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DEPENDENCE RESULT OF THE WEAK SOLUTION OF ROBIN
BOUNDARY VALUE PROBLEMS

K. AKHLIL1

Abstract. In this article we establish an approximation result involving the Lapla-
cian with Robin boundary conditions. It informs about the weak solution’s depen-
dence from the input function on the boundary.

1. Introduction

Let Ω be a bounded domain with Lipschitz boundary. We consider the problem of
the Laplacian with Robin boundary conditions

∂u

∂ν
+ βu = 0,

where ν is the outward normal vector and β is a measurable positive bounded function
on the boundary ∂Ω. This kind of problems was extensively studied by many authors,
we refer to [1, 2, 3, 5, 8] and references therein for more details. Such boundary con-
ditions appears in the modelisation of some physical, chimical or biological processes
governed by the Laplacian equation.

Such processes are called Laplacian transport phenomena or diffusive transport
phenomena. More in details, the diffusive transport phenomena describes the transport
of species between two distinct “regions” separated by an interface. In biology, for
example, it describes the process when water and minerals are pumped by roots from
earths, or when ions and biological species penetrate through cellular membranes, or
also when oxygen molecules diffuse towards and pass through alveolar ducts (see for
example [6]).

The physical and biological properties of the interface described above are repro-
duced by the function β. What motivate this work is the fact that such functions
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can be too complicated to deal with. One can try then to approximate the function
β by a sequence of functions (βn)n≥0 more simple than β. The aim of this article
is then to show a dependance result of a sequence of weak solutions (un)n≥0 with a
sequence of input functions (βn)n≥0. The proof is based on a technical Lemma due to
Stampaccia [7].

2. Preliminaries and Main Result

We assume that Ω ⊂ Rd (d ≥ 3) is a bounded domain with Lipschitz boundary.
We denote by σ the restriction to ∂Ω of the (d− 1)−dimensional Hausdorff measure.

We know that the following continuous embedding holds,

(2.1) H1(Ω)→ Lq(Ω), q =
2d

d− 2
.

Moreover each function u ∈ H1(Ω) has a trace which is in Ls(∂Ω), where s = 2(d−1)
d−2

;
i.e., there is a constant c > 0 such that

(2.2) ‖u‖s,∂Ω ≤ c‖u‖H1(Ω), for all u ∈ H1(Ω).

Let λ > 0 be a real number, f ∈ Lp(Ω) (p > d) and β be a nonnegative bounded
measurable function on ∂Ω. We consider the following Robin boundary value problem

(2.3)

{
−∆u+ λu = f, in Ω,

∂u
∂ν

+ βu = 0, in ∂Ω.

The form associated with the Laplacian with Robin boundary condition is

aβ(u, v) =

∫
Ω

∇u∇vdx+

∫
∂Ω

βuvdσ, for all u, v ∈ H1(Ω).

We start by the definition of the weak solution of the problem (2.3).

Definition 2.1. Let f ∈ Lp(Ω). For each λ > 0, a function u = Gλ
βf ∈ H1(Ω) is

called a weak solution of the Robin boundary value Problem (associated with β) if
for every v ∈ H1(Ω)

aλβ(u, v) =

∫
Ω

fvdx,

where for u, v ∈ H1(Ω)

aλβ(u, v) = aβ(u, v) + λ

∫
Ω

uv dx.

It is clear that the closed bilinear form aβ is continuous on H1(Ω) and also coercive
on H1(Ω) in the sense that there exists a constant c > 0 such that for all u ∈ H1(Ω)

aλβ(u, u) ≥ ‖u‖2
H1(Ω).
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Let L be the linear functional on H1(Ω) defined by: for v ∈ H1(Ω)

Lv :=

∫
Ω

fv dx.

Since p ≥ 2, the functional L is well defined and continuous on H1(Ω). Thus by
coerciveness of the bilinear form aβ, the Lax-Milgram Lemma (see [4, Corollaire V.8
p:84]) implies that there exists a unique weak solution u ∈ H1(Ω) of the boundary
value problem (2.3).

The following lemma is important in the proof of Theorem 2.2, we can find its proof
in [7] Lemma 4.1.

Lemma 2.1. Let ϕ = ϕ(t) be a nonnegative, nonincreasing function on the half line
t ≥ k0 ≥ 0 such that there are positive constants c, α and δ(δ > 0) such that

ϕ(h) ≤ c(h− k)−αϕ(k)δ,

for all h > k ≥ k0. Then we have

ϕ(k0 + d) = 0, where d > 0 satisfies dα = cϕ(k0)δ−12δ(δ−1).

Theorem 2.1. Let u be a weak solution and assume that p > d. Then
1) if λ = 0 and Ω is of finite volume, there exists a strictly positive constants

C1 = C1(d, p, |Ω|) such that

|u(x)| ≤ C1‖f‖p a.e on Ω,

2) if λ > 0 and Ω is an arbitrary domain, there exist a strictly positive constant
C2 = C2(d, p, λ) such that

|Gλ
βf(x)| ≤ C2‖f‖p a.e on Ω.

The proof can be found in [8] and is based on the Maza’ya inequality and a standard
argument as in Theorem 4.1 of [7].

Our main result is the following Theorem.

Theorem 2.2. Any sequence (un)n≥0 of weak solutions of the Robin boundary value
problem associated to the sequence (βn)≥0 verify the following inequality:

‖un − um‖∞,Ω ≤ C‖un‖∞,∂Ω‖βn − βm‖∞,∂Ω,

for all n,m ∈ N and where C may depend of λ.

3. Proof of Theorem 2.2

Proof. Let (un)n≥0 be a sequence of weak solutions associated with the sequence
(βn)≥0. Let k ≥ 0 be a real number and define un,m := un − um.

Define vn,m := (|un,m| − k)+ sgn(un,m). Then vn,m ∈ H1(Ω) and

∇vn,m =

{
∇un,m, in An,m(k);
0, otherwise,
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where An,m(k) = {x ∈ Ω : |un,m(x)| > k}. In the following, we write u, v, A(k) . . .
instead of un,m, vn,m, An,m(k) . . .

It is clear that aλβn(un, v)− aλβm(um, v) = 0. Calculating we obtain:

0 =

∫
Ω

∇(un − um)∇vdx+

∫
∂Ω

(βnun − βmum)vdσ + λ

∫
Ω

(un − um)vdx

=

∫
A(k)

|∇v|2dx+

∫
∂Ω

(βn − βm)un + βm(un − um)vdσ + λ

∫
Ω

(un − um)vdx

=

∫
A(k)

|∇v|2dx+

∫
∂Ω∩A(k)

(βn − βm)unvdσ +

∫
∂Ω∩A(k)

βm(un − um)vdσ

+ λ

∫
A(k)

(un − um)vdx

=

∫
A(k)

|∇v|2dx+

∫
∂Ω∩A(k)

(βn − βm)unvdσ +

∫
∂Ω∩A(k)

βmv
2dσ

+ k

∫
∂Ω∩A(k)

βm|v|dσ + λ

∫
A(k)

v2dx+ λk

∫
A(k)

|v|dx

= aλβm(v, v) +

∫
∂Ω∩A(k)

(βn − βm)unvdσ + k

∫
∂Ω∩A(k)

βm|v|dσ + λk

∫
A(k)

|v|dx.

It follows that

aλβm(v, v) +

∫
∂Ω∩A(k)

(βn − βm)unvdσ = −k
∫
∂Ω∩A(k)

βm|v|dσ − λk
∫
A(k)

|v|dx

≤ 0.

Which leads to

aλβm(v, v) ≤
∫
∂Ω∩A(k)

(βm − βn)unvdσ.

Using the Hölder inequality and (2.2), we obtain the following estimates,

aλβm(v, v) ≤
∫
∂Ω∩A(k)

(βm − βn)unvdσ

≤ ‖βn − βm‖∞,∂Ω

∫
∂Ω∩A(k)

unvdσ

≤ ‖βn − βm‖∞,∂Ω‖un‖2,∂Ω∩A(k)‖v‖2,∂Ω∩A(k)

≤ ‖βn − βm‖∞,∂Ω‖un‖∞,∂Ω|∂Ω ∩ A(k)|
1
2 |∂Ω ∩ A(k)|

1
2
− 1

s‖v‖s,∂Ω

≤ ‖βn − βm‖∞,∂Ω‖un‖∞,∂Ω|∂Ω ∩ A(k)|1−
1
s‖v‖s,∂Ω

≤ c‖βn − βm‖∞,∂Ω‖un‖∞,∂Ω|∂Ω ∩ A(k)|1−
1
s‖v‖H1(Ω).
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We have then,

α‖v‖2
H1(Ω) ≤ aλβm(v, v)

≤ c‖βn − βm‖∞,∂Ω‖un‖∞,∂Ω|∂Ω ∩ A(k)|1−
1
s‖v‖H1(Ω).

It follows that

‖v‖H1(Ω) ≤ c1‖βn − βm‖∞,∂Ω‖un‖∞,∂Ω|∂Ω ∩ A(k)|1−
1
s .

Using the inequalities (2.1) and (2.2), we obtain the following estimates,

‖v‖s,∂Ω∩A(k) ≤ c2‖βn − βm‖∞,∂Ω‖un‖∞,∂Ω|∂Ω ∩ A(k)|1−
1
s(3.1)

and

‖v‖q,A(k) ≤ c3‖βn − βm‖∞,∂Ω‖un‖∞,∂Ω|∂Ω ∩ A(k)|1−
1
s .(3.2)

Let now h > k ≥ 0. Then A(h) ⊂ A(k) and on A(h) we have |v| ≥ h− k. It follows
that

‖v‖s,∂Ω∩A(k) ≥ ‖v‖s,∂Ω∩A(h)

≥ ‖|u| − k‖s,∂Ω∩A(h)

≥ (h− k)|∂Ω ∩ A(h)|
1
s .

(3.3)

We deduce from (3.1) that

(h− k)|∂Ω ∩ A(h)|
1
s ≤ c2‖βn − βm‖∞,∂Ω‖un‖∞,∂Ω|∂Ω ∩ A(k)|1−

1
s

which reduces to,

|∂Ω ∩ A(h)| ≤ cs2(h− k)−s‖βn − βm‖s∞,∂Ω‖un‖s∞,∂Ω|∂Ω ∩ A(k)|s−1.

Set φ(h) = |∂Ω ∩ A(h)|, we obtain,

φ(h) ≤ C(h− k)−sφ(k)s−1,

where C = cs2‖βn − βm‖s∞,∂Ω‖un‖s∞,∂Ω.
As s − 1 > 1, then the conditions of the Lemma 2.1 are satisfied with δ = s − 1

and k0 = 0, one obtain φ(d) = 0 where d > 0 satisfies ds = Cφ(0)s−22(s−1)(s−2),
consequently

d = c4‖βn − βm‖∞,∂Ω‖un‖∞,∂Ω

and

(3.4) ‖un − um‖∞,∂Ω ≤ c4‖un‖∞,∂Ω‖βn − βm‖∞,∂Ω.

In the same way as in (3.3), we obtain

‖v‖q,A(k) ≥ (h− k)|A(k)|
1
q .

From (3.2), we deduce

(h− k)|A(h)|
1
q ≤ c3‖βn − βm‖∞,∂Ω‖un‖∞,∂Ω|∂Ω ∩ A(k)|1−

1
s .
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We take k = d and h = γd with γ > 1, we obtain |A(γd)| = 0 which leads to
‖un − um‖∞,Ω ≤ γd

≤ γc4‖un‖∞,∂Ω‖βn − βm‖∞,∂Ω.
(3.5)

From (3.4) and (3.5) we obtain our Theorem. �

Corollary 3.1. Let (un)n≥0 be a sequence weak solutions associated with the sequence
(βn)≥0 ∈ L∞(∂Ω) such that infn βn > 0 then if (un)n≥0 is uniformly bounded we have
for p > d

(3.6) ‖un − um‖∞,Ω ≤ C‖f‖p‖βn − βm‖∞,∂Ω,

for all n,m ∈ N and where C may depend of λ.

In the case where the sequence of weak solutions (un)n≥0 is uniformly bounded with
respect to n we have the following consequence

Corollary 3.2. Let (un)n≥0 be a sequence weak solutions associated with the sequence
(βn)≥0 ∈ L∞(∂Ω) such that infn βn > 0 and limn βn(x) = β(x) a.e x ∈ ∂Ω then if
(un)n≥0 is uniformly bounded we have limn un(x) = u(x) a.e x ∈ Ω, where u is the
weak solution associated with β.
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