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ON A FUNCTIONAL EQUATION ARISING IN STATISTICS

P. NATH1 AND D. K. SINGH2

Abstract. The general solutions of a functional equation, derived from the first
and second order moments of a finite discrete random variable, have been obtained.

1. Introduction

Functional equations appear in various branches of Pure Mathematics, Applied
Mathematics, Geometry, Economics, Business Mathematics, Probability Theory and
Mathematical Statistics (see [1, 3, 11]). In Mathematical Statistics, usually two types
of random variables are discussed (i) continuous (ii) discrete. C. F. Gauss (1809)
characterized the normal distribution (also called the Gaussian distribution, see pp.
106–109 in [1]). For further characterization of normal distributions, see [2, 6, 11].

This paper deals with functional equations concerning some discrete random vari-
ables which are useful from information-theoretic point of view.

For n = 1, 2, . . . let Γn =

{
(p1, . . . , pn) : pi ≥ 0, i = 1, . . . , n;

n∑
i=1

pi = 1

}
denote

the set of all n-component complete probability distributions with nonnegative el-
ements. Let R denote the set of all real numbers; I = {x ∈ R : 0 ≤ x ≤ 1},
the unit closed interval; ]0, 1[= {x ∈ R : 0 < x < 1}, the unit open interval and
]0, 1] = {x ∈ R : 0 < x ≤ 1}.

Key words and phrases. Moments of a discrete random variable, additive mapping, logarithmic
mapping, multiplicative mapping.
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(I) Given any probability distribution (p1, . . . , pn) ∈ Γn, let us consider a discrete
real-valued random variable Zn taking the different real values z1, . . . , zn with respec-
tive probabilities p1, . . . , pn where

zi =

{
− log2 pi, if 0 < pi ≤ 1,

0, if pi = 0.

The rth order moment [4] of Zn about the origin, r = 0, 1, 2, . . . is defined as

µ′r(Zn) =
n∑
i=1

piz
r
i .(1.1)

Consider (1.1) when r = 0. In this case, we define 00 := 1. Then µ′0(Zn) = 1. Since
µ′0(Zn) does not depend upon the probabilities p1, . . . , pn; it is not of much importance
from the point of view of information theory.

Now, for r = 1, 2, . . . let us consider (1.1). In this case, we define 0(log2 0)r := 0.

Then µ′r(Zn) = (−1)r
n∑
i=1

pi(log2 pi)
r. Define the mappings φr : I → R, r = 0, 1, 2, . . .

as

φr(p) =

{
p, if r = 0,

(−1)rp(log2 p)
r, if r = 1, 2, . . . .

(1.2)

Now, from (1.1) and (1.2), it follows that

µ′r(Zn) =
n∑
i=1

φr(pi),(1.3)

for all r = 0, 1, 2, . . . so all the moments admit of a sum representation. The mapping
φr is called the generating function of the moment µ′r(Zn). From (1.2), we observe
that φ0(0) = 0, φ0(1) = 1 but φr(0) = 0, φr(1) = 0, ( r = 1, 2, . . .). The mapping
φ0 satisfies the functional equation φ0(pq) = φ0(p)φ0(q), for all p ∈ I, q ∈ I. On the
other hand, the mapping φ1 satisfies the functional equation φ1(pq) = qφ1(p) +pφ1(q),
for all p ∈ I, q ∈ I. Also, both the mappings φ1 and φ2 satisfy φ2(pq) = qφ2(p) +
pφ2(q) + 2φ1(p)φ1(q), for all p ∈ I, q ∈ I. So, it seems desirable to pay attention to
the functional equation

f(pq) = qf(p) + pf(q) + cg(p)g(q),(1.4)

where p ∈ I, q ∈ I, f : I → R, g : I → R are unknown mappings and c 6= 0 is a given
real constant.

(II) Let us consider a discrete random variable Xn taking the different real values
x1, x2, . . . , xn where xi = M(pi), 0 ≤ pi ≤ 1, i = 1, 2, . . . , n; M being a non-constant
multiplicative mapping. The rth order moment of Xn about the origin, r = 0, 1, 2, . . .
is defined as µ̄r(Xn) =

∑n
i=1 pi[M(pi)]

r.
Let us define the mappings ψr : I → R, r = 0, 1, 2, . . . as ψr(p) = p[M(p)]r. Then

µ̄r(Xn) =
∑n

i=1 ψr(pi). Thus, all the moments µ̄r(Xn) admit of a sum representation.
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The mapping ψr is called the generating function of the moment µ̄r(Xn). The map-
pings ψr : I → R, r = 0, 1, 2, . . . satisfy the functional equation ψr(pq) = ψr(p)ψr(q),
for all p ∈ I, q ∈ I. Thus, both the mappings φ0 and ψ0 are multiplicative.
For r = 1, 2, . . . each of the mapping ψr is multiplicative whereas none of φr is
multiplicative.

The fact that both ψ2 and ψ1 are multiplicative does not yield a functional equation
different from f(pq) = f(p)f(q), f : I → R, p ∈ I, q ∈ I. But this is not the situation
in the case of φ2 and φ1. It is for this reason that the study of (1.4) is important.

(III) Consider the discrete random variable X which takes the values 1, 2, . . . with
probabilities p1, p2, . . . where

px = Prob(X = x) = θ(1− θ)x−1, x = 1, 2, . . .(1.5)

and 0 < θ < 1, x denoting the number of trials needed to observe the first success in
a sequence of independent Bernoulli trials and θ denotes the probability of success in
each Bernoulli trial. The probability distribution (p1, p2, . . .), given by (1.5), is said to
be a geometric probability distribution [7]. The value x of X does not depend upon
the corresponding probability px. The rth order moment µ̂r(X), r = 1, 2, . . . about
the origin, is defined as µ̂r(X) =

∑∞
x=1 pxx

r.
Clearly, µ̂r(X) =

∑∞
x=1 θ(1−θ)x−1xr. Since x does not depend upon px, there exists

no sequence of mappings fr : I → R, r = 1, 2, . . . such that µ̂r(X) =
∑∞

x=1 fr(px).
Hence, it is not possible to proceed further.

(IV) If the discrete random variable has first moment but second order moment
is non-existent, then it is not possible to proceed as in (I) and (II). However, even if
the second order moment exists, there is no guarantee that we will be able to get a
functional equation, already known or a new one. For instance, in the case of above
mentioned random variable X possessing geometric distribution, the first and second

order moments exist and are respectively
1

θ
and

2− θ
θ2

but still we cannot proceed
further.

Based upon the above observations, we think it is proper to mention specifically
that the results proved in the next section 2 are not general. Rather, they are valid
only for the specific random variable Zn, mentioned in (I), which led to (1.4).

(V) To solve a functional equation, it was usual to assume the unknown mappings,
appearing in it, to be differentiable (considered a strong regularity assumption); reduce
the functional equation to a differential equation and then solve it. In real analysis,
we know that if a mapping is differentiable at a point, then it is continuous at that
point but not conversely. Thus the assumption ‘a mapping is continuous at a point’ is
weaker (in the strict sense) than the assumption ‘a mapping is differentiable at a point’.
Thus, the trend of solving functional equations by weakening the regularity conditions
in the strict sense started and this trend continued. Finally, it was realized that if
possible, the functional equations should be solved without imposing any regularity
condition on the mappings appearing in them.
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The authors came across the functional equation (1.4) in [8] but its general solutions
were not obtained. This, indeed, is the reason of writing this paper.

The object of this paper is to obtain the general solutions of (1.4) without imposing
any regularity condition on any of the mappings f and g appearing in it.

Now, we mention some known definitions which are needed to develop sections 2
and 3 of this paper.

A mapping A : R → R is said to be additive on R if the equation A(x + y) =
A(x) + A(y) holds for all x ∈ R, y ∈ R.

A mappingM : I → R is said to multiplicative ifM(pq) = M(p)M(q), for all p ∈ I,
q ∈ I.

A mapping ` : I → R is said to be logarithmic if `(0) = 0 and `(pq) = `(p) + `(q),
for all p ∈]0, 1], q ∈]0, 1].

2. The Functional Equation (1.4)

In this section, we provide the general solutions of (1.4).

Theorem 2.1. Let c 6= 0 be a given real constant and f : I → R, g : I → R be
mappings which satisfy the functional equation (1.4), for all p ∈ I, q ∈ I. Then, for
all p ∈ I, any general solution (f, g) of (1.4) is one of the following forms:

(i) f(p) = p`(p), (ii) g(p) ≡ 0(2.1)

or

(i) f(p) = p`(p) +
1

2
cp[`∗(p)]2, (ii) g(p) = p`∗(p)(2.2)

or

(i) f(p) = p`(p) + cµ2[M(p)− p], (ii) g(p) = µ[M(p)− p],(2.3)

where µ is an arbitrary nonzero real constant; ` : I → R is a logarithmic mapping;
`∗ : I → R is a logarithmic mapping which does not vanish identically on the open
interval ]0, 1[; M : I → R is a multiplicative mapping and 0`(0) = 0 = 0`∗(0),
0[`∗(0)]2 = 0.

Proof. Let p ∈ I, q ∈ I, r ∈ I. Now, using (1.4), we obtain

f(p(qr)) = qrf(p) + prf(q) + pqf(r) + cpg(q)g(r) + cg(p)g(qr)

and

f((pq)r) = qrf(p) + prf(q) + pqf(r) + crg(p)g(q) + cg(pq)g(r).

Equating the expressions for f(p(qr)) and f((pq)r), using c 6= 0;

g(r)[g(pq)− pg(q)] = g(p)[g(qr)− rg(q)](2.4)

follows for all p ∈ I, q ∈ I and r ∈ I.
Our first task is to determine the general solutions of (2.4). For this purpose, we

divide the discussion into two following cases.
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Case 1. g vanishes identically on I.

In this case, g(p) = 0 for all p ∈ I. This is precisely (2.1)(ii).

Case 2. g does not vanish identically on I.

In this case, there exists an element r0 ∈ I such that g(r0) 6= 0. Putting r = r0 in
(2.4), it follows that

g(pq) = pg(q) +M(q)g(p),(2.5)

where M : I → R is a mapping defined as M(x) = [g(r0)]
−1[g(xr0)− r0g(x)], for all

x ∈ I. Since g(pq) = g(qp), (2.5) gives

[M(p)− p]g(q) = [M(q)− q]g(p)(2.6)

valid for all p ∈ I, q ∈ I.
Case 2.1. The mapping p 7→M(p)− p vanishes identically on I.

In this case, M(p) = p for all p ∈ I. Making use of this form of M in (2.5), we
obtain, for all p ∈ I, q ∈ I, the functional equation g(pq) = pg(q) + qg(p) whose
general solution is g(p) = p`(p), where ` : I → R is a logarithmic mapping and
0`(0) = 0. Now, 0 6= g(r0) = r0`(r0) for some r0 ∈ I. Since `(0) = `(1) = 0, we
have 0 6= g(r0) = r0`(r0) for some r0 ∈]0, 1[. Hence `(r0) 6= 0 for some r0 ∈]0, 1[.
So, g(p) = p`∗(p) where `∗ : I → R is a logarithmic mapping which does not vanish
identically on the open interval ]0, 1[ and 0`∗(0) = 0. Thus, we have obtained (2.2)(ii).

Case 2.2. The mapping p→M(p)− p does not vanish identically on I.

In this case, there exists an element q0 ∈ [0, 1] such thatM(q0)−q0 6= 0. Substituting
q = q0 in (2.6), it follows that g(p) = µ[M(p)−p], where µ = g(q0)[M(q0)− q0]−1. We
claim that µ 6= 0. If possible, suppose µ = 0. Then g(p) = 0 for all p ∈ I contradicting
g(r0) 6= 0 for some r0 ∈ I. So, µ 6= 0. Thus, we have obtained (2.3)(ii). From (2.3)(ii),
(2.5) and the fact that µ 6= 0, it follows that M(pq) = M(p)M(q) for all p ∈ I, q ∈ I.
Thus, M is a multiplicative mapping.

Now we determine the forms of f corresponding to those of g.
From (1.4) and (2.1)(ii), we obtain the equation f(pq) = qf(p) +pf(q) for all p ∈ I,

q ∈ I. Hence f is of the form (2.1)(i). Thus, solution (2.1) is obtained.
From (1.4) and (2.2)(ii), we obtain the equation

f(pq) = qf(p) + pf(q) + cp`∗(p)q`∗(q),(2.7)

for all p ∈ I, q ∈ I. Putting p = q = 0 in (2.7) and using the fact that 0`∗(0) := 0, we
obtain f(0) = 0. Now we consider (2.7) only for p ∈]0, 1] and q ∈]0, 1]. In this case,
dividing both sides of (2.7) by pq ∈]0, 1], we obtain the equation

f(pq)

pq
=
f(p)

p
+
f(q)

q
+ c`∗(p)`∗(q)
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which can be written as
f(pq)

pq
− 1

2
c[`∗(pq)]2 =

{
f(p)

p
− 1

2
c[`∗(p)]2

}
+

{
f(q)

q
− 1

2
c[`∗(q)]2

}
,

as `∗(pq) = `∗(p) + `∗(q), for all p ∈]0, 1] and q ∈]0, 1]. Define ` : I → R as

`(p) =


f(p)

p
− 1

2
c[`∗(p)]2, if 0 < p ≤ 1,

0, if p = 0.
(2.8)

Then ` : I → R, defined by (2.8), is a logarithmic mapping. From (2.8), it follows

that f(p) = p`(p) +
1

2
cp[`∗(p)]2 for 0 < p ≤ 1. Also, f(0) = 0 = 0`(0) +

1

2
c0[`∗(0)]2 as

0`(0) := 0 and 0[`∗(0)]2 = 0. Thus, (2.2)(i) holds. So, solution (2.2) is obtained.
From (1.4), (2.3)(ii) and the multiplicativity of M , we obtain

f(pq)−cµ2M(pq)+cµ2pq = q[f(p)−cµ2M(p)+cµ2p]+p[f(q)−cµ2M(q)+cµ2q],

for all p ∈ I, q ∈ I. Now (2.3)(i) can be obtained. So, solution (2.3) is obtained. �

3. Comments

The object of this section is to discuss the importance of solutions (2.1) to (2.3)
from the point of view of statistics and information theory.

Consider (2.1). In this case, it is desirable to choose ` = `∗, where `∗ : I → R is a
logarithmic mapping defined as

`∗(p) =

{
− log2 p, if 0 < p < 1,

0, if p = 0, 1.
(3.1)

We know that from (1.3), each moment µ′r(Zn) admits of a sum representation. Now,
from (2.1), (3.1), (1.2) and (1.3), we have

n∑
i=1

f(pi) =
n∑
i=1

pi`(pi) = −
n∑
i=1

pi log2 pi = Hn(p1, . . . , pn) = µ′1(Zn)

and
n∑
i=1

g(pi) = 0, where Hn : Γn → R, n = 1, 2, . . . are the Shannon entropies [10] de-

fined as Hn(p1, . . . , pn) = −
∑n

i=1 pi log2 pi, for all (p1, . . . , pn) ∈ Γn with 0 log2 0 := 0.
Thus, the mapping f , given by (2.1)(i), is related to the first order moment about the
origin.

Now consider (2.2). Here, too, we choose ` = `∗ where `∗ : I → R is defined by
(3.1). Now, (2.2), together with (1.2) and (1.3), gives

n∑
i=1

f(pi) = µ′1(Zn) +
1

2
cµ′2(Zn)

and
∑n

i=1 g(pi) = µ′1(Zn). Thus, the solution (2.2), of (1.4), is related to the first and
second moments of Zn about the origin.
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Now consider the solution (2.3) of (1.4). Havrda and Charvat [5] defined the
entropies Hα

n : Γn → R, n = 1, 2, . . . of degree α, α > 0, α 6= 1, α ∈ R, as

Hα
n (p1, . . . , pn) = (1− 21−α)−1

(
1−

n∑
i=1

pαi

)
,(3.2)

for all (p1, . . . , pn) ∈ Γn. The Gini-Simpson [9] index of the probability distribution
(p1, . . . , pn) is defined as (GS)n(p1, . . . , pn) = 1−

∑n
i=1 p

2
i .

If α = 2 in (3.2), then H2
n(p1, . . . , pn) = 2 (1−

∑n
i=1 p

2
i ). In particular, if

(p, 1− p) ∈ Γ2, 0 ≤ p ≤ 1, then

H2
2 (p, 1− p) = 4(p− p2).(3.3)

The right hand side of (3.3) is, indeed, the parabola passing through the points (0, 0),

(1, 0) and
(

1

2
, 1

)
.

In (2.3), let us choose ` = `∗, where `∗ : I → R is defined by (3.1); and M(p) = pα,
p ∈ I, α ∈ R, α > 0, α 6= 1. We obtain

f(p) = −p log2 p+ cµ2(pα − p) and g(p) = µ(pα − p).
Thus,

n∑
i=1

f(pi) = Hn(p1, . . . , pn)− cµ2(1− 21−α)Hα
n (p1, . . . , pn)

and
∑n

i=1 g(pi) = −µ(1− 21−α)Hα
n (p1, . . . , pn).

Therefore, the mappings f and g, mentioned in (2.3), are related to the Shannon
entropies and the entropies of degree α.

The special case α = 2 deserves particular attention. In this case,
n∑
i=1

f(pi) = Hn(p1, . . . , pn)− 1

2
cµ2H2

n(p1, . . . , pn)

and
∑n

i=1 g(pi) = −1

2
µH2

n(p1, . . . , pn).
Now, it is obvious that

n∑
i=1

f(pi) = Hn(p1, . . . , pn)− cµ2(GS)n(p1, . . . , pn)

and
∑n

i=1 g(pi) = −µ(GS)n(p1, . . . , pn).
Thus the mappings f and g are also related to Gini-Simpson index.

4. Concluding Remarks

(a) In this paper, the general solutions of the functional equation (1.4) have been
discussed.

(b) The stability of the functional equation (1.4) is yet to be discussed.
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(c) In the theory of functional equations, once a functional equation is known, it
is customary to discuss its Pexider-type generalizations. Some Pexider-type
generalizations of (1.4) will be discussed in our subsequent work.
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