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LAPLACIAN ENERGY OF UNION AND CARTESIAN PRODUCT
AND LAPLACIAN EQUIENERGETIC GRAPHS

HARISHCHANDRA S. RAMANE!, GOURAMMA A. GUDODAGI!, AND IVAN GUTMAN?

ABSTRACT. The Laplacian energy of a graph G with n vertices and m edges is
defined as LE(G) = Y1, |u; — 2m/n|, where i, po, ..., pu, are the Laplacian
eigenvalues of G. If two graphs G; and G5 have equal average vertex degrees,
then LE(Gy U G2) = LE(G1) + LE(G2). Otherwise, this identity is violated.
We determine a term =, such that LE(G1) + LE(G3) — E < LE(G1 U Ga) <
LE(G1)+LE(G2)+Z holds for all graphs. Further, by calculating LE of the Carte-
sian product of some graphs, we construct new classes of Laplacian non-cospectral,
Laplacian equienergetic graphs.

1. INTRODUCTION

Let G be a finite, simple, undirected graph with n vertices vy, vs,...,v, and m
edges. In what follows, we say that G is an (n, m)-graph. Let A(G) be the adjacency
matrix of G and let \j, A, ..., A, be its eigenvalues.

Let D(G) be the diagonal matrix whose (i,7)-th entry is the degree of a vertex
v;. The matrix C(G) = D(G) — A(G) is called the Laplacian matriz of G. The
Laplacian polynomial of G is defined as (G, u) = det[ul — C(G)], where I is an
identity matrix. The eigenvalues of C(G), denoted by p; = w;(G), i = 1,2,...,n,
are called the Laplacian eigenvalues of G [16]. Two graphs are said to be Laplacian
cospectral if they have same Laplacian eignevalues. The adjacency eigenvalues and
Laplacian eigenvalues satisfies the following conditions:

Zn:)\i:O and zn:m:Zm.
i=1 i=1
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The energy of a graph G is defined as
E=E(G)=) Il
i=1

It was introduced by one of the present authors in the 1970s, and since then has
been much studied in both chemical and mathematical literature. For details see the
book [15] and the references cited therein.

The Laplacian energy of a graph was introduced a few years ago [13] and is defined
as

n

LE(G)=)_

=1

2m

piG) = —|.

n

This definition is chosen so as to preserve the main features of the ordinary graph
energy &, see [18]. Basic properties and other results on Laplacian energy can be
found in the survey [1], the recent papers [6-8,11,12,17,19|, and the references cited
therein.

2. LAPLACIAN ENERGY OF UNION OF GRAPHS

Let G; and G5 be two graphs with disjoint vertex sets. Let for i = 1,2, the vertex
and edges sets of GG; be, respectively, V; and FE;. The union of G; and G, is a graph
G1 U Go with vertex set V3 U V4 and the edge set By U Esy. If Gy is an (ny, my)-graph
and G is an (ny, ma)-graph then G U Gy has ny + ny vertices and my + my edges. It
is easy to see that the Laplacian spectrum of G; U G5 is the union of the Laplacian
spectra of GG; and Gs.

In [13] it was proven that if G; and G5 have equal average vertex degrees, then
LE(G1UGs) = LE(Gy) + LE(G2). If the average vertex degrees are not equal,
that is 27% #+ 21%, then it may be either LE(Gy U G2) > LE(G,) + LE(Gs) or
LE(G1UG3) < LE(G1)+LE(G,) or, exceptionally, LE(G1UGs) = LE(G1)+LE(G>)
[13].

In this section we study the Laplacian establish some additional relations between
LE(G1UG,) and LE(G,) + LE(G3).

Theorem 2.1. Let G be an (ny, my)-graph and Gy be an (ns, ms)-graph, such that

2my  2ma T on
ny ng

4(n2m1 — nlmg)
nq + N9

LE(Gy) + LE(Gs) — < LE(G,UG)

Nnotmmy, — nlmQ)

(2.1) < LE(GY) + LE(Gy) + 4

n1+n2
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Proof. For the sake of simplicity, denote G1UG5 by G. Then G is an (ny+mng, m; +ms)-

graphs. By the definition of Laplacian energy,

ni+ng

2(my +mo)
E(G,UGy) = (G)— ——=
(G 2) ; 1i(G) T + g
= 2(m1 + mg) mtne 2(m1 + mg)
=" (@) - T (G) - T2
I e D D UL Ry
= i=ni+1
= 2(m1 + mg) 2 2(m1 + mg)
=Y (G - T ST (@) -
D |(Gr) = ST+ 3 Gr) - =
:iu(G)_2m1 2m1_2(m1+m2)
i1 ! ! nq nq ny -+ N9
+i G 2+2m2_2(m1—|—m2)
— ilG2) na N2 ny + ng
- 2 2 2
Z lul Gl _ mq n mq _ (m1 +m2)
i1 nq n1 + neo
2m2 2my  2(my + mo)
2.2 i G — .
(22) * Z (G2) " (o ny + No
Since nomy > nyms, Eq. (2.2) becomes
2 2
E(G1UG2)§LE(G1)+n1< mp (m1+m2))
ni ni + neo
2 2
LB (222 1 2 )
No ny + No

— LE(G1) + LE(Gs) +

which is an upper bound.

4(n2m1 — ’I’leg)

ny +7L2

To obtain the lower bound, we just have to note that in full analogy to the above

arguments,

2
LE(G, UG)) >Z o

=1

Hz Gl

2(?711 + mz)
ni + No

2m1

ni
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2ms 2mo  2(my + mo)

Mz‘(G2) -

[P ni + ng

(2.3) + i

Since ngmy > nims, the Eq. (2.3) becomes

ng

LE(G,UG,) > LE(Gy) — ny (2m1 _ 2(m + m2)>

nq ny + N9

+ LE(Gy) — ns <_2m2 L2+ mg))

N9 ny + N9

4(ngmy — nyms)

n1 + no

= LE(G)) + LE(G,) —

which is a lower bound. O

Corollary 2.1. [13] Let Gy be an (ny,my)-graph and G be (na, ma)-graph such that

2 — 2m2 - Then
ni ng

LE(G1UGy) = LE(Gy) + LE(G5).

Corollary 2.2. Let Gy be an ry-reqular graph on ny vertices and Gy be an ro-reqular
graph on ny vertices, such that ry > ry. Then

2711712(7“1 — 7”2)

LE(Gy) + LE(Gs) —

< LE(G1UG>)

n1+n2

) 4 2n1n2(T1 — TQ)
ny + No ‘

< LE(Gh)+ LE(G.

Proof. Result follows by setting my = ny71/2 and mg = ngre/2 into Theorem 2.1. O

Theorem 2.2. Let G be an (n,m)-graph and G be its complement, and let m >
n(n —1)/4. Then

LE(G)+LE(G)—[4m—n(n—1)] < LE(GUG) < LE(G)+LE(G)+ [4m—n(n—1)].

Proof. G is a graph with n vertices and n(n — 1)/2 — m edges. Substituting this into
Eq. (2.1), the result follows. O

Theorem 2.3. Let G be an (n,m)-graph and G’ be the graph obtained from G by
removing k edges, 0 < k < m. Then

LE(G) + LE(G') — 2k < LE(GUG') < LE(G) + LE(G') + 2k.

Proof. The number of vertices of G’ is n and the number of edges is m—k. Substituting
this in Eq. (2.1), the result follows. O



LAPLACIAN ENERGY 197

3. LAPLACIAN ENERGY OF CARTESIAN PRODUCT

Let G be a graph with vertex set V; and H be a graph with vertex set V5. The
Cartesian product of G and H, denoted by G x H is a graph with vertex set V; x V5,
such that two vertices (uy,vy) and (ug,ve) are adjacent in G x H if and only if either
u; = uy and vy is adjacent to vy in H or v; = ve and u, is adjacent to ug in G [14].

Lemma 3.1. [9] Let A = ﬁo jl be a symmetric 2 X 2 block matriz. Then the
1 Ao

spectrum of A is the union of the spectra of Ag + A1 and Ay — A,

Theorem 3.1. If uy, po, . . ., un are the Laplacian eigenvalues of a graph G, then the
Laplacian eigenvalues of G x Ko are piy, fto, ..., fbn and piy + 2, o + 2, ..., by, + 2.

Proof. The Laplacian matrix of G x Kj is

cCG)+1 —1I 1 G Gy
e |18 8]
where C'(G) is the Laplacian matrix of G and I is an identity matrix of order n. By
Lemma 3.1, the Laplacian spectrum of G x K3 is the union of the spectra of Cy + C4
and Cy — C].
Here Cy + Cy = C(G). Therefore, the eigenvalues of Cy + C) are the Laplacian
eigenvalues of G.
Because Cy — C) = C(G) + 21, the characteristic polynomial of Cy — (' is

Y(Co — C1, pi) = det [NI —(Co — Cl)} = det [MI — (C(G) + 21)]
= det [(1 —2)1 — C(G))] = (G —2).
Therefore the eigenvalues of Cy — C are pu; +2,i=1,2,...,n. OJ

C(G x Ky) = {

The Laplacian eigenvalues of the complete graph K, are n (n— 1 times) and 0. The
Laplacian eigenvalues of the complete bipartite regular graph Ky j are 2k, k (2k — 2
times) and 0. The Laplacian eigenvalues of the cocktail party graph C'P(k) (the
regular graph on n = 2k vertices and of degree 2k — 2) are 2k (k — 1 times), 2k — 2 (k
times) and 0 [16]. Applying Theorem 3.1, we directly arrive at the following example.

FExample 3.1.

An —4,  if n>2,

LEm;xKg:{zn .

8k —4, if k> 1,

LE(Kpp x Ky) = { 6k —2, if k=1,

LE(CP(k) x K») = 10k — 8, if k> 2.
Theorem 3.2. Let G be an (n,m)-graph. Then
2[LE(G) —n] < LE(G x Ky) < 2[LE(G) + n].
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Proof. Let uq, s, ..., u, be the Laplacian eigenvalues of G. Then by Theorem 3.1,
the Laplacian eigenvalues of G x Ky are pu;, it =1,2,...,nand pu; +2,i=1,2,...,n
The graph G x Ky has 2n vertices and 2m + n edges. Therefore,

= 22m +n 2 2(2m +n)
E(G x Ky) = Zﬂi—% +Z MH’Q—(T

i=1 i=1

- 2m a 2m

i=1 i=1

Equation (3.1) can be rewritten as

E(G x K») < u——

2
——m‘ 4 n=2LE(G)+2n
n

which is an upper bound.
For lower bound, Eq. (3.1) can be rewritten as

2
E(G x Kj) > ——‘ ,ui——m‘—n:2LE(G)—2n.
n
0
Theorem 3.3. For a graph G with n vertices, LE(G x K3) > 2n.
Proof. From Eq. (3.1)
" 2m - 2m
E(G x Ky) > i———1 P |
(><2)_ZZI(M - >+;<M n+)
= ‘2m—2m—n|+‘2m—2m—|—n‘ = 2.
[l

4. LAPLACIAN EQUIENERGETIC GRAPHS

Two graphs G and G are said to be equienergetic if E(G1) = E(G2) [2]|. For details
see the book [15]|. In analogy to this, two graphs G; and G5 are said to be Laplacian
equienergetic if LE(G1) = LE(G5).

Obviously Laplacian cospectral graphs are Laplacian equienergetic. Therefore we
are interested in Laplacian non-cospectral graphs with equal number of vertices, having
equal Laplacian energies. Stevanovié¢ [24| has constructed Laplacian equienergetic
threshold graphs. Fritscher et al. [10]| discovered a family of Laplacian equienergetic
unicyclic graphs. We now report some additional classes of such graphs.

The line graph of the graph G, denoted by L(G), is a graph whose vertices cor-
responds to the edges of G and two vertices in L(G) are adjacent if and only if the
corresponding edges are adjacent in G [14]. The k-th iterated line graph of G is defined
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as LF(G) = L(LF~1(Q)) where L°(G) = G and L'(G) = L(G). If G is a regular graph
of order ng and of degree r¢, then L(G) is a regular graph of order n; = nyro/2 and
of degree r; = 2ry — 2. Consequently, the order and degree of L*(G) are [3,4]:

1
ng = §nk_1rk_1 and TR = 2rp_1 — 2

where n; and 7; stand for the order and degree of L*(G), i = 0, 1,2, .... Therefore |3,4],

e Kl e kol

0 0 i i
(4.1) ne =g [[ri= 5 1] (2o -2 +2)
i=0 i=0

and
(4.2) e = 2%rg — 2F 1 2,

Theorem 4.1. 23| If A\, Ao, ..., A\, are the adjacency eigenvalues of a reqular graph
G of order n and of degree 1, then the adjacency eigenvalues of L(G) are

N+r—2 1=1,2,...,n, and
-2 n(r—2)/2 times.

Theorem 4.2. [22| If A\, Ay, ..., A\, are the adjacency ez’genvalues_of a regular graph
G of order n and of degree r, then the adjacency eigenvalues of G, the complement
of G, aren—r—1and —X\;—1,1=2,3,...,n.

Theorem 4.3. [16] If A\, Ao, ..., A\, are the adjacency eigenvalues of a reqular graph
G of order n and of degree r, then its Laplacian eigenvalues are r — X ;, 1 = 1,2,...,n.

For G being a regular graph of degree » > 3, and for k > 2, expressions for & (L¥(G))
and &(L*(G)) were reported in [20,21].
Theorem 4.4. If G is a reqular graph of order n and of degree r > 4, then
LE(L*(G) x Kj) = 4nr(r — 2).

Proof. Let Aq, Mg, ..., A\, be the adjacency eigenvalues of G . Then by Theorem 4.1,
the adjacency eigenvalues of L(G) are

ANi+r—2 1=1,2,...,n, and
-2 n(r—2)/2 times.

Since L(G) is a regular graph of order nr/2 and of degree 2r — 2, by Eq. (4.3) the
adjacency eigenvalues of L*(G) are

A +3r—=6 1=1,2,...,n, and

(4.3)

(4.4) 2r—6  n(r—2)/2 times, and
-2 nr(r—2)/2 times.
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Since L*(G) is a regular graph of order nr(r—1)/2 and of degree 4r —2, by Theorem
4.3 and Eq. (4.4), the Laplacian eigenvalues of L?(G) are

r— N\ 1=1,2,...,n, and
(4.5) 2r  n(r—2)/2 times, and
dr —4  nr(r—2)/2 times.

Using Theorem 3.1 and Eq. (4.5), the Laplacian eigenvalues of L*(G) x K, are

r—\ 1=1,2,...,n, and )
2r  n(r—2)/2 times, and
dr—4  nr(r—2)/2 times,  and
r— A+ 2 1=1,2,...,n, and
2r+2  n(r—2)/2 times, and

dr—2  nr(r—2)/2 times. )

The graph L?(G) x K, is a regular graph of order nr(r — 1) and of degree 4r — 5.
By Eq. (4.6), the Laplacian energy of L*(G) x K is computed as

LE(L*(G) x K3) = 3 _|r = Xi = (4r = 5)| + [2r (4r—5)|—”(r2_ 2)
+|47”—4—(4T—5)\M+Zn:\r—&+2—(4r—5)|
+ |2r+2—(4r—5>\—"(r2_2) + |4r—2—(4r—5)\—m"(7“2‘ 2)

:Z|—/\i—3r+5{+}—2r+5‘w

i=1
T D D
=1

2)

— —2
(4.7) + | —2r+7\n(rT+ M.

3
13—

If d, is the greatest vertex degree of a graph, then all its adjacency eigenvalues
belongs to the interval [—dnas, +dmaz) [5]. In particular, the adjacency eigenvalues of
a regular graph of degree r satisfy the condition —r < \; <r, ¢ =1,2,... n.
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Ifr>4then \;+3r—5>0, \;+3r—7>0,2r—5 >0, and 2r — 7 > 0. Therefore
by Eq. (4.7), and bearing in mind that > \; =0,

=1

n(r—2) nr(r—2)
2 * 2

LE(L*(G) x Ks) = i X +n(3r —5) + (2r — 5)

n(r—2)  3nr(r—2)
2 * 2

+i>\i+n(3r—7)+ (2r —17)
= 4nz7“(17“ —2).

O

Corollary 4.1. Let G be a reqular graph of order ng and of degree ro > 4. Let ny
and 1y, be the order and degree, respectively of the k-th iterated line graph L*¥(G) of G,
k> 2. Then

LE(Lk(G) X KQ) = 4nk_27’k_2(rk_2 — 2) = 4’/Lk_1(7”k_1 — 2),

(4.8) LE(L*(G) x K3) = 4ng(ro — 2) ]:[(2% — 27 1 9),
L o __ T — 2
LE(L (G) X KQ) = 8(nk — nk_l) = Snk (Tk I 2) .

From Eq. (4.8) we see that the energy of L*¥(G) x K, k > 2 is fully determined by
the order n and degree r > 4 of G.

Theorem 4.5. If G is a reqular graph of order n and of degree r > 3, then
LE (L?(G) X Kg) = (nr — 4)(4r — 6) — 4.

Proof. Let A, o, ..., A\, be the adjacency eigenvalues of a regular graph G of order
n and of degree r > 3. Then the adjacency eigenvalues of L?(G) are as given by Eq.
(4.4).

Since L?(G) is a regular graph of order nr(r —1)/2 and of degree 4r —2, by Theorem
4.2 and Eq. (4.4), the adjacency eigenvalues of L?(G) are

-\ —3r+5 1=2,3,...,n, and )
—2r+5  n(r—2)/2 times, and
(4.9)
1 nr(r—2)/2 times,  and

(nr(r—1)/2) — 4r + 5. )
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Since L?(G) is a regular graph of order nr(r—1)/2 and of degree (nr(r—1)/2)—4r+5,

by Theorem 4.3 and Eq. (4.9), the Laplacian eigenvalues of L?(G) are

(nr(r—1)/2)—r—XN  1=2,3,...,n, and )
(nr(r—1)/2) =2r  n(r—2)/2 times, and
(4.10)
(nr(r—1)/2) —4r+4  nr(r—2)/2 times, and
0. )
Using Theorem 3.1 and Eq. (4.10), the Laplacian eigenvalues of L?(G) x K, are
(nr(r—1)/2)—r—XN  i=2,3,...,n, and
(nr(r—1)/2) —2r  n(r—2)/2 times, and
(nr(r—1)/2) —4r+4  nr(r—2)/2 times,  and
0 1 time, and
(4.11)
(nr(r—1)/2)—r—XN+2 i=2,3,...,n, and

(nr(r—1)/2) =2r+2  n(r—2)/2 times, and
(nr(r—1)/2) —4r+6  nr(r—2)/2 times, and
2.

Vs

The graph L?(G) x K, is a regular graph of order nr(r — 1) and of degree
(nr(r—1)/2) —4r 4+ 6. By Eq. (4.11),

n

LE(WX[Q):Z

o= (-
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nr(r—1)
2

nr(r — 2)

—1
L |prtr=1) .

5 —47"—1—6)

—4r+6—(

+‘2_<w_4r+6)'

:Z‘)\i+3r—6}+‘2r—6|w

=2

+‘_2’m‘(r2—2) +‘—m’(;’—1) +4r—6‘+2’)\i+3r—4‘
=2
(4.12) + |2r —4|n(T2_ 2 \O\W(TQ_ 2. ‘_m(g L 4‘.

All adjacency eigenvalues of a regular graph of degree r satisfy the condition —r <
N <r,i=1,2,...,n [5]. Therefore if r > 3, then \; +3r —6 >0, \; +3r —4 > 0,
2r—6>0,2r—4>0, (—nr(r—1)/2)+4r—6 <0, and (—nr(r —1)/2) +4r — 4 < 0.

Then from Eq. (4.12), and bearing in mind that > \; = —r, we get
i=2

LE (L—z(a) X Kg) - zn:A +(n—1)3r—6)+ (r — 3)n(r — 2) +nr(r —2)

W—4r+6+i)\i+(n—l)(3r—4)
—l—(r—2)n(r—2)+@—4r—l—4

=2(nr —4)(2r — 3) — 4.
0

Corollary 4.2. Let G be a reqular graph of order ng and of degree ro > 3. Let ny
and 1), be the order and degree, respectively of the k-th iterated line graph L¥(G) of G,
k> 2. Then

LE (Lk(G) X K2> = (p_sris — 4)(4r_s — 6) — 4
= (an,l — 4)(27’]?,1 — 2) — 4,

k-2
=0

k—2
(4.13) LE (Lk(G) X K2> - [ PO T2 — 274 4 2) — 4 (25 — 2M 4 2) — 4,
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— 87’Lk7"k
LE (TF(G) x k) = — A(ry+ 1),
(G) > K 241 (r +1)
From Eq. (4.13) we see that the energy of L¥(G) x Ky, k > 2 is fully determined
by the order n and degree r > 3 of G.

Theorem 4.6. Let G and Gy be two Laplacian non-cospectral, reqular graphs of the
same order and of the same degree r > 4. Then for any k > 2, L¥(G,) x Ky and
LE(Gy) x Ky is a pair of Laplacian non-cospectral, Laplacian equienergetic graphs
possessing same number of vertices and same number of edges.

Proof. If G is any graph with n vertices and m edges, then G x K5 has 2n vertices and
2m + n edges. Hence by repeated applications of Eqs. (4.1) and (4.2), L*(G,) x K,
and L*(Gy) x K, have same number of vertices and same number of edges. By Egs.
(4.5) and (4.6), if G; and Gy are not Laplacian cospectral, then L¥(G) x K, and
LE(G4) x Ky are not Laplacian cospectral for all k& > 1. Finally, Eq. (4.8) implies that
LF(Gy) x Ky and L¥(G9) x Ky are Laplacian equienergetic. O

Theorem 4.7. Let G and Gy be two Laplacian non-cospectral, reqular graphs of the
same order and of the same degree r > 3. Then for any k > 2, LF(G1) x Ky and
L¥(Gq) x Ky is a pair of Laplacian non-cospectral, Laplacian equienergetic graphs
possessing same number of vertices and same number of edges.

Proof. The proof is similar to that of Theorem 4.6 by using Egs. (4.10), (4.11), and
(4.13). 0
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