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LAPLACIAN ENERGY OF UNION AND CARTESIAN PRODUCT
AND LAPLACIAN EQUIENERGETIC GRAPHS

HARISHCHANDRA S. RAMANE1, GOURAMMA A. GUDODAGI1, AND IVAN GUTMAN2

Abstract. The Laplacian energy of a graph G with n vertices and m edges is
defined as LE(G) =

∑n
i=1 |µi − 2m/n|, where µ1, µ2, . . . , µn are the Laplacian

eigenvalues of G. If two graphs G1 and G2 have equal average vertex degrees,
then LE(G1 ∪ G2) = LE(G1) + LE(G2). Otherwise, this identity is violated.
We determine a term Ξ, such that LE(G1) + LE(G2) − Ξ ≤ LE(G1 ∪ G2) ≤
LE(G1)+LE(G2)+Ξ holds for all graphs. Further, by calculating LE of the Carte-
sian product of some graphs, we construct new classes of Laplacian non-cospectral,
Laplacian equienergetic graphs.

1. Introduction

Let G be a finite, simple, undirected graph with n vertices v1, v2, . . . , vn and m
edges. In what follows, we say that G is an (n,m)-graph. Let A(G) be the adjacency
matrix of G and let λ1, λ2, . . . , λn be its eigenvalues.

Let D(G) be the diagonal matrix whose (i, i)-th entry is the degree of a vertex
vi. The matrix C(G) = D(G) − A(G) is called the Laplacian matrix of G. The
Laplacian polynomial of G is defined as ψ(G, µ) = det[µI − C(G)], where I is an
identity matrix. The eigenvalues of C(G), denoted by µi = µi(G), i = 1, 2, . . . , n,
are called the Laplacian eigenvalues of G [16]. Two graphs are said to be Laplacian
cospectral if they have same Laplacian eignevalues. The adjacency eigenvalues and
Laplacian eigenvalues satisfies the following conditions:

n∑
i=1

λi = 0 and
n∑

i=1

µi = 2m.

Key words and phrases. Laplacian spectrum, Laplacian energy, Cartesian product, Laplacian
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The energy of a graph G is defined as

E = E(G) =
n∑

i=1

|λi|.

It was introduced by one of the present authors in the 1970s, and since then has
been much studied in both chemical and mathematical literature. For details see the
book [15] and the references cited therein.

The Laplacian energy of a graph was introduced a few years ago [13] and is defined
as

LE(G) =
n∑

i=1

∣∣∣∣µi(G)−
2m

n

∣∣∣∣ .
This definition is chosen so as to preserve the main features of the ordinary graph
energy E, see [18]. Basic properties and other results on Laplacian energy can be
found in the survey [1], the recent papers [6–8,11,12, 17,19], and the references cited
therein.

2. Laplacian Energy of Union of Graphs

Let G1 and G2 be two graphs with disjoint vertex sets. Let for i = 1, 2, the vertex
and edges sets of Gi be, respectively, Vi and Ei. The union of G1 and G2 is a graph
G1 ∪G2 with vertex set V1 ∪ V2 and the edge set E1 ∪ E2. If G1 is an (n1,m1)-graph
and G2 is an (n2,m2)-graph then G1 ∪G2 has n1 + n2 vertices and m1 +m2 edges. It
is easy to see that the Laplacian spectrum of G1 ∪G2 is the union of the Laplacian
spectra of G1 and G2.

In [13] it was proven that if G1 and G2 have equal average vertex degrees, then
LE(G1 ∪ G2) = LE(G1) + LE(G2). If the average vertex degrees are not equal,
that is 2m1

n1
6= 2m2

n2
, then it may be either LE(G1 ∪ G2) > LE(G1) + LE(G2) or

LE(G1∪G2) < LE(G1)+LE(G2) or, exceptionally, LE(G1∪G2) = LE(G1)+LE(G2)
[13].

In this section we study the Laplacian establish some additional relations between
LE(G1 ∪G2) and LE(G1) + LE(G2).

Theorem 2.1. Let G1 be an (n1,m1)-graph and G2 be an (n2,m2)-graph, such that
2m1

n1
> 2m2

n2
. Then

LE(G1) + LE(G2)−
4(n2m1 − n1m2)

n1 + n2

≤ LE(G1 ∪G2)

≤ LE(G1) + LE(G2) +
4(n2m1 − n1m2)

n1 + n2

.(2.1)
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Proof. For the sake of simplicity, denote G1∪G2 by G. Then G is an (n1+n2,m1+m2)-
graphs. By the definition of Laplacian energy,

LE(G1 ∪G2) =

n1+n2∑
i=1

∣∣∣∣µi(G)−
2(m1 +m2)

n1 + n2

∣∣∣∣
=

n1∑
i=1

∣∣∣∣µi(G)−
2(m1 +m2)

n1 + n2

∣∣∣∣+ n1+n2∑
i=n1+1

∣∣∣∣µi(G)−
2(m1 +m2)

n1 + n2

∣∣∣∣
=

n1∑
i=1

∣∣∣∣µi(G1)−
2(m1 +m2)

n1 + n2

∣∣∣∣+ n2∑
i=1

∣∣∣∣µi(G2)−
2(m1 +m2)

n1 + n2

∣∣∣∣
=

n1∑
i=1

∣∣∣∣µi(G1)−
2m1

n1

+
2m1

n1

− 2(m1 +m2)

n1 + n2

∣∣∣∣
+

n2∑
i=1

∣∣∣∣µi(G2)−
2m2

n2

+
2m2

n2

− 2(m1 +m2)

n1 + n2

∣∣∣∣
≤

n1∑
i=1

∣∣∣∣µi(G1)−
2m1

n1

∣∣∣∣+ n1

∣∣∣∣2m1

n1

− 2(m1 +m2)

n1 + n2

∣∣∣∣
+

n2∑
i=1

∣∣∣∣µi(G2)−
2m2

n2

∣∣∣∣+ n2

∣∣∣∣2m2

n2

− 2(m1 +m2)

n1 + n2

∣∣∣∣ .(2.2)

Since n2m1 > n1m2, Eq. (2.2) becomes

LE(G1 ∪G2) ≤ LE(G1) + n1

(
2m1

n1

− 2(m1 +m2)

n1 + n2

)

+ LE(G2) + n2

(
−2m2

n2

+
2(m1 +m2)

n1 + n2

)

= LE(G1) + LE(G2) +
4(n2m1 − n1m2)

n1 + n2

which is an upper bound.
To obtain the lower bound, we just have to note that in full analogy to the above

arguments,

LE(G1 ∪G2) ≥
n1∑
i=1

∣∣∣∣µi(G1)−
2m1

n1

∣∣∣∣− n1

∣∣∣∣2m1

n1

− 2(m1 +m2)

n1 + n2

∣∣∣∣
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+

n2∑
i=1

∣∣∣∣µi(G2)−
2m2

n2

∣∣∣∣− n2

∣∣∣∣2m2

n2

− 2(m1 +m2)

n1 + n2

∣∣∣∣ .(2.3)

Since n2m1 > n1m2, the Eq. (2.3) becomes

LE(G1 ∪G2) ≥ LE(G1)− n1

(
2m1

n1

− 2(m1 +m2)

n1 + n2

)

+ LE(G2)− n2

(
−2m2

n2

+
2(m1 +m2)

n1 + n2

)

= LE(G1) + LE(G2)−
4(n2m1 − n1m2)

n1 + n2

which is a lower bound. �

Corollary 2.1. [13] Let G1 be an (n1,m1)-graph and G2 be (n2,m2)-graph such that
2m1

n1
= 2m2

n2
. Then

LE(G1 ∪G2) = LE(G1) + LE(G2).

Corollary 2.2. Let G1 be an r1-regular graph on n1 vertices and G2 be an r2-regular
graph on n2 vertices, such that r1 > r2. Then

LE(G1) + LE(G2)−
2n1n2(r1 − r2)

n1 + n2

≤ LE(G1 ∪G2)

≤ LE(G1) + LE(G2) +
2n1n2(r1 − r2)

n1 + n2

.

Proof. Result follows by setting m1 = n1r1/2 and m2 = n2r2/2 into Theorem 2.1. �

Theorem 2.2. Let G be an (n,m)-graph and G be its complement, and let m >
n(n− 1)/4. Then

LE(G)+LE(G)−
[
4m−n(n−1)

]
≤ LE(G∪G) ≤ LE(G)+LE(G)+

[
4m−n(n−1)

]
.

Proof. G is a graph with n vertices and n(n− 1)/2−m edges. Substituting this into
Eq. (2.1), the result follows. �

Theorem 2.3. Let G be an (n,m)-graph and G′ be the graph obtained from G by
removing k edges, 0 ≤ k ≤ m. Then

LE(G) + LE(G′)− 2k ≤ LE(G ∪G′) ≤ LE(G) + LE(G′) + 2k.

Proof. The number of vertices of G′ is n and the number of edges ism−k. Substituting
this in Eq. (2.1), the result follows. �
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3. Laplacian Energy of Cartesian Product

Let G be a graph with vertex set V1 and H be a graph with vertex set V2. The
Cartesian product of G and H, denoted by G×H is a graph with vertex set V1 × V2,
such that two vertices (u1, v1) and (u2, v2) are adjacent in G×H if and only if either
u1 = u2 and v1 is adjacent to v2 in H or v1 = v2 and u1 is adjacent to u2 in G [14].

Lemma 3.1. [9] Let A =

[
A0 A1

A1 A0

]
be a symmetric 2× 2 block matrix. Then the

spectrum of A is the union of the spectra of A0 + A1 and A0 − A1.

Theorem 3.1. If µ1, µ2, . . . , µn are the Laplacian eigenvalues of a graph G, then the
Laplacian eigenvalues of G×K2 are µ1, µ2, . . . , µn and µ1 + 2, µ2 + 2, . . . , µn + 2.

Proof. The Laplacian matrix of G×K2 is

C(G×K2) =

[
C(G) + I −I
−I C(G) + I

]
=

[
C0 C1

C1 C0

]
where C(G) is the Laplacian matrix of G and I is an identity matrix of order n. By
Lemma 3.1, the Laplacian spectrum of G×K2 is the union of the spectra of C0 + C1

and C0 − C1.
Here C0 + C1 = C(G). Therefore, the eigenvalues of C0 + C1 are the Laplacian

eigenvalues of G.
Because C0 − C1 = C(G) + 2I, the characteristic polynomial of C0 − C1 is

ψ(C0 − C1, µ) = det
[
µI − (C0 − C1)

]
= det

[
µI − (C(G) + 2I)

]
= det

[
(µ− 2)I − C(G))

]
= ψ(G, µ− 2).

Therefore the eigenvalues of C0 − C1 are µi + 2, i = 1, 2, . . . , n. �

The Laplacian eigenvalues of the complete graph Kn are n (n−1 times) and 0. The
Laplacian eigenvalues of the complete bipartite regular graph Kk,k are 2k, k (2k − 2
times) and 0. The Laplacian eigenvalues of the cocktail party graph CP (k) (the
regular graph on n = 2k vertices and of degree 2k− 2) are 2k (k− 1 times), 2k− 2 (k
times) and 0 [16]. Applying Theorem 3.1, we directly arrive at the following example.

Example 3.1.

LE(Kn ×K2) =

{
4n− 4, if n > 2,
2n, if n ≤ 2,

LE(Kk,k ×K2) =

{
8k − 4, if k > 1,
6k − 2, if k = 1,

LE(CP (k)×K2) = 10k − 8, if k ≥ 2.

Theorem 3.2. Let G be an (n,m)-graph. Then

2[LE(G)− n] ≤ LE(G×K2) ≤ 2[LE(G) + n].
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Proof. Let µ1, µ2, . . . , µn be the Laplacian eigenvalues of G. Then by Theorem 3.1,
the Laplacian eigenvalues of G×K2 are µi, i = 1, 2, . . . , n and µi + 2, i = 1, 2, . . . , n.
The graph G×K2 has 2n vertices and 2m+ n edges. Therefore,

LE(G×K2) =
n∑

i=1

∣∣∣∣µi −
2(2m+ n)

2n

∣∣∣∣+ n∑
i=1

∣∣∣∣µi + 2− 2(2m+ n)

2n

∣∣∣∣
=

n∑
i=1

∣∣∣∣µi −
2m

n
− 1

∣∣∣∣+ n∑
i=1

∣∣∣∣µi −
2m

n
+ 1

∣∣∣∣ .(3.1)

Equation (3.1) can be rewritten as

LE(G×K2) ≤
n∑

i=1

∣∣∣∣µi −
2m

n

∣∣∣∣+ n+
n∑

i=1

∣∣∣∣µi −
2m

n

∣∣∣∣+ n = 2LE(G) + 2n

which is an upper bound.
For lower bound, Eq. (3.1) can be rewritten as

LE(G×K2) ≥
n∑

i=1

∣∣∣∣µi −
2m

n

∣∣∣∣− n+
n∑

i=1

∣∣∣∣µi −
2m

n

∣∣∣∣− n = 2LE(G)− 2n.

�

Theorem 3.3. For a graph G with n vertices, LE(G×K2) ≥ 2n.

Proof. From Eq. (3.1)

LE(G×K2) ≥

∣∣∣∣∣
n∑

i=1

(
µi −

2m

n
− 1

)∣∣∣∣∣+
∣∣∣∣∣

n∑
i=1

(
µi −

2m

n
+ 1

)∣∣∣∣∣
=
∣∣2m− 2m− n

∣∣+ ∣∣2m− 2m+ n
∣∣ = 2.

�

4. Laplacian Equienergetic Graphs

Two graphs G1 and G2 are said to be equienergetic if E(G1) = E(G2) [2]. For details
see the book [15]. In analogy to this, two graphs G1 and G2 are said to be Laplacian
equienergetic if LE(G1) = LE(G2).

Obviously Laplacian cospectral graphs are Laplacian equienergetic. Therefore we
are interested in Laplacian non-cospectral graphs with equal number of vertices, having
equal Laplacian energies. Stevanović [24] has constructed Laplacian equienergetic
threshold graphs. Fritscher et al. [10] discovered a family of Laplacian equienergetic
unicyclic graphs. We now report some additional classes of such graphs.

The line graph of the graph G, denoted by L(G), is a graph whose vertices cor-
responds to the edges of G and two vertices in L(G) are adjacent if and only if the
corresponding edges are adjacent in G [14]. The k-th iterated line graph of G is defined
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as Lk(G) = L(Lk−1(G)) where L0(G) ≡ G and L1(G) ≡ L(G). If G is a regular graph
of order n0 and of degree r0, then L(G) is a regular graph of order n1 = n0r0/2 and
of degree r1 = 2r0 − 2. Consequently, the order and degree of Lk(G) are [3, 4]:

nk =
1

2
nk−1rk−1 and rk = 2rk−1 − 2

where ni and ri stand for the order and degree of Li(G), i = 0, 1, 2, . . .. Therefore [3,4],

(4.1) nk =
n0

2k

k−1∏
i=0

ri =
n0

2k

k−1∏
i=0

(
2ir0 − 2i+1 + 2

)
and

(4.2) rk = 2kr0 − 2k+1 + 2.

Theorem 4.1. [23] If λ1, λ2, . . . , λn are the adjacency eigenvalues of a regular graph
G of order n and of degree r, then the adjacency eigenvalues of L(G) are

λi + r − 2 i = 1, 2, . . . , n, and

−2 n(r − 2)/2 times.

Theorem 4.2. [22] If λ1, λ2, . . . , λn are the adjacency eigenvalues of a regular graph
G of order n and of degree r, then the adjacency eigenvalues of G, the complement
of G, are n− r − 1 and −λi − 1, i = 2, 3, . . . , n.

Theorem 4.3. [16] If λ1, λ2, . . . , λn are the adjacency eigenvalues of a regular graph
G of order n and of degree r, then its Laplacian eigenvalues are r−λi, i = 1, 2, . . . , n.

For G being a regular graph of degree r ≥ 3, and for k ≥ 2, expressions for E
(
Lk(G)

)
and E

(
Lk(G)

)
were reported in [20,21].

Theorem 4.4. If G is a regular graph of order n and of degree r ≥ 4, then

LE(L2(G)×K2) = 4nr(r − 2).

Proof. Let λ1, λ2, . . . , λn be the adjacency eigenvalues of G . Then by Theorem 4.1,
the adjacency eigenvalues of L(G) are

(4.3)
λi + r − 2 i = 1, 2, . . . , n, and

−2 n(r − 2)/2 times.

}
Since L(G) is a regular graph of order nr/2 and of degree 2r − 2, by Eq. (4.3) the

adjacency eigenvalues of L2(G) are

(4.4)

λi + 3r − 6 i = 1, 2, . . . , n, and

2r − 6 n(r − 2)/2 times, and

−2 nr(r − 2)/2 times.





200 H. RAMANE, G. GUDODAGI, AND I. GUTMAN

Since L2(G) is a regular graph of order nr(r−1)/2 and of degree 4r−2, by Theorem
4.3 and Eq. (4.4), the Laplacian eigenvalues of L2(G) are

(4.5)

r − λi i = 1, 2, . . . , n, and

2r n(r − 2)/2 times, and

4r − 4 nr(r − 2)/2 times.


Using Theorem 3.1 and Eq. (4.5), the Laplacian eigenvalues of L2(G)×K2 are

(4.6)

r − λi i = 1, 2, . . . , n, and

2r n(r − 2)/2 times, and

4r − 4 nr(r − 2)/2 times, and

r − λi + 2 i = 1, 2, . . . , n, and

2r + 2 n(r − 2)/2 times, and

4r − 2 nr(r − 2)/2 times.


The graph L2(G)×K2 is a regular graph of order nr(r − 1) and of degree 4r − 5.

By Eq. (4.6), the Laplacian energy of L2(G)×K2 is computed as

LE(L2(G)×K2) =
n∑

i=1

∣∣r − λi − (4r − 5)
∣∣+ ∣∣2r − (4r − 5)

∣∣n(r − 2)

2

+
∣∣4r − 4− (4r − 5)

∣∣nr(r − 2)

2
+

n∑
i=1

∣∣r − λi + 2− (4r − 5)
∣∣

+
∣∣2r + 2− (4r − 5)

∣∣n(r − 2)

2
+
∣∣4r − 2− (4r − 5)

∣∣nr(r − 2)

2

=
n∑

i=1

∣∣− λi − 3r + 5
∣∣+ ∣∣− 2r + 5

∣∣n(r − 2)

2

+
∣∣1∣∣nr(r − 2)

2
+

n∑
i=1

∣∣− λi − 3r + 7
∣∣

+
∣∣− 2r + 7

∣∣n(r − 2)

2
+
∣∣3∣∣nr(r − 2)

2
.(4.7)

If dmax is the greatest vertex degree of a graph, then all its adjacency eigenvalues
belongs to the interval [−dmax,+dmax] [5]. In particular, the adjacency eigenvalues of
a regular graph of degree r satisfy the condition −r ≤ λi ≤ r, i = 1, 2, . . . , n.
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If r ≥ 4 then λi+3r− 5 > 0, λi+3r− 7 > 0, 2r− 5 > 0, and 2r− 7 > 0. Therefore

by Eq. (4.7), and bearing in mind that
n∑

i=1

λi = 0,

LE(L2(G)×K2) =
n∑

i=1

λi + n(3r − 5) + (2r − 5)
n(r − 2)

2
+
nr(r − 2)

2

+
n∑

i=1

λi + n(3r − 7) + (2r − 7)
n(r − 2)

2
+

3nr(r − 2)

2

= 4nr(r − 2).

�

Corollary 4.1. Let G be a regular graph of order n0 and of degree r0 ≥ 4. Let nk

and rk be the order and degree, respectively of the k-th iterated line graph Lk(G) of G,
k ≥ 2. Then

LE(Lk(G)×K2) = 4nk−2rk−2(rk−2 − 2) = 4nk−1(rk−1 − 2),

LE(Lk(G)×K2) = 4n0(r0 − 2)
k−2∏
i=0

(2ir0 − 2i+1 + 2),(4.8)

LE(Lk(G)×K2) = 8(nk − nk−1) = 8nk

(
rk − 2

rk + 2

)
.

From Eq. (4.8) we see that the energy of Lk(G)×K2, k ≥ 2 is fully determined by
the order n and degree r ≥ 4 of G.

Theorem 4.5. If G is a regular graph of order n and of degree r ≥ 3, then

LE
(
L2(G)×K2

)
= (nr − 4)(4r − 6)− 4.

Proof. Let λ1, λ2, . . . , λn be the adjacency eigenvalues of a regular graph G of order
n and of degree r ≥ 3. Then the adjacency eigenvalues of L2(G) are as given by Eq.
(4.4).

Since L2(G) is a regular graph of order nr(r−1)/2 and of degree 4r−2, by Theorem
4.2 and Eq. (4.4), the adjacency eigenvalues of L2(G) are

(4.9)

−λi − 3r + 5 i = 2, 3, . . . , n, and

−2r + 5 n(r − 2)/2 times, and

1 nr(r − 2)/2 times, and

(nr(r − 1)/2)− 4r + 5.
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Since L2(G) is a regular graph of order nr(r−1)/2 and of degree (nr(r−1)/2)−4r+5,
by Theorem 4.3 and Eq. (4.9), the Laplacian eigenvalues of L2(G) are

(4.10)

(nr(r − 1)/2)− r − λi i = 2, 3, . . . , n, and

(nr(r − 1)/2)− 2r n(r − 2)/2 times, and

(nr(r − 1)/2)− 4r + 4 nr(r − 2)/2 times, and

0.


Using Theorem 3.1 and Eq. (4.10), the Laplacian eigenvalues of L2(G)×K2 are

(4.11)

(nr(r − 1)/2)− r − λi i = 2, 3, . . . , n, and

(nr(r − 1)/2)− 2r n(r − 2)/2 times, and

(nr(r − 1)/2)− 4r + 4 nr(r − 2)/2 times, and

0 1 time, and

(nr(r − 1)/2)− r − λi + 2 i = 2, 3, . . . , n, and

(nr(r − 1)/2)− 2r + 2 n(r − 2)/2 times, and

(nr(r − 1)/2)− 4r + 6 nr(r − 2)/2 times, and

2.


The graph L2(G) × K2 is a regular graph of order nr(r − 1) and of degree

(nr(r − 1)/2)− 4r + 6. By Eq. (4.11),

LE
(
L2(G)×K2

)
=

n∑
i=2

∣∣∣∣nr(r − 1)

2
− r + λi −

(
nr(r − 1)

2
− 4r + 6

)∣∣∣∣
+

∣∣∣∣nr(r − 1)

2
− 2r −

(
nr(r − 1)

2
− 4r + 6

)∣∣∣∣ n(r − 2)

2

+

∣∣∣∣nr(r − 1)

2
− 4r + 4−

(
nr(r − 1)

2
− 4r + 6

)∣∣∣∣ nr(r − 2)

2

+

∣∣∣∣0− (nr(r − 1)

2
− 4r + 6

)∣∣∣∣
+

n∑
i=2

∣∣∣∣nr(r − 1)

2
− r + λi + 2−

(
nr(r − 1)

2
− 4r + 6

)∣∣∣∣
+

∣∣∣∣nr(r − 1)

2
− 2r + 2−

(
nr(r − 1)

2
− 4r + 6

)∣∣∣∣ n(r − 2)

2
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+

∣∣∣∣nr(r − 1)

2
− 4r + 6−

(
nr(r − 1)

2
− 4r + 6

)∣∣∣∣ nr(r − 2)

2

+

∣∣∣∣2− (nr(r − 1)

2
− 4r + 6

)∣∣∣∣
=

n∑
i=2

∣∣λi + 3r − 6
∣∣+ ∣∣2r − 6

∣∣n(r − 2)

2

+
∣∣− 2

∣∣nr(r − 2)

2
+

∣∣∣∣−nr(r − 1)

2
+ 4r − 6

∣∣∣∣+ n∑
i=2

∣∣λi + 3r − 4
∣∣

+
∣∣2r − 4

∣∣n(r − 2)

2
+
∣∣0∣∣nr(r − 2)

2
+

∣∣∣∣−nr(r − 1)

2
+ 4r − 4

∣∣∣∣ .(4.12)

All adjacency eigenvalues of a regular graph of degree r satisfy the condition −r ≤
λi ≤ r, i = 1, 2, . . . , n [5]. Therefore if r ≥ 3, then λi + 3r − 6 ≥ 0, λi + 3r − 4 ≥ 0,
2r− 6 ≥ 0, 2r− 4 ≥ 0, (−nr(r− 1)/2)+ 4r− 6 < 0, and (−nr(r− 1)/2)+ 4r− 4 < 0.

Then from Eq. (4.12), and bearing in mind that
n∑

i=2

λi = −r, we get

LE
(
L2(G)×K2

)
=

n∑
i=2

λi + (n− 1)(3r − 6) + (r − 3)n(r − 2) + nr(r − 2)

+
nr(r − 1)

2
− 4r + 6 +

n∑
i=2

λi + (n− 1)(3r − 4)

+ (r − 2)n(r − 2) +
nr(r − 1)

2
− 4r + 4

= 2(nr − 4)(2r − 3)− 4.

�

Corollary 4.2. Let G be a regular graph of order n0 and of degree r0 ≥ 3. Let nk

and rk be the order and degree, respectively of the k-th iterated line graph Lk(G) of G,
k ≥ 2. Then

LE
(
Lk(G)×K2

)
= (nk−2rk−2 − 4)(4rk−2 − 6)− 4

= (2nk−1 − 4)(2rk−1 − 2)− 4,

LE
(
Lk(G)×K2

)
=

[
n0

2k−2

k−2∏
i=0

(2ir0 − 2i+1 + 2)− 4

]
(2kr0 − 2k+1 + 2)− 4,(4.13)
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LE
(
Lk(G)×K2

)
=

8nkrk
2 + rk

− 4(rk + 1).

From Eq. (4.13) we see that the energy of Lk(G) ×K2, k ≥ 2 is fully determined
by the order n and degree r ≥ 3 of G.

Theorem 4.6. Let G1 and G2 be two Laplacian non-cospectral, regular graphs of the
same order and of the same degree r ≥ 4. Then for any k ≥ 2, Lk(G1) × K2 and
Lk(G2) × K2 is a pair of Laplacian non-cospectral, Laplacian equienergetic graphs
possessing same number of vertices and same number of edges.

Proof. If G is any graph with n vertices and m edges, then G×K2 has 2n vertices and
2m+ n edges. Hence by repeated applications of Eqs. (4.1) and (4.2), Lk(G1)×K2

and Lk(G2)×K2 have same number of vertices and same number of edges. By Eqs.
(4.5) and (4.6), if G1 and G2 are not Laplacian cospectral, then Lk(G1) × K2 and
Lk(G2)×K2 are not Laplacian cospectral for all k ≥ 1. Finally, Eq. (4.8) implies that
Lk(G1)×K2 and Lk(G2)×K2 are Laplacian equienergetic. �

Theorem 4.7. Let G1 and G2 be two Laplacian non-cospectral, regular graphs of the
same order and of the same degree r ≥ 3. Then for any k ≥ 2, Lk(G1) × K2 and
Lk(G2) × K2 is a pair of Laplacian non-cospectral, Laplacian equienergetic graphs
possessing same number of vertices and same number of edges.

Proof. The proof is similar to that of Theorem 4.6 by using Eqs. (4.10), (4.11), and
(4.13). �
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