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ON STABILITY AND BOUNDEDNESS PROPERTIES OF
SOLUTIONS OF CERTAIN SECOND ORDER NON-AUTONOMOUS

NONLINEAR ORDINARY DIFFERENTIAL EQUATION

J. G. ALABA1 AND B. S. OGUNDARE2

Abstract. In this paper, sufficient criteria for the existence of solutions to uniform
asymptotic stability and boundedness problems associated with certain second order
nonlinear non autonomous ordinary differential equation are established with the
aid of Lyapunov’s direct method. Furthermore, the appropriate complete Lyapunov
function is given explicitly. Our results complement some well known results on the
second order differential equations in the literature.

1. Introduction

Consider the second order non autonomous damped and forced nonlinear ordinary
differential equation of the form

(1.1) (a(t)ẋ)
′
+ b(t)f(x, ẋ)ẋ+ c(t)g(x) = p(t;x, ẋ),

where f ∈ C(R × R,R), g ∈ C(R,R), p ∈ C([0,∞) × R × R,R), a(t), b(t) and c(t)
are positive functions.

The functions a, b, c, f, g and p depend only on the arguments displayed explicitly
and they are such that existence, uniqueness and continuous dependence on the initial
condition are guaranteed. The equation (1.1) can be written as

a(t)ẍ+ [ȧ(t) + b(t)f(x, ẋ)]ẋ+ c(t)g(x) = p(t;x, ẋ)

with an equivalent system,

(1.2)
ẋ = y,

ẏ = − 1

a(t)
[ȧ(t)y + b(t)f(x, y)y + c(t)g(x)− p(t;x, y)].

Key words and phrases. Asymptotic stability, boundedness, Lyapunov function, nonlinear, non
autonomous, differential equation.
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On substituting
1

a(t)
= d(t) for all a(t) 6= 0 into system (1.2), we have

(1.3) ẋ = y,
ẏ = −[ȧ(t)y + b(t)f(x, y)y + c(t)g(x)− p(t;x, y)]d(t).

The dots indicate differentiation with respect to the independent variable t.
For over six decades, numerous works have been done by various authors on au-

tonomous and non autonomous second order nonlinear ordinary differential equations
and obtained many interesting results, for examples see [7,10–12,14] and the references
cited therein.

In these aforementioned works, the authors made use of Lyapunov direct’s method
by constructing different Lyapunov functions and obtained criteria which ensure the
existence of solutions of some qualitative properties of solutions of the problems con-
sidered while some constructed Lyapunov functions, some adopted existing Lyapunov
functions to give suitable criteria that guaranteed their results. For more exposition on
Lyapunov functions and the qualitative properties of solutions of ordinary differential
equations, readers are referred to [5, 13,17,24,25,35,36].

Furthermore, many of these existing Lyapunov functions are either incomplete or
contain signum functions.

In 1974, Baker [3] established some sufficient conditions that guarantee the uniform
stability of the trivial solutions of the following second order nonlinear differential
equation (

r(t)u
′
)′

+ φ
(
t, u, u

′
)
u
′
+ p(t)f(u) = 0.

with the equivalent system

(1.4)
ẋ = y,

ẏ = − 1

r(t)
[r′(t)y + φ(t, x, y)y + p(t)f(x)] ,

where f : R → R, φ : I × R2 → R and p : I → R are continuous, and r : I → R is
differentiable, and r(t) > 0 for all t ∈ I, I = [0,∞].

He constructed more than one Lyapunov functions for the system (1.4) and obtained
conditions to establish his stability results.

In 2011, Tunc [31] studied and extended the results of Baker [3]. He also considered

(1.5)
(
r(t)x

′
)′

+ φ
(
t, x, x

′
)
x
′
+ p(t)f(x) = p(t, x, x′),

with an equivalent system given as

(1.6)
ẋ = y,

ẏ = − 1

r(t)
[r′(t)y + φ(t, x, y)y + p(t)f(x)] +

1

r(t)
q(t, x, y),

where q : I×R2 → R is continuous. He constructed more than one Lyapunov functions
for the system (1.6) and proved boundedness of the solutions.
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Other second order differential equations similar to equations (1.1) and (1.5) have
been considered by [1–6,8, 9, 15,16,18–23,26–30,32–34].

Recently, Alaba and Ogundare [1] discussed the uniform asymptotic stability and
boundedness of solutions of the of the equation (1.4) or (1.5) with r(t) = 1 and
φ(t, x, y) ≡ a(t)f(x, y) i.e.

(1.7) ẍ+ a(t)f(x, ẋ)ẋ+ b(t)g(x) = p(t;x, ẋ),

with the equivalent system

(1.8) ẋ = y,
ẏ = −a(t)f(x, y)y − b(t)g(x) + p(t;x, y),

where f ∈ C(R × R,R), g ∈ C(R,R), p ∈ C([0,∞) × R × R,R), a(t) and b(t) are
positive functions.

The functions a, b, f, g and p depend only on the arguments displayed explicitly. In
the work, they constructed a single complete Lyapunov function and obtained criteria
to establish their results.

The motivation for this present work comes from the papers of Baker [3] and C.
Tunc [31]. The purpose of this paper is to extend and improve their obtained results
by constructing a single unique complete Lyapunov function with less restrictive
conditions.

2. The Main Results

2.1. Basic Assumptions. The following are the basic assumptions used to formulate
the main results of this article.

Let a(t), b(t), c(t), d(t), f , g and p be continuous functions, I = [0, ab] the Routh-
Hurwitz interval, also a, b, c and d are positive i.e, a, b, c, d > 0 with 0 < a0 ≤ a ≤
a(t) ≤ a1, 0 < b0 ≤ b ≤ b(t) ≤ b1, 0 < c0 ≤ c ≤ c(t) ≤ c1 and 0 < d0 < d ≤ d(t) ≤ d1,
for all t ∈ R+; in addition, a, b, c and d are differentiable with a(t), b(t), c(t) and d(t)
being decreasing functions i.e, ȧ ≤ 0, ḃ ≤ 0, ċ ≤ 0 and ḋ ≤ 0, then:

(i) |f(x, y)| ≤ α ∈ I;
(ii) G0 =

g(x)−g(0)
x

≤ β ∈ I, with x 6= 0, g(0) = 0 and α, β > 0;
(iii) c[cḋα2 + β(2bdα + ḃ

b
(b + 1))] > ċβ(δ + 1) + bα2(2bḋ + ḃd) for all α, β, δ all

positive;
(iv) p(t;x, y) = p(t) and |p(t)| ≤ W for all t ≤ 0, where W is a constant.

These are the main results with respect to the equation (1.1).

Theorem 2.1. Suppose conditions (i)–(iii) in our basic assumptions hold, then the
trivial solution of the system (1.3) is globally asymptotically stable.

Theorem 2.2. Suppose that the conditions of Theorem 2.1 hold and in addition
condition (iv) of the basic assumption also holds, then there exists σ (0 < σ < ∞)
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depending only on α, β and δ such that every solution of system (1.3) satisfies

x2(t) + ẋ2(t) ≤ e−σt
{
Q1 +Q2

∫ t

t0

|p(τ)|e(
στ
2
)dτ

}2

,

for all t ≥ t0, where the constant Q1 > 0 depends on α, β, δ, t0, x(t0), ẋ(t) and the
constant Q2 > 0 depends on α, β and δ only.

Theorem 2.3. Suppose the conditions of Theorem 2.2 hold with condition (iv) replaced
with (v) |p(t;x, y)| ≤ (|x| + |y|)φ(t), where φ(t) is a non-negative and continuous
function of t and satisfies

∫ t
0
φ(s)ds ≤ W < ∞, W > 0 is a constant. Then there

exists a constant λ0 which depends on W , λ1, λ2 and t0 such that every solution x(t)
of system (1.3) satisfies |x(t)| ≤ λ0, |ẋ(t)| ≤ λ0, for sufficiently large t.

3. Preliminary Results

The main tool employed in proving our main results is the scalar function V (t;x, y)
defined as

(3.1) V (t;x, y) =
1

2bdα

{
dcβ(δ + 1)x2 + (dbα)2x2 + δy2 + y2 + 2bdαxy

}
.

To establish that (3.1) is indeed a Lyapunov function for the system (1.3), we shall
state and prove the following Lemmas.

Lemma 3.1. Subject to the assumptions of Theorem 2.1, there exist positive constants
λi = λi(a, b, c, d, α, β, δ) i = 1, 2 such that

λ1(x
2 + y2) ≤ V (t;x, y) ≤ λ2(x

2 + y2)

Proof. Clearly, V (t; 0, 0) = 0. By rewriting (3.1) we have

V =
1

2bdα

{
dcβ(δ + 1)x2 + δy2 + (bdαx+ y)2

}
,(3.2)

V ≥ 1

2bdα

{
dcβ(δ + 1)x2 + δy2

}
,(3.3)

and

V (t;x, y) ≥ λ1(x
2 + y2),(3.4)

where λ1 = λ0 ×min{d0c0β(δ + 1), δ} and λ0 = 1
2dbα

.
After applying the inequality |xy| ≤ 1

2
|x2 + y2| on equation (3.1), we have

V ≤ 1

2bdα

{[
dcβ(δ + 1) + (bdα)2

]
x2 + [δ + 1] y2 + bdαx2 + bdαy2

}
,(3.5)

V ≤ 1

2bdα

{[
dcβ(δ + 1) + (bdα)2 + bdα

]
x2 + [bdα + δ + 1] y2

}
,(3.6)
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and

V (t;x, y) ≤ λ2(x
2 + y2),(3.7)

where λ2 = λ0 ×max {d1c1β(δ + 1) + (d1b1α)
2 + b1d1α, b1d1α + δ + 1} and λ0 = 1

2dbα
.

From equations (3.4) and (3.7), we have

(3.8) λ1(x
2 + y2) ≤ V (t;x, y) ≤ λ2(x

2 + y2)

which completes the proof. �

Lemma 3.2. Subject to the assumptions of Theorem 2.1, there exist positive constants
λj = λj(a, b, c, d, α, β, δ) with j = 3, 4 such that for any solution (x, y) of system (1.3)

V̇ (t;x, y)|(1.4) =
dV (t;x, y)

dt

∣∣∣∣
(1.4)

≤ −λ3
(
x2 + y2

)
+ λ4(|x|+ |y|)|p(t;x, y)|.

Proof. After differentiating the equation (3.1) with respect to t, we have

(3.9)
dV

dt

∣∣∣∣
(1.4)

= V̇ |(1.4) =
∂V

∂t
+
∂V

∂x
ẋ+

∂V

∂y
ẏ

by using (1.3) in (3.9). Therefore, differentiation of (3.1) partially, with respect to t,
gives

∂V

∂t
=

2bdα

4b2d2α2

{[
dċβ(δ + 1) + ḋcβ(δ + 1) + 2ḋdb2α2 + 2ḃbd2α2

]
x2 + 2(ḃd+ bḋ)αxy

− 2α(ḃd+ bḋ)

4b2d2α2

([
dcβ(δ + 1) + (dcα)2

]
x2 + [δ + 1]y2 + 2bdαxy

)}
=

1

2bdα

{([
dċβ(δ + 1) + ḋcβ(δ + 1) + 2ḋdb2α2 + 2ḃbd2α2

]
x2 + 2(ḃd+ bḋ)αxy

)
− 1

2b2d2α

([
ḋd2cβ(δ + 1) + ḃd(dbα)2 + bḋdcβ(δ + 1) + bḋd2c2α2

]
x2

+
[
ḃd(δ + 1) + bḋ(δ + 1)

]
y2 + 2ḃbd2αxy + 2b2ḋdαxy

)}
.

Further simplification yields to

∂V

∂t
=

1

bdα

{
1

2

[
dċβ(δ + 1) + 2ḋdb2α2 + ḃbd2α2 − ḃ

b
(δ + 1)− ḋdc2α2

]
x2

− 1

2

[
ḃb(δ + 1) +

ḋ

d
(δ + 1)

]
y2

}
.(3.10)
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Also differentiating the equation (3.1) partially with respect to x gives

∂V

∂x
=

1

dbα

{[
dcβ(δ + 1) + (dbα)2

]
x+ dbαy

}
,

∂V

∂x
ẋ =

1

dbα

{[
dcβ(δ + 1) + (dbα)2

]
xy + dbαy2

}
.(3.11)

Finally differentiating the equation (3.1) partially with respect to y gives

∂V

∂y
=

1

dbα

{
(δ + 1)y + dbαx

}
,

∂V

∂y
ẏ =

1

dbα

{
((δ + 1)y + dbαx)(−ȧdy − bdf(x, y)− cdg(x) + dp(t;x, y))

}
≤ 1

bdα

{
− bcd2αβx2 − ȧd(δ + 1)y2 − bdα(δ + 1)y2 − b2d2α2xy − cdβ(δ + 1)xy

+ p(t;x, y)d2bαx+ p(t;x, y)(δ + 1)dy

}
,

and

∂V

∂y
ẏ =

1

bdα

{(
−bcd2αβx2 − [ȧd(δ + 1) + bdα(δ + 1)]

)
y2(3.12)

−
[
b2d2α2 + cdβ(δ + 1)

]
xy + p(t;x, y)d2bαx+ p(t;x, y)(δ + 1)dy

}
.

If we substitute equations (3.10), (3.11) and (3.12) in (3.9) then it yields to

dV

dt
=− 1

bdα

{(
bcd2αβ +

1

2

[
ḋdc2α2 +

ḃ

b
dcβ(δ + 1)

]
(3.13)

− 1

2

[
dċβ(δ + 1) + 2ḋdb2α2 + ḃbd2α2

])
x2

+

(
ȧd(δ + 1) + bdαδ +

1

2

(
ḃ

b
(δ + 1) +

ḋ

d
(δ + 1)

))
y2

+ p(t;x, y)
(
d2bαx+ (δ + 1)dy

)}

and

dV

dt
= V̇ (t;x, y) ≤ −λ3

(
x2 + y2

)
+ λ∗(|x|+ |y|)p(t;x, y),(3.14)
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with λ0 = 1
dbα

, λ∗ = {d2bα, d(δ + 1)} and

λ3 =λ0 ×max

{
bcd2αβ +

1

2

[
ḋdc2α2 +

ḃ

b
dcβ(δ + 1)

]
− 1

2

[
dċβ(δ + 1) + 2ḋdb2α2

+ḃbd2α2
]
,

[
ȧd(δ + 1) + bdαδ +

1

2

(
ḃ

b
(δ + 1) +

ḋ

d
(δ + 1)

)]}
.

Inequality (3.14) can also be simplified and given as

(3.15)
dV

dt
= V̇ (t;x, y) ≤ −λ3

(
x2 + y2

)
+ λ4

(
x2 + y2

) 1
2 |p(t;x, y)|

with λ4 =
√
2λ∗ which completes the proof. �

Remark 3.1. When p(t;x, y) = 0, (3.15) becomes

(3.16)
dV

dt
= V̇ (t;x, y) ≤ −λ3

(
x2 + y2

)
.

Lemma 3.1 established that V is a positive definite function while Lemma 3.2 showed
that V̇ is negative definite function; hence V is a Lyapunov function for the system
(1.3).

4. Proof of the Main Results

Now, we shall give the proofs of our results stated in section 4 as follows.

Proof of Theorem 2.1. From Lemmas 3.1 and 3.2 with p(t;x, ẋ) ≡ 0, it had been
established that function V (t;x, y) is a Lyapunov function for the system (1.3). Hence,
the trivial solution of system (1.3) is globally asymptotically stable (g.a.s), that is,
every solution x(t), ẋ(t) of the system (1.3) satisfies x2(t) + ẋ2(t)→ 0 as t→∞. �

Proof of Theorem 2.2. From (3.15) by replacing p(t;x, ẋ) with p(t) we obtain

(4.1) V̇ (t;x, y) ≤ −λ3
(
x2 + y2

)
+ λ4

(
x2 + y2

) 1
2 p(t).

From (3.4), we have

(4.2) x2 + y2 ≤ 1

λ1
V.

Hence

(4.3) λ3
(
x2 + y2

)
≤ λ3

V

λ1
.

Using inequalities (4.2) and (4.3), inequality (4.1) becomes

(4.4)
dV

dt
≤ −λ6V + λ5V

1
2 |p(t)|,
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where λ6 = λ3
λ1

and λ5 = λ4

λ
1
2
1

. The inequality (4.4) can also be expressed as

dV

dt
≤ −2λ7V + λ5V

1
2 |p(t)|,

with λ7 = λ6
2
. Therefore,

V̇ + λ7V ≤ −λ7V + λ5V
1
2 |p(t)|,

V̇ + λ7V ≤ λ5V
1
2

{
|p(t)| − λ8V

1
2

}
,(4.5)

where λ8 = λ7
λ5
. Thus (4.5) becomes V̇ + λ7V ≤ λ5V

1
2V ∗, where

(4.6) V ∗ = |p(t)| − λ8V
1
2 .

When |p(t)| ≤ λ8V
1
2 , then (4.6) becomes

(4.7) V ∗ ≤ 0

and when |p(t)| ≥ λ8V
1
2 , then (4.6) becomes V ∗ ≥ 0. By substituting (4.7) into (4.5),

we have V̇ + λ7V ≤ λ9V
1
2 |p(t)|, where λ9 = λ5

λ8
. This implies that

(4.8) V̇ V −
1
2 + λ7V

1
2 ≤ λ9|p(t)|.

Multiplying both sides of (4.8) by e
λ7t
2 , we have e

λ7t
2

{
V̇ V −

1
2 + λ7V

1
2

}
≤ e

λ7t
2 λ9|p(t)|,

that is,

(4.9) 2
d

dt

{
V

1
2 e(

λ7t
2

)
}
≤ e

λ7t
2 λ9|p(t)|.

Integrating both sides of (4.9) from t0 to t, gives{
V

1
2 e

λ7ξ
2

}t
t0
≤
∫ t

t0

1

2
e
λ7τ
2 λ9|p(τ)|dτ,

which implies that{
V

1
2 (t)
}
e(

λ7t
2

) ≤ V
1
2 (t0)e

λ7t0
2 +

λ9
2

∫ t

t0

|p(τ)|e
λ7τ
2 dτ

or

(4.10) V
1
2 (t) ≤ e−(

λ7t
2

)

{
V

1
2 (t0)e

λ7t0
2 +

λ9
2

∫ t

t0

|p(τ)|e
λ7τ
2 dτ

}
.

Using (3.4) and (4.10), we have

λ1(x
2(t) + ẋ2(t)) ≤ e−(λ7t)

{
λ2
(
x(t)2 + ẋ2(t)

) 1
2 e

λ7t0
2 +

λ9
2

∫ t

t0

|p(τ)|e
λ7τ
2 dτ

}2

,
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for all t ≥ 0. Thus

x2(t) + ẋ2(t) ≤ 1

λ1

{
e−λ7t

{
λ2
(
x2(t) + ẋ2(t)

) 1
2 e

λ7t0
2 +

λ9
2

∫ t

t0

|p(τ)|e
λ7τ
2 dτ

}2
}

≤ e−λ7t
{
Q1 +Q2

∫ t

t0

|p(τ)|e
λ7τ
2 dτ

}2

,(4.11)

where Q1 = λ2(x(t)
2 + ẋ2(t))

1
2 e

λ7t0
2 and Q2 =

λ9
2
.

By putting λ7 = σ in the inequality (4.11) and gives

(4.12) x2(t) + ẋ2(t) ≤ e−σt
{
Q1 +Q2

∫ t

t0

|p(τ)|e(
στ
2
)dτ

}2

.

Hence, this completes the proof. �

Remark 4.1. From the proof of the Theorem 2.2, the following can be pointed out as
direct consequence of the Theorem. If p(t, x, y) ≡ 0, then the trivial solution of (1.3)
is uniformly asymptotically stable.

Remark 4.2. If p(t;x, y) ≡ 0, then (4.12) reduces to x2(t)+ ẋ2(t) ≤ e−σtQ1, as t→∞,
x2(t)+ ẋ2(t)→ 0 which implies that the trivial solution of the system (1.3) is globally
asymptotically stable.

Proof of Theorem 2.3. Indeed from the inequality (3.15), we have

(4.13) V̇ ≤ λ∗(|x|+ |y|)2φ(t).

By using the Schwartz inequalities on (4.13) we obtain

(4.14) V̇ ≤ λ10
(
x2 + y2

)
φ(t),

where λ10 = 2λ∗.
From the inequalities (3.4) and (4.10), we have V̇ ≤ λ10V φ(t), by integrating

equation (4.14) from 0 to t0, we obtain

(4.15) V (t)− V (0) ≤ λ11

∫ t

t0

V (s)φ(s)ds,

where λ11 = λ10
λ1

= 3λ∗
λ1

. The inequality (4.15) now becomes

(4.16) V (t) ≤ V (0) + λ11

∫ t

t0

V (s)φ(s)ds.

By Gronwall-Bellman inequality (4.16) we obtain

V (t) ≤ V (0) exp(λ11

∫ t

t0

φ(s)ds).

This completes the proof. �
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5. Example

Consider second order non autonomous nonlinear differential equation

(5.1)
(
2 + 3t2

1 + t2
x′
)′

+
t

(1 + t2)2
x′ +

4 + 3t2

1 + t2
(
2x+ 4x3

)
=

1

1 + t2 + x2 + x′2
,

which can be written as

(5.2)
(
3− 1

1 + t2

)
x′′ +

3t

(1 + t2)2
x′ +

4 + 3t2

1 + t2
(
2x+ 4x3

)
=

1

1 + t2 + x2 + x′2
.

We state (5.2) as the system form
(5.3)

x′ = y,

y′ = − 3t

(2 + 3t2) (1 + t2)
y − 4 + 3t2

3t2 + 2

(
2x+ 4x3

)
+

1 + t2

(1 + t2 + x2 + y2) (2 + 3t2)
.

Comparing (5.1) with (1.1), it is clearly seen that

a(t) = 3− 1

1 + t2
, t ≥ 0, 2 ≤ 3− 1

1 + t2
≤ 3,

a0 = 2, a1 = 3,

b(t) =
t

(1 + t2)2
, t ≥ 0,

1

2
≤ t

(1 + t2)2
≤ 1,

b0 =
1

4
, b1 =

2

5
,

c(t) = 3 +
1

1 + t2
, t > 0, 3 ≤ 3 +

1

1 + t2
≤ 4,

c0 = 3, c1 = 4,

d0 =
1

2
, d1 =

1

3
,

λ0 =
1

α
, λ3 = 12β.

The corresponding Lyapunov function to the system (5.3) is given as

V =
1

α

{
0.5β(δ + 1)x2 + δy2 + (0.5αx+ y)2

}
> 0,

where α, β, and δ are positive constants and whose derivative is given as

dV

dt
= V̇ (t;x, y) ≤ −12β

(
x2 + y2

)
,

where β > 0. All conditions stated in Theorem 2.1 are satisfied therefore the zero
solution of system (5.3) is globally asymptotic stable.

We have for p ≡ 0 that the solutions of (5.1) are globally asymptotic stable.
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