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CLUSTERS AND VARIOUS VERSIONS OF WIENER-TYPE
INVARIANTS

MAHDIEH AZARI1 AND ALI IRANMANESH2*

Abstract. The Wiener type invariant W (λ)(G) of a simple connected graph G
is defined as the sum of the terms d(u, v |G )λ over all unordered pairs {u, v} of
vertices of G, where d(u, v|G) denotes the distance between the vertices u and v
in G and λ is an arbitrary real number. The cluster G1{G2} of a graph G1 and
a rooted graph G2 is the graph obtained by taking one copy of G1 and |V (G1)|
copies of G2, and by identifying the root vertex of the i-th copy of G2 with the i-th
vertex of G1, for i = 1, 2, . . . , |V (G1)|. In this paper, we study the behavior of three
versions of Wiener type invariant under the cluster product. Results are applied to
compute several distance-based topological invariants of bristled and bridge graphs
by specializing components in clusters.

1. Introduction

In this paper, we consider connected finite graphs without any loops or multiple
edges. Let G be such a graph with vertex set V (G) and edge set E(G). We denote
by degG(u) the degree of the vertex u in G and by V (e) the set of two end vertices
of the edge e of G. The distance d(u, v |G) between the vertices u and v of G is the
length of any shortest path in G connecting them.

In theoretical chemistry, the physico-chemical properties of chemical compounds
are often modelled by means of molecular-graph-based structure-descriptors, which
are also referred to as topological indices [11, 25]. The vertex version of the Wiener
index is the first reported distance-based topological index which was introduced in
1947 by Wiener [26], who used it for modeling the shape of organic molecules and for
calculating several of their physico-chemical properties. The Wiener index W (G) of
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G is defined as W (G) =
∑
{u,v}⊆V (G) d(u, v |G). Details on the Wiener index can be

found in [6, 9, 10, 18, 20, 28].
The definition of the Wiener index can be generalized by the following definition

[10, 12]
W (λ)(G) =

∑
{u,v}⊆V (G)

d(u, v |G)λ,

where λ is an arbitrary real number. The index W (λ)(G) is called the vertex Wiener
type invariant of G. It is easy to see that, W (0)(G) =

(|V (G)|
2

)
and W (1)(G) = W (G).

The so-called hyper-Wiener index WW (G) of G [22] was shown [19] to be equal to
1
2
W (2)(G) + 1

2
W (1)(G), and the so-called Tratch-Stankevich-Zefirov index TSZ(G) of

G [24] was shown [18] to be equal to 1
6
W (3)(G) + 1

2
W (2)(G) + 1

3
W (1)(G). Recall that,

the hyper-Wiener and the Tratch-Stankevich-Zefirov indices were originally defined
in terms completely different from the presently considered Wiener-type invariants;
for details see [22, 24].

Edge versions of the Wiener index based on distance between all pairs of edges of a
graph were introduced in 2009 [5, 15, 17]. Two possible distances between the edges
e = uv and f = zt of a graph G can be considered. The first distance is denoted by
d0(e, f |G) and defined as

d0(e, f |G) =
{
d1(e, f |G) + 1, e 6= f,
0, e = f,

where d1(e, f |G) = min{d(u, z |G), d(u, t |G), d(v, z |G), d(v, t |G)}. It is easy to see
that, d0(e, f |G) = d(e, f |L(G)), where L(G) is the line graph of G.
The second distance is denoted by d4(e, f |G) and defined as

d4(e, f |G) =
{
d2(e, f |G), e 6= f,
0, e = f,

where d2(e, f |G) = max{d(u, z |G), d(u, t |G), d(v, z |G), d(v, t |G)}.
Related to these two distances, two edge versions of the Wiener index can be defined.
The first and second edge-Wiener indices of G are denoted by We0(G) and We4(G),
respectively and defined as

Wei(G) =
∑

{e,f}⊆E(G)

di(e, f |G), i ∈ {0, 4}.

Obviously, We0(G) = W (L(G)). For more information on the edge-Wiener indices
see [1, 3, 21], and especially the recent survey [14].

The definitions of the edge-Wiener indices can be generalized by the following
definition [16]

W (λ)
ei

(G) =
∑

{e,f}⊆E(G)

di(e, f |G)λ, i ∈ {0, 4},

where λ is an arbitrary real number. The indices W (λ)
e0 (G) and W

(λ)
e4 (G) are called

the first and the second edge-Wiener type invariants of G, respectively. It is easy
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to see that, W (0)
ei (G) =

(|E(G)|
2

)
and W

(1)
ei (G) = Wei(G), i ∈ {0, 4}. The first and

the second edge hyper-Wiener indices of G are denoted by WWe0(G) and WWe4(G),
respectively and defined as [16]

WWei(G) =
1

2
W (1)
ei

(G) +
1

2
W (2)
ei

(G), i ∈ {0, 4}.

In analogy with definitions of the vertex version and edge versions of the Wiener
index, vertex-edge versions of the Wiener index were introduced based on distance
between vertices and edges in a graph [4, 17]. Two possible distances between a vertex
u and an edge e = ab of a graph G can be considered. The first distance is denoted
by D1(u, e |G) and defined as

D1(u, e |G) = min{d(u, a |G), d(u, b |G)},
and the second one is denoted by D2(u, e |G) and defined as

D2(u, e |G) = max{d(u, a |G), d(u, b |G)}.
Corresponding to these two distances, two vertex-edge versions of the Wiener index

can be introduced. The first and the second vertex-edge Wiener indices of G are
denoted by Wve1(G) and Wve2(G), respectively and defined as

Wvei(G) =
∑

u∈V (G)

∑
e∈E(G)

Di(u, e |G), i ∈ {1, 2}.

The definitions of the vertex-edge Wiener indices can be generalized as follows

W (λ)
ve1

(G) =
∑

u∈V (G)

∑
e∈E(G);u/∈V (e)

D1(u, e |G)λ,

W (λ)
ve2

(G) =
∑

u∈V (G)

∑
e∈E(G)

D2(u, e |G)λ,

where λ is an arbitrary real number. The indicesW (λ)
ve1 (G) andW

(λ)
ve2 (G) are called the

first and the second vertex-edge Wiener type invariants of G, respectively. Note that,
if λ is a positive number then W (λ)

ve1 (G) =
∑

u∈V (G)

∑
e∈E(G)D1(u, e |G)λ. Obviously,

W
(0)
ve1(G) = |E(G)| (|V (G)| − 2), W (0)

ve2(G) = |V (G)| |E(G)|, and W (1)
vei (G) = Wvei(G),

i ∈ {1, 2}. We denote the first and the second vertex-edge hyper-Wiener indices of G
by WWve1(G) and WWve2(G), respectively and define as

WWvei(G) =
1

2
W (1)
vei

(G) +
1

2
W (2)
vei

(G), i ∈ {1, 2}.

It is well-known that many graphs of general, and in particular of chemical interest,
arise from simpler graphs via various graph operations sometimes known as graph
products. It is, hence, important to understand how certain invariants of such graph
operations are related to the corresponding invariants of their components. In this
paper, we compute the vertex version, edge versions, and vertex-edge versions of the
Wiener type invariant for an important graph product called cluster. Results are
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applied for t-fold bristled graphs and bridge graphs by specializing components in
clusters. We encourage the reader to consult [1, 2, 3, 7, 8, 13, 23, 27, 28] for more
information on computing topological indices of graph products.

2. Main Results

The cluster G1{G2} of a graph G1 and a rooted graph G2 is the graph obtained
by taking one copy of G1 and |V (G1)| copies of G2, and by identifying the root
vertex of the i-th copy of G2 with the i-th vertex of G1, for i = 1, 2, . . . , |V (G1)|.
Some topological indices of clusters have been computed previously [2, 8, 28]. In this
section, we determine the vertex Wiener, edge-Wiener, and vertex-edge Wiener type
invariants of the cluster G1{G2}. Throughout this section, we denote the root vertex
of G2 by w, the degree of w in G2 by ω, and the copy of G2 whose root is identified
with the vertex u ∈ V (G1) by Gu

2 . Also for i ∈ {1, 2}, we denote the order and size
of the graph Gi by ni and mi, respectively.

2.1. Wiener type invariant of clusters. In this section, we determine the vertex
Wiener type invariant of the cluster G1{G2}.

Let λ be a real number. For u ∈ V (G), we define

d(λ)(u |G) =
∑

v∈V (G)−{u}

d(u, v |G)λ.

It is easy to check that, d(0)(u |G) = |V (G)| − 1.

Theorem 2.1. If λ is a positive integer, then the vertex Wiener type invariant of
G1{G2} is given by

W (λ)(G1{G2}) = W (λ)(G1) + n1W
(λ)(G2) +

λ∑
i=0

(
λ

i

)
W (i)(G1)

[
2d(λ−i)(w |G2 )

+
λ−i∑
j=0

(
λ− i
j

)
d(j)(w |G2 )d

(λ−i−j)(w |G2 )

]
.

Proof. We partition the sum in the definition of W (λ)(G1{G2}) into four sums as
follows.

The first sum S1 consists of contributions to W (λ)(G1{G2}) of pairs of vertices
from G1. For vertices x, y ∈ V (G1), d(x, y |G1{G2}) = d(x, y |G1) . Taking this into
account, we have

S1 =
∑

{x,y}⊆V (G1)

d(x, y |G1 )
λ = W (λ)(G1).

The second sum S2 is taken over all pairs of vertices in Gu
2 , and then over all

u ∈ V (G1). For vertices x, y ∈ V (Gu
2), d(x, y |G1{G2}) = d(x, y |G2) . Taking this
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into account, we have

S2 =
∑

u∈V (G1)

∑
{x,y}⊆V (Gu

2 )

d(x, y |G2 )
λ = n1W

(λ)(G2).

The third sum S3 is taken over all pairs of vertices x, y ∈ V (G1{G2}) such that
x ∈ V (G1) and y ∈ V (Gu

2) − {w}, where u ∈ V (G1) and u 6= x. In this case,
d(x, y |G1{G2}) = d(x, u |G1) + d(y, w |G2) . So,

S3 =
∑

x∈V (G1)

∑
u∈V (G1)−{x}

∑
y∈V (Gu

2 )−{w}

[d(x, u |G1 ) + d(y, w |G2 )]
λ

= 2
λ∑
i=0

(
λ

i

)
W (i)(G1)d

(λ−i)(w |G2 ).

The last sum S4 is taken over all pairs of non-root vertices from different copies of
G2. For such a pair x ∈ V (Gu

2)− {w} and y ∈ V (Gv
2)− {w},

d(x, y |G1{G2}) = d(x,w |G2 ) + d(u, v |G1 ) + d(y, w |G2 ).

So,

S4 =
∑

{u,v}⊆V (G1)

∑
x∈V (Gu

2 )−{w}

∑
y∈V (Gv

2)−{w}

[d(x,w |G2 ) + d(u, v |G1 ) + d(w, y |G2 )]
λ

=
λ∑
i=0

(
λ

i

)
W (i)(G1)

λ−i∑
j=0

(
λ− i
j

)
d(j)(w |G2 )d

(λ−i−j)(w |G2 ).

The formula for W (λ)(G1{G2}) follows upon addition of the quantities S1, S2, S3,
and S4. �

By Theorem 2.1, we can reproduce the result of Theorem 5 in [28] about the Wiener
index of the cluster of two graphs.

Corollary 2.1. The Wiener index of G1{G2} is given by

W (G1{G2}) = n2
2W (G1) + n1W (G2) + 2n2

(
n1

2

)
d(1)(w |G2 ).

Using Theorem 2.1, we can also get the formulae for the hyper-Wiener index and
TSZ index of G1{G2}.

Corollary 2.2. The hyper-Wiener index of G1{G2} is given by

WW (G1{G2}) = n2
2WW (G1) + n1WW (G2) + 2n2d

(1)(w |G2 )W (G1)

+

(
n1

2

)[
n2d

(2)(w |G2 ) + d(1)(w |G2 )
2 + n2d

(1)(w |G2 )
]
.
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Corollary 2.3. The Tratch-Stankevich-Zefirov index of G1{G2} is given by

TSZ(G1{G2}) = n2
2TSZ(G1) + n1TSZ(G2) + 2n2d

(1)(w |G2 )WW (G1)

+
[
n2d

(2)(w |G2 ) + d(1)(w |G2 )
2 + n2d

(1)(w |G2 )
]
W (G1)

+
1

3
n2

(
n1

2

)[
d(3)(w |G2 ) + 3d(2)(w |G2 ) + 2d(1)(w |G2 )

]
+

(
n1

2

)
d(1)(w |G2 )

[
d(2)(w |G2 ) + d(1)(w |G2 )

]
.

2.2. Edge-Wiener type invariants of clusters. In this section, we determine the
edge-Wiener type invariants of the cluster G1{G2}.

Let λ be a real number and let u ∈ V (G). We define

D
(λ)
1 (u |G) =

∑
e∈E(G);u/∈V (e)

D1(u, e |G)λ,

D
(λ)
2 (u |G) =

∑
e∈E(G)

D2(u, e |G)λ.

Note that, if λ is a positive number then D
(λ)
1 (u |G) =

∑
e∈E(G)D1(u, e |G)λ. In

particular for λ = 0, D(0)
1 (u |G) = |E(G)| − degG(u) and D

(0)
2 (u |G) = |E(G)|.

Theorem 2.2. If λ is a positive integer, then the edge-Wiener type invariants of
G1{G2} are given by

(i) W (λ)
e0

(G1{G2}) = W (λ)
e0

(G1) + n1W
(λ)
e0

(G2) + 2m1ω

+
λ∑
i=0

(
λ

i

)[
ω2W (i)(G1) + ωW (i)

ve1
(G1) + 2m1D

(i)
1 (w |G2 )

]
+

λ∑
i=0

(
λ

i

) i∑
j=0

(
i

j

)[
(W (j)

ve1
(G1) + 2ωW (j)(G1))D

(i−j)
1 (w |G2 )

+W (j)(G1)

i−j∑
k=0

(
i− j
k

)
D

(k)
1 (w |G2 )D

(i−j−k)
1 (w |G2 )

]
,

(ii) W (λ)
e4

(G1{G2}) = W (λ)
e4

(G1) + n1W
(λ)
e4

(G2) +
λ∑
i=0

(
λ

i

)
W (i)
ve2

(G1)D
(λ−i)
2 (w |G2 )

+
λ∑
i=0

(
λ

i

)
W (i)(G1)

λ−i∑
j=0

(
λ− j
j

)
D

(j)
2 (w |G2 )D

(λ−i−j)
2 (w |G2 ).

Proof. (i) We partition the sum in the definition of W (λ)
e0 (G1{G2}) into four sums as

follows.
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The first sum S1 consists of contributions to W (λ)
e0 (G1{G2}) of pairs of edges from

G1. For edges e, f ∈ E(G1), d0(e, f |G1{G2}) = d0(e, f |G1) . Taking this into ac-
count, we have

S1 =
∑

{e,f}⊆E(G1)

d0(e, f |G1 )
λ = W (λ)

e0
(G1).

The second sum S2 is taken over all pairs of edges in Gu
2 , and then over all u ∈

V (G1). For edges e, f ∈ E(Gu
2), d0(e, f |G1{G2}) = d0(e, f |G2) . Taking this into

account, we have

S2 =
∑

u∈V (G1)

∑
{e,f}⊆E(Gu

2 )

d0(e, f |G2 )
λ = n1W

(λ)
e0

(G2).

The third sum S3 is taken over all pairs of edges e, f ∈ E(G1{G2}) such that
e ∈ E(G1) and f ∈ E(Gu

2), where u ∈ V (G1). In this case,

d0(e, f |G1{G2}) = D1(u, e |G1 ) +D1(w, f |G2 ) + 1.

So,
S3 =

∑
u∈V (G1)

∑
e∈E(G1)

∑
f∈E(Gu

2 )

[D1(u, e |G1 ) +D1(w, f |G2 ) + 1]λ.

In order to compute the sum S3, we partition it into four sums S31, S32, S33 and S34

as follows. The sum S31 is equal to

S31 =
∑

u∈V (G1)

∑
e∈E(G1);u/∈V (e)

∑
f∈E(Gu

2 );w/∈V (f)

[D1(u, e |G1 ) +D1(w, f |G2 ) + 1]λ

=
λ∑
i=0

(
λ

i

) i∑
j=0

(
i

j

)
W (j)
ve1

(G1)D
(i−j)
1 (w |G2 ).

The sum S32 is equal to

S32 =
∑

u∈V (G1)

∑
e∈E(G1);u/∈V (e)

∑
f∈E(Gu

2 );w∈V (f)

[D1(u, e |G1 ) + 1]λ = ω

λ∑
i=0

(
λ

i

)
W (i)
ve1

(G1).

The sum S33 is equal to

S33 =
∑

u∈V (G1)

∑
e∈E(G1);u∈V (e)

∑
f∈E(Gu

2 );w/∈V (f)

[D1(w, f |G1 ) + 1]λ

= 2m1

λ∑
i=0

(
λ

i

)
D

(i)
1 (w |G2 ).

The sum S34 is equal to

S34 =
∑

u∈V (G1)

∑
e∈E(G1);u∈V (e)

∑
f∈E(Gu

2 );w∈V (f)

1λ = 2m1ω.
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By adding the quantities S31, S32, S33 and S34, we obtain

S3 = 2m1ω +
λ∑
i=0

(
λ

i

)[
ωW (i)

ve1
(G1) + 2m1D

(i)
1 (w |G2 )

]
+

λ∑
i=0

(
λ

i

) i∑
j=0

(
i

j

)
W (j)
ve1

(G1)D
(i−j)
1 (w |G2 ).

The last sum S4 is taken over all pairs of edges from different copies of G2. For
such a pair e ∈ E(Gu

2) and f ∈ E(Gv
2),

d0(e, f |G1{G2}) = D1(w, e |G2 ) +D1(w, f |G2 ) + d(u, y |G1 ) + 1.

So,

S4 =
∑

{u,v}⊆V (G1)

∑
e∈E(Gu

2 )

∑
f∈E(Gv

2)

[D1(w, e |G2 ) +D1(w, f |G2 ) + d(u, v |G1 ) + 1]λ.

Similar to the previous case, we partition the sum S4 into four sums S41, S42, S43 and
S44 as follows. The sum S41 is equal to

S41 =
∑

{u,v}⊆V (G1)

∑
e∈E(Gu

2 );w/∈V (e)

∑
f∈E(Gv

2);w/∈V (f)

[D1(w, e |G2 ) +D1(w, f |G2 )

+ d(u, v |G1 ) + 1]λ

=
λ∑
i=0

(
λ

i

) i∑
j=0

(
i

j

)
W (j)(G1)

i−j∑
k=0

(
i− j
k

)
D

(k)
1 (w |G2 )D

(i−j−k)
1 (w |G2 ).

The sum S42 is equal to

S42 =
∑

{u,v}⊆V (G1)

∑
e∈E(Gu

2 );w/∈V (e)

∑
f∈E(Gv

2);w∈V (f)

[D1(w, e |G2 ) + d(u, v |G1 ) + 1]λ

= ω

λ∑
i=0

(
λ

i

) i∑
j=0

(
i

j

)
W (j)(G1)D

(i−j)
1 (w |G2 ).

The sum S43 is equal to

S43 =
∑

{u,v}⊆V (G1)

∑
e∈E(Gu

2 );w∈V (e)

∑
f∈E(Gv

2);w/∈V (f)

[D1(w, f |G2 ) + d(u, v |G1 ) + 1]λ.

It is clear that, S43 = S42. So,

S43 = ω

λ∑
i=0

(
λ

i

) i∑
j=0

(
i

j

)
W (j)(G1)D

(i−j)
1 (w |G2 ).
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The sum S44 is equal to

S44 =
∑

{u,v}⊆V (G1)

∑
e∈E(Gu

2 );w∈V (e)

∑
f∈E(Gv

2);w∈V (f)

[d(u, v |G1 ) + 1]λ = ω2

λ∑
i=0

(
λ

i

)
W (i)(G1).

By adding the quantities S41, S42, S43 and S44, we obtain

S4 = ω2

λ∑
i=0

(
λ

i

)
W (i)(G1) +

λ∑
i=0

(
λ

i

) i∑
j=0

(
i

j

)
W (j)(G1)

[
2ωD

(i−j)
1 (w |G2 )

+

i−j∑
k=0

(
i− j
k

)
D

(k)
1 (w |G2 )D

(i−j−k)
1 (w |G2 )

]
.

Now, the formula for W (λ)
e0 (G1{G2}) is obtained by adding the quantities S1, S2, S3

and S4.
(ii) Using the similar argument as in the proof of part (i), we can get the desired

result. �

Using Theorem 2.2, we can get the formulae for the edge-Wiener and edge hyper-
Wiener indices of the cluster G1{G2}.

Corollary 2.4. The first and second edge-Wiener indices of G1{G2} are given by

(i) We0(G1{G2}) = We0(G1) + n1We0(G2) +m2Wve1(G1) +m2
2W (G1)

+

[
2m2

(
n1

2

)
+ n1m1

]
D

(1)
1 (w |G2 ) +

(
n1

2

)
m2

2 + n1m1m2,

(ii) We4(G1{G2}) = We4(G1) + n1We4(G2) +m2Wve2(G1) +m2
2W (G1)

+

[
2m2

(
n1

2

)
+ n1m1

]
D

(1)
2 (w |G2 ).

Corollary 2.5. The first and second edge hyper-Wiener indices of G1{G2} are given
by

(i) WWe0(G1{G2}) = WWe0(G1) + n1WWe0(G2) +m2WWve1(G1) + n1m1m2

+m2
2WW (G1) +

[
m2 +D

(1)
1 (w |G2 )

]
Wve1(G1) +m2

2

(
n1

2

)
+m2

[
m2 + 2D

(1)
1 (w |G2 )

]
W (G1) +

(
n1

2

)
D

(1)
1 (w |G2 )

2

+

[
m2

(
n1

2

)
+

1

2
n1m1][D

(2)
1 (w |G2 ) + 3D

(1)
1 (w |G2 )

]
,
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(ii) WWe4(G1{G2}) = WWe4(G1) + n1WWe4(G2) +m2WWve2(G1)

+m2
2WW (G1) +D

(1)
2 (w |G2 )[Wve2(G1) + 2m2W (G1)]

+

[
m2

(
n1

2

)
+

1

2
n1m1

]
×
[
D

(2)
2 (w |G2 ) +D

(1)
2 (w |G2 )

]
+

(
n1

2

)
D

(1)
2 (w |G2 )

2.

2.3. Vertex-edge Wiener type invariants of clusters. In this section, we deter-
mine the vertex-edge Wiener type invariants of the cluster G1{G2}.

Theorem 2.3. If λ is a positive integer, then the vertex-edge Wiener type invariants
of G1{G2} are given by:

(i) W (λ)
ve1

(G1{G2}) = W (λ)
ve1

(G1) + n1W
(λ)
ve1

(G2) + 2ωW (λ)(G1) + 2m1d
(λ)(w |G2 )

+
λ∑
i=0

(
λ

i

)
W (i)
ve1

(G1)d
(λ−i)(w |G2 )

+ 2
λ∑
i=0

(
λ

i

)
W (i)(G1)

[
D

(λ−i)
1 (w |G2 ) + ωd(λ−i)(w |G2 )

+
λ−i∑
j=0

(
λ− i
j

)
d(j)(w |G2 )D

(λ−i−j)
1 (w |G2 )

]
,

(ii) W (λ)
ve2

(G1{G2}) = W (λ)
ve2

(G1) + n1W
(λ)
ve2

(G2) +
λ∑
i=0

(
λ

i

)
W (i)
ve2

(G1)d
(λ−i)(w |G2 )

+ 2
λ∑
i=0

(
λ

i

)
W (i)(G1)

[
D

(λ−i)
2 (w |G2 )

+
λ−i∑
j=0

(
λ− i
j

)
d(j)(w |G2 )D

(λ−i−j)
2 (w |G2 )

]
.

Proof. (i) We partition the sum in the definition of W (λ)
ve1 (G1{G2}) into three sums as

follows. The first sum S1 is taken over all vertices u ∈ V (Gx
2) and edges e ∈ E(Gx

2),
where x ∈ V (G1). In this case, D1(u, e |G1{G2}) = D1(u, e |G2 ). So,

S1 =
∑

x∈V (G1)

∑
u∈V (Gx

2 )

∑
e∈E(Gx

2 )

D1(u, e |G2 )
λ = n1W

(λ)
ve1

(G2).

The second sum S2 is taken over all vertices u ∈ V (Gx
2) and edges e ∈ E(G1), where

x ∈ V (G1). In this case, D1(u, e |G1{G2}) = d(u,w |G2 ) +D1(x, e |G1 ). So,

S2 =
∑

x∈V (G1)

∑
u∈V (Gx

2 )

∑
e∈E(G1)

[d(u,w |G2 ) +D1(x, e |G1 )]
λ.
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We partition the sum S2 into three sums S21, S22 and S23 as follows. The sum
S21 is equal to S21 =

∑
x∈V (G1)

∑
u=w

∑
e∈E(G1)

D1(x, e |G1 )
λ = W

(λ)
ve1 (G1). The

sum S22 is equal to S22 =
∑

x∈V (G1)

∑
u∈V (Gx

2 )−{w}
∑

e∈E(G1);x∈V (e) d(u,w |G2 )
λ =

2m1d
(λ)(w |G2 ). The sum S23 is equal to

S23 =
∑

x∈V (G1)

∑
u∈V (Gx

2 )−{w}

∑
e∈E(G1);x/∈V (e)

[d(u,w |G2 ) +D1(x, e |G1 )]
λ

=
λ∑
i=0

(
λ

i

)
W (i)
ve1

(G1)d
(λ−i)(w |G2 ).

By adding the quantities S21, S22 and S23, we obtain

S2 = W (λ)
ve1

(G1) + 2m1d
(λ)(w |G2 ) +

λ∑
i=0

(
λ

i

)
W (i)
ve1

(G1)d
(λ−i)(w |G2 ).

The third sum S3 is taken over all vertices u ∈ V (Gx
2) and edges e ∈ E(Gy

2), where
x, y ∈ V (G1) and x 6= y. In this case, D1(u, e |G1{G2}) = d(u,w |G2 ) + d(x, y |G1 ) +
D1(w, e |G2 ). So,

S3 =
∑

x∈V (G1)

∑
y∈V (G1)−{x}

∑
u∈V (Gx

2 )

∑
e∈E(Gy

2)

[d(u,w |G2 ) + d(x, y |G1 ) +D1(w, e |G2 )]
λ.

We partition the sum S3 into four sums S31, S32, S33 and S34 as follows. The sum
S31 is equal to S31 =

∑
x∈V (G1)

∑
y∈V (G1)−{x}

∑
u=w

∑
e∈E(Gy

2);w∈V (e) d(x, y |G1 )
λ =

2ωW (λ)(G1). The sum S32 is equal to

S32 =
∑

x∈V (G1)

∑
y∈V (G1)−{x}

∑
u=w

∑
e∈E(Gy

2);w/∈V (e)

[d(x, y |G1 ) +D1(w, e |G2 )]
λ

= 2
λ∑
i=0

(
λ

i

)
W (i)(G1)D

(λ−i)
1 (w |G2 ).

The sum S33 is equal to

S33 =
∑

x∈V (G1)

∑
y∈V (G1)−{x}

∑
u∈V (Gx

2 )−{w}

∑
e∈E(Gy

2);w∈V (e)

[d(u,w |G2 ) + d(x, y |G1 )]
λ

= 2ω
λ∑
i=0

(
λ

i

)
W (i)(G1)d

(λ−i)(w |G2 ).
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The sum S34 is equal to

S34 =
∑

x∈V (G1)

∑
y∈V (G1)−{x}

∑
u∈V (Gx

2 )−{w}

∑
e∈E(Gy

2);w/∈V (e)

[d(u,w |G2 ) + d(x, y |G1 )

+D1(w, e |G2 )]
λ

= 2
λ∑
i=0

(
λ

i

)
W (i)(G1)

λ−i∑
j=0

(
λ− i
j

)
d(j)(w |G2 )D

(λ−i−j)
1 (w |G2 ).

By adding the quantities S31, S32, S33 and S34, we obtain

S3 = 2ωW (λ)(G1) + 2
λ∑
i=0

(
λ

i

)
W (i)(G1)

[
D

(λ−i)
1 (w |G2 ) + ωd(λ−i)(w |G2 )

+
λ−i∑
j=0

(
λ− i
j

)
d(j)(w |G2 )D

(λ−i−j)
1 (w |G2 )

]
.

The formula for W (λ)
ve1 (G1{G2}) is obtained by adding the quantities S1, S2 and S3.

(ii) Using the similar argument as in the proof of part (i), we can get the desired
result. �

Using Theorem 2.3, the formulae for the vertex-edge Wiener and vertex-edge hyper-
Wiener indices of G1{G2} are obtained at once.

Corollary 2.6. For i ∈ {1, 2}, the first and second vertex-edge Wiener indices of
G1{G2} are given by

Wvei(G1{G2}) = n2Wvei(G1) + n1Wvei(G2) + 2n2m2W (G1) + 2n2

(
n1

2

)
D

(1)
i (w |G2 )

+

[
2m2

(
n1

2

)
+ n1m1

]
d(1)(w |G2 ).

Corollary 2.7. For i ∈ {1, 2}, the first and second vertex-edge hyper-Wiener indices
of G1{G2} are given by

WWvei(G1{G2}) = n2WWvei(G1) + n1WWvei(G2) + n2m2WW (G1)

+ d(1)(w |G2 )Wvei(G1) + 2W (G1)
[
n2D

(1)
i (w |G2 )

+m2d
(1)(w |G2 )

]
+

[
m2

(
n1

2

)
+

1

2
n1m1

] [
d(1)(w |G2 )

+ d(2)(w |G2 )
]
+ n2

(
n1

2

)[
D

(1)
i (w |G2 ) +D

(2)
i (w |G2 )

]
+ 2

(
n1

2

)
d(1)(w |G2 )D

(1)
i (w |G2 ).
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Table 1. Some distance-based topological invariants of path and star.

Graph G Pn Sn
W (G)

(
n+1
3

)
(n− 1)2

WW (G)
(
n+2
4

)
1
2
(n− 1)(3n− 4)

TSZ(G)
(
n+3
5

)
(n− 1)(2n− 3)

We0(G)
(
n
3

) (
n−1
2

)
WWe0(G) 2

(
n+1
4

) (
n−1
2

)
We4(G)

n+3
3

(
n−1
2

)
2
(
n−1
2

)
WWe4(G)

n2+5n+12
6

(
n−1
2

)
3
(
n−1
2

)
Wve1(G) 2

(
n
3

)
2
(
n−1
2

)
WWve1(G) 2

(
n+1
4

)
2
(
n−1
2

)
Wve2(G) 2

(
n+1
3

)
2(n− 1)2

WWve2(G) 2
(
n+2
4

)
(n− 1)(3n− 4)

3. Examples and Corollaries

In this section, our results are illustrated by some examples. Interesting classes of
graphs can be obtained by specializing components in clusters. Let Pn and Sn denote
the n vertex path and star, respectively. Some distance-based topological invariants
of these graphs are listed in Table 1.

Our first example is about the t-fold bristled graph of a given graph. For a given
graph G, its t-fold bristled graph Brst(G) is obtained by attaching t pendant vertices
to each vertex of G. This graph can be represented as the cluster of G and St+1,
where the root vertex w of St+1 is on its vertex of degree t. The t-fold bristled graph
of a given graph is also known as its t-thorny graph. It is easy to see that,

d(1)(w |St+1 ) = d(2)(w |St+1 ) = d(3)(w |St+1 ) = D
(1)
2 (w |St+1 ) = D

(2)
2 (w |St+1 ) = t,

D
(1)
1 (w |St+1 ) = D

(2)
1 (w |St+1 ) = 0.

Using these results, the results obtained in the previous section and Table 1, we can
compute several Wiener-like topological invariants of t-fold bristled graphs.

Corollary 3.1. Let G be a graph of order n and size m and let t be a positive integer.
Then

(i) W (Brst(G)) = (t+ 1)2W (G) + nt(nt+ n− 1);
(ii) WW (Brst(G)) = (t+ 1)2WW (G) + 2t(t+ 1)W (G) + 1

2
nt(3nt+ 2n− 3);

(iii) TSZ(Brst(G)) = (t+ 1)2TSZ(G) + 2t(t+ 1)WW (G) + t(3t+ 2)W (G)

+ nt(2nt+ n− 2);

(iv) We0(Brst(G)) = We0(G) + tWve1
(G) + t2W (G) + 1

2
nt(nt+ 2m− 1);

(v) We4(Brst(G)) = We4(G) + tWve2
(G) + t2W (G) + nt(nt+m− 1);
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(vi) WWe0(Brst(G)) = WWe0(G) + tWWve1
(G) + t2WW (G) + tWve1

(G)

+ t2W (G) +
1

2
nt(nt+ 2m− 1);

(vii) WWe4(Brst(G)) = WWe4(G) + tWWve2(G) + t2WW (G) + tWve2
(G)

+ 2t2W (G) +
1

2
nt(3nt+ 2m− 3);

(viii) Wve1(Brst(G)) = (t+ 1)Wve1
(G) + 2t(t+ 1)W (G) + nt(nt+m− 1);

(ix) Wve2(Brst(G)) = (t+ 1)Wve2
(G) + 2t(t+ 1)W (G) + nt(2nt+ n+m− 1);

(x) WWve1(Brst(G)) = (t+ 1)WWve1
(G) + t(t+ 1)WW (G) + tWve1

(G)

+ 2t2W (G) + nt(nt+m− 1);
(xi) WWve2(Brst(G)) = (t+ 1)WWve2(G) + t(t+ 1)WW (G) + tWve2(G)

+ 2t(2t+ 1)W (G) + nt(3nt+ n+m− 2).

Our next example is about the bridge graph constructed on a given graph. Let
G be a graph rooted at vertex w and let t be a positive integer. The bridge graph
Bt(G,w) is the graph obtained by taking t copies of G and by connecting the vertex
w of the i-th copy of G to the vertex w of the i + 1-th copy of G by an edge for
i = 1, 2, ..., t − 1. The bridge graph Bt(G,w) can be considered as the cluster of the
t-vertex path Pt and the graph G. So, using the results of the previous section and
Table 1, we get the following results for bridge graphs.

Corollary 3.2. Let G be a rooted graph of order n and size m and let w be its root
vertex. For positive integer t, the following hold

(i) W (Bt(G,w)) = tW (G) + 2n
(
t
2

)
d(1)(w |G) + n2

(
t+1
3

)
;

(ii) WW (Bt(G,w)) = tWW (G) + 2n

(
t+ 1

3

)
d(1)(w |G) + n2

(
t+ 2

4

)
+

(
t

2

)[
nd(1)(w |G) + d(1)(w |G)2 + nd(2)(w |G)

]
;

(iii) TSZ(Bt(G,w)) = tTSZ(G) + 2n

(
t+ 2

4

)
d(1)(w |G) +

(
t+ 1

3

)[
nd(2)(w |G)

+ d(1)(w |G)2 + nd(1)(w |G)
]
+

1

3
n

(
t

2

)[
d(3)(w |G)

+ 3d(2)(w |G) + 2d(1)(w |G)
]
+

(
t

2

)
d(1)(w |G)

[
d(1)(w |G)

+ d(2)(w |G)
]
+ n2

(
t+ 3

5

)
;

(iv) We0(Bt(G,w)) = tWe0(G) + 2(m+ 1)

(
t

2

)
D

(1)
1 (w |G) +m2

[(
t+ 1

3

)
+

(
t

2

)]
+ (2m+ 1)

(
t

3

)
+ 2m

(
t

2

)
;
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(v) We4(Bt(G,w)) = tWe4(G) + 2(m+ 1)

(
t

2

)
D

(1)
2 (w |G) +m(m+ 2)

(
t+ 1

3

)
+

1

6
(t− 1)(t− 2)(t+ 3);

(vi) WWe0(Bt(G,w)) = tWWe0(G) +

(
t

2

)[
(m+ 1)D

(2)
1 (w |G) +D

(1)
1 (w |G)2

+ (m+ 1)D
(1)
1 (w |G)

]
+ 2

[
m

(
t+ 1

3

)
+

(
t

3

)
+ (m+ 1)

(
t

2

)]
D

(1)
1 (w |G) +m2

[(
t+ 2

4

)
+

(
t+ 1

3

)]
+ 2(m+ 1)

(
t+ 1

4

)
+ 2m

(
t

3

)
+m(m+ 2)

(
t

2

)
;

(vii) WWe4(Bt(G,w)) = tWWe4(G) +

(
t

2

)[
(m+ 1)D

(2)
2 (w |G) +D

(1)
2 (w |G)2

+ (m+ 1)D
(1)
2 (w |G)

]
+ 2(m+ 1)

(
t+ 1

3

)
D

(1)
2 (w |G)

+m(m+ 2)

(
t+ 2

4

)
+

1

12
(t− 1)(t− 2)(t2 + 5t+ 12);

(viii) Wve1(Bt(G,w)) = tWve1(G) + 2

(
t

2

)[
(m+ 1)d(1)(w |G) + nD

(1)
1 (w |G)

]
+ 2n

[
m

(
t+ 1

3

)
+

(
t

3

)]
;

(ix) Wve2(Bt(G,w)) = tWve2(G) + 2

(
t

2

)[
(m+ 1)d(1)(w |G) + nD

(1)
2 (w |G)

]
+ 2n(m+ 1)

(
t+ 1

3

)
;

(x) WWve1(Bt(G,w)) = tWWve1(G) + 2

(
t

3

)
d(1)(w |G) + 2

(
t+ 1

3

)[
nD

(1)
1 (w |G)

+md(1)(w |G)
]
+ (m+ 1)

(
t

2

)[
d(1)(w |G) + d(2)(w |G)

]
+ n

(
t

2

)[
D

(1)
1 (w |G) +D

(2)
1 (w |G)

]
+ nm

(
t+ 2

4

)
+ 2

(
t

2

)
d(1)(w |G)D

(1)
1 (w |G) + 2n

(
t+ 1

4

)
;
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(xi) WWve2(Bt(G,w)) = 2

(
t+ 1

3

)[
nD

(1)
2 (w |G) + (m+ 1)d(1)(w |G)

]
+ tWWve2(G) + (m+ 1)

(
t

2

)[
d(1)(w |G) + d(2)(w |G)

]
+ n

(
t

2

)[
D

(1)
2 (w |G) +D

(2)
2 (w |G)

]
+ 2

(
t

2

)
d(1)(w |G)D

(1)
2 (w |G) + n(m+ 2)

(
t+ 2

4

)
.

The results of parts (i) and (ii) of Corollary 3.2 have also been given in [20].
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