉|2

) 1
2

×
(
‖y − γe, z‖2‖y − ηe, z‖2|〈y − γe, y − ηe|z〉|2

) 1
2 .

Further, if we use the elementary inequality(
a2 − b2

) 1
2
(
c2 − d2

) 1
2 ≤ ac− bd
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for all a ≥ b ≥ 0 and c ≥ d ≥ 0, then we also have(
‖x− λe, z‖2‖x− µe, z‖2|〈x− λe, x− µe|z〉|2

) 1
2(3.21)

×
(
‖y − γe, z‖2‖y − ηe, z‖2|〈y − γe, y − ηe|z〉|2

) 1
2

≤ ‖x− λe, z‖ ‖x− µe, z‖ ‖y − γe, z‖ ‖y − ηe, z‖
−
∣∣〈x− λe, x− µe|z〉∣∣∣∣〈y − γe, y − ηe|z〉∣∣.

Finally, using (3.17), (3.20) and (3.21), we have the second inequality (3.16). This
completes the proof. �

4. Some Reverses of the Triangle Inequality

In this section, we give some reverses of the triangle inequality.

Theorem 4.1. Let (X , 〈·, ·|·〉) be a 2-inner product space over the real or complex
number field K. Let z, xi,∈X , i ∈ {1, . . . , n}, and rij > 0 for each 1 ≤ i ≤ j ≤ n be
such that

(4.1) 0 ≤ ‖xi, z‖ ‖xj, z‖ − Re 〈xi, xj|z〉 ≤ rij.

Then the following quadratic reverse of the triangle inequality holds:

(4.2)

(
n∑
i=1

‖xi, z‖

)2

≤

∥∥∥∥∥
n∑
i=1

xi, z

∥∥∥∥∥
2

+ 2
∑

1≤i≤j≤n

rij.

The case of the equality holds in (4.2) if and only if it holds in (4.1) for each i, j with
1 ≤ i ≤ j ≤ n.

Proof. Observe that(
n∑
i=1

‖xi, z‖

)2

−

∥∥∥∥∥
n∑
i=1

xi, z

∥∥∥∥∥
2

=
n∑

i,j=1

‖xi, z‖ ‖xj, z‖ −

〈
n∑
i=1

xi,

n∑
j=1

xj|z

〉
(4.3)

=
n∑

i,j=1

‖xi, z‖ ‖xj, z‖ −
n∑

i,j=1

Re 〈xi, xj|z〉

=
n∑

i,j=1

(‖xi, z‖ ‖xj, z‖ − Re 〈xi, xj|z〉)

=
∑

1≤i≤j≤n

(‖xi, z‖ ‖xj, z‖ − Re 〈xi, xj|z〉)

+
∑

1≤j≤i≤n

(‖xi, z‖ ‖xj, z‖ − Re 〈xi, xj|z〉)

= 2
∑

1≤i≤j≤n

(‖xi, z‖ ‖xj, z‖ − Re 〈xi, xj|z〉).



SOME REVERSES OF THE CAUCHY-SCHWARZ INEQUALITY 89

Using the condition (4.1), we have∑
1≤i≤j≤n

(‖xi, z‖ ‖xj, z‖ − Re 〈xi, xj|z〉) ≤
∑

1≤i≤j≤n

rij

and, by (4.3), we have the desired inequality (4.2).
The case of the equality is obvious by the identity (4.3) and we omit the details.

This completes the proof. �

Remark 4.1. From (4.2), one may deduce the coarser inequality that might be useful
in some applications:

0 ≤
n∑
i=1

‖xi, z‖ −

∥∥∥∥∥
n∑
i=1

xi, z

∥∥∥∥∥ ≤ √2

( ∑
1≤i≤j≤n

rij

) 1
2

.

Theorem 4.2. Let (X , 〈·, ·|·〉) be a 2-inner product space over the real or complex
number field K. Let z, xi,∈X , i ∈ {1, . . . , n}, and r > 0 be such that

(4.4) ‖xi − xj, z‖ ≤ r,

for each 1 ≤ i ≤ j ≤ n. Then

(4.5)

(
n∑
i=1

‖xi, z‖

)2

≤

∥∥∥∥∥
n∑
i=1

xi, z

∥∥∥∥∥
2

+
n (n− 1)

2
r2.

The case of the equality holds in (4.5) if and only if

‖xi, z‖ ‖xj, z‖ − Re 〈xi, xj|z〉 =
1

2
r2,

for each 1 ≤ i ≤ j ≤ n.

Proof. The inequality (4.4) is obviously equivalent to

‖xi, z‖2 + ‖xj, z‖2 ≤ 2 Re 〈xi, xj|z〉+ r2,

for each 1 ≤ i ≤ j ≤ n. Since

2 ‖xi, z‖ ‖xj, z‖ ≤ ‖xi, z‖2 + ‖xj, z‖2,

for each 1 ≤ i ≤ j ≤ n, we have

‖xi, z‖ ‖xj, z‖ − Re 〈xi, xj|z〉 ≤
1

2
r2,

for each 1 ≤ i ≤ j ≤ n.
Applying Theorem 4.1 for rij := 1

2
r2 and taking into account that∑

1≤i≤j≤n

rij =
n (n− 1)

4
r2,

we deduce the desired inequality (4.5). The case of the equality is also obvious by the
Theorem 4.1 and we omit the details. This completes the proof. �
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5. Applications for Determinantal Integral Inequalities

Let (Ω,Σ, µ) be a measure space consisting of a set Ω, a σ-algebra Σ of subsets
of Ω and a countably additive and positive measure µ on Σ with values in R ∪ {∞}.
Denote by L2

ρ (Ω) the Hilbert space of all real-valued functions f defined on Ω that
are 2-ρ-integrable on Ω, i.e. ∫

Ω

ρ (s) |f (s)|2dµ (s) <∞,

where ρ : Ω→ [0,∞) is a measurable function on Ω.
We can introduce the following 2-inner product on L2

ρ (Ω) by the formula

〈f, g|h〉ρ :=
1

2

∫
Ω

∫
Ω

ρ (s) ρ (t)

∣∣∣∣f (s) f (t)
h (s) h (t)

∣∣∣∣ ∣∣∣∣g (s) g (t)
h (s) h (t)

∣∣∣∣dµ (s) dµ (t) ,

where, by ∣∣∣∣f (s) f (t)
h (s) h (t)

∣∣∣∣ ,
we denote the determinant of the matrix∣∣∣∣g (s) g (t)

h (s) h (t)

∣∣∣∣ ,
generating the 2-norm on L2

ρ (Ω) expressed by

‖f, h‖ρ :=

1

2

∫
Ω

∫
Ω

ρ (s) ρ (t)

∣∣∣∣f (s) f (t)
h (s) h (t)

∣∣∣∣dµ (s) dµ (t)

 1
2

.

A simple calculation with integrals reveals that

(5.1) 〈f, g|h〉ρ =

∣∣∣∣∣∣
∫
Ω

ρfgdµ
∫
Ω

ρfhdµ∫
Ω

ρghdµ
∫
Ω

ρh2dµ

∣∣∣∣∣∣
and

(5.2) ‖f, h‖ρ =

∣∣∣∣∣∣
∫
Ω

ρf 2dµ
∫
Ω

ρfhdµ∫
Ω

ρfhdµ
∫
Ω

ρh2dµ

∣∣∣∣∣∣
1
2

,

where, for simplicity, instead of
∫

Ω
ρ (s) f (s) g (s) dµ (s), we have written

∫
Ω
ρfgdµ

(see, e.g. [13] or [14]).
Using the representations (5.1), (5.2) and the Theorem 4.1, one may state interesting

determinantal integral inequality, as follows.
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Proposition 5.1. Let f1, . . . , fn, g, h ∈ L2
ρ (Ω), where ρ : Ω→ [0,∞) is a measurable

function on Ω and rij > 0 such that∣∣∣∣∣∣
∫
Ω

ρ(fi − fj)2dµ
∫
Ω

ρ (fi − fj)hdµ∫
Ω

ρ (fi − fj)hdµ
∫
Ω

ρh2dµ

∣∣∣∣∣∣
1
2

≤ r,

for each 1 ≤ i ≤ j ≤ n, then n∑
i=1

∣∣∣∣∣∣
∫
Ω

ρfi
2dµ

∫
Ω

ρfihdµ∫
Ω

ρfihdµ
∫
Ω

ρh2dµ

∣∣∣∣∣∣
1
2


2

≤

∣∣∣∣∣∣∣∣
n∑
i=1

∫
Ω

ρfi
2dµ

n∑
i=1

∫
Ω

ρfihdµ

n∑
i=1

∫
Ω

ρfihdµ
n∑
i=1

∫
Ω

ρh2dµ

∣∣∣∣∣∣∣∣+ 2
∑

1≤i≤j≤n

rij.

Proof. The proof follows by Theorem 4.1, applied for the 2-inner product 〈·, ·|·〉ρ and
we omit the details. �

Similar determinantal integral inequalities may be stated if one uses the other
results for 2-inner products obtained above, but we do not present them here.
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