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PULLBACK DIAGRAM OF HILBERT MODULES OVER
H*-ALGEBRAS

M. KHANEHGIR!, M. AMYARI*!, AND M. MORADIAN KHIBARY'

ABSTRACT. In this paper, we generalize the construction of a pullback diagram in
the framework of Hilbert modules over H*-algebras. More precisely we prove that
if a commutative diagram of Hilbert H*-modules and morphisms

XlL)Yl

X, —22 4y,

is pullback and ¥, is a surjection, then (i) ¥y is a surjection and (ii) ker ®; N
ker ¥; = {0}. Conversely, if (i) and (ii) hold, 11 (7(A1)) is Ta,-closed and ¥ is
injective, then the above diagram is pullback.

1. INTRODUCTION AND PRELIMINARIES

Pedersen [9] studied pullback diagrams of C*-algebras. He found conditions under
which a commutative diagram of C*-algebras and morphisms is pullback. Then Amyari
and Chakoshi |2] studied it in the framework of Hilbert C*-modules. In reference [8|,
we study pullback diagram of H*-algebras and morphisms. We also find conditions
for pullbackness such a commutative diagram and its underlying trace classes. In this
paper, we generalized the notion of pullback diagram in the framework of Hilbert
H*-modules and describe some new relations between faithful Hilbert modules over
commutative proper H*-algebras and morphisms.

Some properties of pullback diagrams are stable under Hilbert modules over H*-
algebras. We use these properties to discover new ones for pullback diagram of Hilbert
modules over H*-algebras. An H*-algebra, introduced by Ambrose [1] is a complex
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algebra A with a conjugate-linear mapping * : A — A and an inner product (.,.)
such that it is a Hilbert space and satisfies a™* = a, (ab)* = b*a*, (ab,c) = (a, cb*)
and (ab,c) = (b,a*c) for all a,b,c € A. Recall that Ay = {a € A: aA = {0}} =
{a € A: Aa = {0}} is called the annihilator ideal of A. A proper H*-algebra is
an H*-algebra with zero annihilator ideal. The trace-class 7(A) of an H*-algebra
A is defined by the set 7(A) = {ab : a,b € A}. It is known that 7(A4) is an
ideal of A, which is a Banach algebra under a suitable norm 74(.). The norm 74
is related to the given norm .| on A by |la||*> = 74(a*a) for each a € A. By [1,
Lemma 2.7|, if A is proper, then 7(A) is dense in A. The trace functional tr on
7(A) is defined by tr(ab) = (b,a*) = (a,b*) = tr(ba) for each a,b € A, in particular
tr(aa*) = (a,a) = ||al|* = Ta(a*a) for all a € A.

A nonzero element e € A is called a projection, if it is self-adjoint and idempotent.
In addition, if eAe = Ce, then it is called a minimal projection. Two idempotents
e and ¢ are doubly orthogonal if (e,e’) = 0 and e’ = ¢’'e = 0. An idempotent is
primitive if it can not be expressed as the sum of two doubly orthogonal idempotent.

Lemma 1.1. Suppose that A is a commutative H*-algebra. Then e is a minimal
projection if and only if e is a primitive projection.

Proof. Suppose that e is a minimal projection. Then Ae = eAe = Ce, but Ce is a
minimal ideal of A of rank one. So by [1, Lemma 3.4] e is primitive. Conversely,
suppose e is a primitive projection in A. We will show that eAe = Ce or Ae? = Ce.
Obviously e = e¢? € Ae. Therefore Ce C Ae. For the other side, on the contrary,
suppose that there exists an element a € Ae such that a ¢ Ce, so a and e are
independent. Then Aa is a proper ideal of Ae, which contradicts minimality of Ae
(Note that if e is primitive, then Ae is a minimal ideal). Hence Ae C Ce. O

Each simple H*-algebra (an H*-algebra without nontrivial closed two-sided ideals)
contains minimal projections. It is known that all minimal projections in a simple
H*-algebra have equal norms [4]. Also note that if A and B are H*-algebras, then
A @ B is an H*-algebra with ((a,b1), (a2,b2)) = (a1, as) + (b1, bz). For more details
on H*-algebras, see [5, 10| and references cited therein.

Definition 1.1. Let A be a proper H*-algebra. A Hilbert H*-module [4, 7] is a right
module X over A with a mapping [-|-] : X x X — 7(A), which satisfies the following
conditions:

(i) [z]ay] = afzly],
(ii) [z +yl2] = [z]z] + [y]2],
(iii) [z|ya] = [z[y]a,

(iv) [zy]" = [ylz],

(v) For each nonzero element = in X there is a nonzero element a in A such that

[z]z] = a*a,

(vi) X is a Hilbert space with the inner product (z,y) = tr([z|y]),

foreach a € C, z,y € X, a € A.
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The Hilbert H*-module X is full if the ideal I = [X, X] = span{[z|y] : z,y € X} is
dense in 7(A) under the norm 74(.).

Lemma 1.2. Let X be a full Hilbert module over a proper H*-algebra A and a € A.
Then xa =0 for all v € X if and only if a = 0.

Proof. If a € 7(A) and za = 0 for all x € X, then [za|ya] = 0 for all x,y € X. Let

b € 7(A) be arbitrary. Since X is full, there exists a sequence {u,} in I such that
kn,

lim ™wu,, = b. Each u,, is of the form Zal[:pzm] in which z;,y; € X and «; € C.

n—00 -
=1

kn kn
B T — Ti TA % T dal g = Tim ™A Tr-alwal =
Hence a*ba = nlg& a*up,a = nlggo a (Zl al[xz|yl]> a nlg{)l() ;al[mmyla] 0.
Put b = aa*. Therefore ||a*a||* = Ta(a*aa*a) = tr(a*aa*a) = 0. By |1, Lemma 2.2],
a=0.

Suppose that a € A — 7(A) and za = 0 for all x € X. Let b € A be arbitrary. So
ab € 7(A) and xab = 0 for all z € X. Recall that ||zab|| < ||xza||||b]]. By previous

argument ab = 0 or aA = {0}. It implies that a = 0, since A is proper. O

Let X and Y be Hilbert modules over proper H*-algebras A and B, respectively,
and ¢ : 7(A) — 7(B) be a norm continuous *-homomorphism (morphism). A map
®: X — Y is said to be a ¢-morphism if [®(x)|P(y)] = ¢([z|y]) for all z,y in X. We
can extend ¢ to a continuous morphism ¢ : A — B. Obviously, ® is a ¢- morphism,
iLe. [®(z)|®(y)] = @([x|y]) for each z,y in X. From now on we mean by a ¢-morphism,
a @-morphism. It is easy to see that each p-morphism is necessarily a linear operator
and a module mapping in the sense that ®(xa) = ®(z)p(a) for all x € X, a € A.

Let X be a Hilbert H*-module over A and a € A, the left translation L,:X — X is
defined by L,(x) = ax for x € X. If e € A is a projection, then L, is an orthogonal
projection defined on the Hilbert space (X, (.,.)). Let us denote X, = L.X. The
subspace X, is a closed subspace of the Hilbert space (X, (.,.)) [4].

Theorem 1.1. (see [4, Lemma 2.7|) Let X be a Hilbert H*-module over A and e be
a minimal projection in A. Then X, = {z € X : [z|z] = Xe, A > 0}. If A is a simple
Hr-algebra, then the subspace X, generates a dense submodule in X.

Remark 1.1. In the above theorem if A is a commutative, simple and proper H*-
algebra, then X, = X. Recall that for each arbitrary minimal projection e € A, we
have A = Ae = eAe = Ce [1, Theorem 4.1 and 4.2]. If = is a nonzero element in X,
then there is a nonzero element a in A such that [z|z] = a*a. Hence [z|z] € T(A) C
A = Ce. So there exists a positive number A such that [z]|x] = Ae. Therefore = € X..

In this paper, we obtain some conditions under which a commutative diagram of
Hilbert H*-modules and morphisms is pullback.
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2. PULLBACK CONSTRUCTIONS IN HILBERT MODULES OVER H*-ALGEBRAS

In this section we introduce a pullback diagram of H*-algebras and investigate some
properties of them. For this we need the following definition.

Definition 2.1. A commutative diagram of H*-algebras and morphisms

AlLBl

o o

AQ&BQ

is pullback if ker(¢;) Nker(¢;) = {0} and for any other pair of morphisms u; : A — By
and pe : A — Ay from an H*-algebra A that satisfy condition 1op1 = @oyio, there is
a unique morphism p : A — A; such that py = p1p and py = Y1 pu.

It follows that A; is isomorphic to the restricted direct sum A, P B, B1= {(az,b1) €
Ay P Bi|pa(az) = 1o(b1)}, so that ¢ and 91 can be identified with projections on
first and second coordinates, respectively. In particular, the pullback exists for any
triple of H*-algebras A,, B; and B, with linking morphisms ¢, and ).

Theorem 2.1. Suppose that

AlLBl

(2.1) l\yl quz

AQLBQ

is a commutative diagram of H*-algebras and morphisms. If ker p; Nker vy = {0} and
1, Y9 are surjective and injective, respectively, then the above diagram is pullback.

Proof. 1t is enough to show that the morphism ¢ : A; — Ay @&p, By defined by
o(ar) = (1(a1), p1(ar)) is an isomorphism. Let (ag,b1) € Ay @®p, B1. Then ¢y(hy) =
wo(az). There exists a; € Aj, such that ¥(a;) = a9, since 1 is surjective. By
the commutativity of the diagram and injectivity of ¥, we have by = 1y py(as) =
Uy Yoathy (a1) = o hay(ay) = 1 (ar). Tt proves the surjectivity of .

It is clear that if 1 is injective, then so is . For injectivity of 11, let ¢ (a;) = 0.
Thus pa1)1(a1) = api1(ar;) = 0 and injectivity of ¢, implies that ¢;(a;) = 0. Hence
ay € ker o1 Nkery = {0}. O
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Lemma 2.1. Suppose that ®5 : Xo — Y5 and Vs : Y7 — Y5 are s, Wo-morphisms
of Hilbert H*-modules, where oy : Ay — By and vy : By — Bs are morphisms of
underlying H*-algebras. Denote by Xo @y, Y1 the set {(z2,y1) € Xo @Y : Po(x5) =
Uy(y1)}, then Xo®y, Y1 is a Hilbert module over H*-algebra As®p, By (with operations
inherited from the Hilbert Ay ® Bi-module Xo®Y1). If Xo and Y7 are full, then Xo®Y;
is a full Ay @ By-module and one easily concludes that Xs @y, Y1 is also a full Hilbert
module over As ®p, B;.

Proof. Straightforward (see [3, Proposition 2.1]). O
Definition 2.2. A commutative diagram of Hilbert H*-modules and morphisms

X, 2 v

L
Py
Xy —— Y,

is pullback if ker(®;)Nker(¥;) = {0} and for any other pair of morphisms Y, : X — Y}
and Yo : X — X5 from a full Hilbert H*-module X such that satisfy the condition
Uy, T = 5,15, there exists a unique morphism YT : X — X; such that T; = ®;T and
T, =W, 7T.

It is easily verified that X is isomorphic to X5 @y, Y;. The following proposition is
proved in framework of Hilbert C*-modules. It is easy to show that this proposition
holds in the category of Hilbert H*-modules. Density of trace class of a proper H*-
algebra in its own is useful in checking commutativity of the diagram of underlying
H*-algebras.

Proposition 2.1. (see [3, Proposition 2.3]) Let X5, Y; and Y; be Hilbert modules
over H*-algebras with linking morphisms ®, and Ws5. Then

X9 @y, Y1 L Y,
e
o)
X5 — Y5

with the projections ®;(x2,71) = y1 and Vi(x9,y1) = xo is a pullback diagram of
Hilbert modules over H*-algebras, where ®; is a ¢1-morphism and ¥, is a 1);-morphism
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of Hilbert modules over H*-algebras and ¢; : As®p, By — By and ¢ : As®p,B1 — A
are the corresponding projections.

As ®p, By B B,

lwl ld)z
AQ L B2
Now we are ready to prove the main theorem of this paper.

Theorem 2.2. Suppose that

X, 2.y

(2.2) lq/l l\pz

X, —2, v,

1s a commutative diagram of full Hilbert H*-modules X1, Xo and Y, and arbitrary
Hilbert H*-module Yy and continuous morphisms. If this diagram is pullback and W,
15 surjective, then the following conditions hold

(i) ker &y Nker Uy = {0},

(ii) Wy s surjective.
Conversely, if (1) and (ii) hold, {1 (7(A1)) is Ta,-closed and Uy is injective, then (2.2)
18 pullback.

Proof. Suppose that the above diagram is pullback. By the definition, (i) holds
and there exists a unique isomorphism & : X; — X5 @y, V) defined by &(z1) =
(Uy(x1), P1(x1)) = (w2, y1). We will show that the surjectivity of Wy implies surjectivity
of Uy. Let 25 € X5. Then ®y(xs) € Yo = Wy(Y]). So Po(xy) = Wy(y;) for some
y1 € Y. Thus (z9,y1) € Xs @y, Yi. Therefore there exists 1 € X; such that
O(xq) = (Vy(x1), P1(21)) = (22, 1), since ® is onto. Hence W, is surjective.

Conversely, suppose that conditions (i) and (ii) hold, ¥ (7(A;)) is 7a,-closed and
U, is injective and let (2.1) be the corresponding diagram of underlying H*-algebras.
Clearly Wy, U5 are 1)1, ¥o-morphisms and ¢, $, are @1, po-morphisms of corresponding
Hilbert H*-modules. We shall show that the three conditions of Theorem 2.1 hold for
the diagram of underlying H*-algebras. The diagram of H*-algebras is commutative,
since the diagram of their Hilbert modules is commutative. Note that density of
trace class of a proper H*-algebra implies commutativity of the diagram of underlying
H*-algebras.

(I) We want to show that ker ¢; Nkervyy, = {0}. Let a; € ker¢; Nkeryy and
x1 € X; be arbitrary. Then, we have that [®;(z1a1)|P1(x1a1)] = @1([z101|7104]) =
pi(a})er([z1]z])pi(ar) = 0. Thus [|[®1(z1a1)]]* = tr([P1(z10a1)[P1(z101)]) = 0, s0
x1ay € ker ®1. Similarly z7a; € ker Wy. Hence by (i), x1a; =0, for all 1 € X;. Since
X is full, by Lemma 1.2, a; = 0.
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(I) Let by € Bj such that ¢s(by) = 0 and y; € Y] be arbitrary. Then we
have that [Uo(y1b1)|W2(yib1)] = Pa(0)va([yilya])e(b) = 0. So [[Ta(yiby)]* =
tr([Wa(y101)|Wa(y1b1)]) = 0. Then y1b; = 0 for each y; € Y7, since ¥y is an injection.
By the fullness of Y, by = 0. Then 1) is injective.

(III) We will show that Wy is surjective. First we show that 1, is injective. If
a; € ker 11, then commutativity of (2.1), implies that sp1(a1) = wath1(a1) = 0. By
(IT), 19 is injective, so ¢;(a;) = 0 and by (I), a; = 0. Since X5 is full, ¥, is surjective
and 11(7(A1)) is T4,-closed, we have

7(Az) = [Xa[Xo] ™ = [y (X0) [ (X1)] ™ = ¢ ([(Xa] X)) ™

C iy (T(Ar)) ™
= 1(7(A1)).

Clearly 11(7(A1)) € 7(Az). Let ay € Ay be arbitrary, since Ay is proper, then
there exists a sequence {u,} in 7(A4z) = ¥1(7(A;)) such that nh_)rrgoun = ay. Each
uy, is of the form ;(a,b,) in which, a,,b, € A;. Since ¥y : 7(4;) — 7(As) is a
norm continuous isomorphism and the sequence {¢1(a,b,)} is Cauchy in 7(As), then
{7 (Y1 (anbn))} = {anb,} is Cauchy in 7(A;) C A;. Hence this sequence is convergent
in A; and ay = T}Lrlgoun = T}Lrlgowl(anbn) = ¢1(T}L1120(anbn)) € Y1(A4y), ie., Ay CTPi(4y).
Then 1 is surjective, and by Theorem 2.1, diagram (2.1) is pullback. Therefore
v : Ay — Ay @p, By is defined by ¢(a1) = (¢1(a1), p1(ar)), is an isomorphism.

Define ¢ : X; — X5 @y, Y71 by ®(21) = (V1(z1), P1(x1)) and show that ¢ is an
isomorphism of Hilbert H*-modules. Let (xq,y1) € X3 @y, Yi. By the surjectivity
of Uy, 9 = Wy(x;) for some z; € X;. By the commutativity of the diagram (2),
Uody(z1) = oWy (21) = Po(x9) = Wa(yy). Since Uy is injective, we have 1 (z1) = 4.
So @ is a surjection. Also (i) implies that ® is an injection. On the other hand

[®(21)|@(z1)] = [(P1(21), Pr(z1)) (V1 (1), Pr(21))]
= (V1 (z1)[ W1 (21)], [@1(21)[P1(21)])
= (Y1([z1|z1]), @1 ([z1]21])) = @([21|21])-

So @ is a p-morphism. Hence X; ~ X5 @y, Y;. By Proposition 2.1, diagram (2) is a
pullback diagram of Hilbert H*-modules. O

Recall that a Hilbert H*-module X over A is faithful if {a € A: Xa = {0}} = {0}.
By [4, Remark 1.6], for each faithful Hilbert H*-module X over a proper H*-algebra
A there exists a family {X;};e; of Hilbert H*-modules, where each X; is a Hilbert

H*-module over a simple H*-algebra A; such that X is equal to the mixed product
of the family {X,}ier,

X =X = {{xi} e [[Xi: D llal? < oo}.

iel el el
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Ezxample 2.1. The Hilbert space [2 = {(an) ca, € C, Z lan)? < oo} is a commu-
n=1

tative and proper H*-algebra, where for each (a,) and (b,) in 2, (a,)(b,) = (a,by)
and (a,)* = (G,) |1, Example 3]. If e = (1,0,0,0,...),e2 = (0,1,0,0,0,...),...,
then {e; }ien is a maximal family of doubly orthogonal primitive elements of [?. Put
I = Ce; for each © € N. Then I is a simple and proper H*-algebra. It is easy
to verify that (2 is a faithful Hilbert module over itself, under the inner product
[(a;)](b;)] = (a;b;) € 7(I?). Since I? is also a proper H*-algebra, then there exists the
family {/; };en of Hilbert H*-modules, where each [; is a Hilbert H*-module over itself
as a simple H*-algebra. Hence [ = ®IZ~.

1€N

Let A; and As be simple and proper H*-algebras and ¢ be a surjective morphism
from A; into As. If e; is a minimal projection in Ay, then ¢(e;) is a minimal projection
in A,, since

(i) @le1) = p(e1?®) = (p(e1))?
(i) @(e1) = w(er*) = (ple1))*
(iii) @(e1)Azp(er) = @(er)p(Ar)p(er) = @(e1Aier) = p(Ceq) = Cp(ey).

If A and B are commutative simple and proper H*-algebras and ¢ : A — B is a
nonzero morphism and e,e’ are minimal projections in A and B, respectively, then
for some complex number A, p(Xe) = €’. It implies that every nonzero morphism ¢
is a surjection. One can easily concludes that ¢ is an injection, too. Let (2.2) be a
commutative diagram of Hilbert modules over commutative simple and proper H*-
algebras and morphisms and let (2.1) be its underlying diagram of H*-algebras and
morphisms. Then for an arbitrary minimal projection e; in Ay, there exist minimal
projections e, = ¢(e1) in By, es = 11(e1) in Ay and ey’ = (e1’) in By. Obviously,
by the commutativity of diagram, ¢a1)1(e1) = ap1(e1). So pa(es) = €2’

Suppose that X;., = {1 € Xy : [z1]z1] = dey, A > 0} and Y., Xoey, Yoo
are defined similarly. If xy € X, then [®1(z1)|P1(21)] = @1([z1|x1]) = p1(Ner) =
Api(er) = Aey’ for some A > 0. Therefore the py-morphism @ : X, — Y. is
well-defined.

Recall that if {e;};c; is a maximal family of doubly orthogonal minimal projections
in commutative proper H*-algebra A, then A is the direct sum of the minimal left
ideals Ae; or the minimal right ideals e; A [1, Theorem 4.1]. Also by [6, Lemma 34.14],
we know that every minimal ideal in A is of the form Ae or eA for some minimal
projection e.

Corollary 2.1. Let (2.2) be a commutative diagram of faithful Hilbert modules over
commutative proper H*-algebras and morphisms. If their underlying H*-algebras have
the same cardinal of doubly orthogonal minimal projections and V¥, s surjective, then
(2.2) is pullback.



PULLBACK DIAGRAM OF HILBERT MODULES OVER H*-ALGEBRAS 29

Proof. Suppose that {e1;}icr, {€2i}icr = {W1(e1i)}ier, {€1tier = {@1(€1)}ier and
{es,itier = {¥2(€] ;) bier are the maximal family of doubly orthogonal minimal projec-
tions of Aq, As, By and Bs, respectively. Note that these H*-algebras have the same
cardinal of doubly orthogonal minimal projections. Put A; ;(= Aje;;) for each i € I.
Then {A; ;}ies is the family of minimal closed ideals of A;. Also there exists a suitable
family {X;}ier, of faithful Hilbert modules over simple H*-algebras A; ;, such that
X equals the mixed products of the family {X;}ies [7, Theorem 2.3].

Similarly we can assume that Xs, Y;, Y5 are the mixed products of the family
{Xaitier, {Yiitier, {Ya,i}ier, respectively.

Now by Theorem 1.1, we can replace the above families of Hilbert modules over the
simple and proper H*-algebras {Ay;}ier, {B1itier, {Azitier, { Baitier, by { X1, }ier,
{3/176’171'}%[7 {Xa.e,, fier and {}/'276572,}%[, respectively. By the assumption ¥, is surjec-
tive, then Wy; @ Xy, , — Xa,, is surjective, where ¥y ; = \Ifllth, for each i € I.
Since for any arbitrary element x5 € X, , and surjectivity of ¥y, there exists T € X4
such that [z3]xs] = [V (21)|V1(21)] = ¥1([z1|21]). Furthermore for some positive num-
ber A, we have [za|zo] = Aea; = Mbi(er;) = ¥1(Ner;). Since 1y is an isomorphism,
then [z1]z1] = Aer;. So 2y € Xy, and Wy; is surjective. Now we are going to
show the injectivity of Wy;. Let y1 € Y1 and Wy,(y1) = 0. Then [yi[y1] = Ne;
for some positive number A and [Wy;(y1)|Wa,(y1)] = ¥2i(Aej;) = Aey; = 0. Hence,
A = 0, so [yi|ly1] = 0. By the definition of Hilbert H*-module, y; = 0. We can
prove the injectivity of other morphisms in a similar fashion. This implies that
ker(®; ;) Nker(¥; ;) = {0}. Finally one can easily verify the fullness of each of Hilbert
H*-modules in the following diagram. Hence by Theorem 2.2, the following diagram
is pullback for each ¢ € I.

D14
Xl,eLi )/176/1 i

l\lll,i l‘IIQ,i

Do ;
X2762,'L' }/'276/2 i

In particular, the following diagram or (2.2) is pullback. (see |9, Proposition 4.8 |)
D P
®X1,€1,i —1> ®1/176/1,i
l@ (4% lEB\I’z,z‘

Do ;
®X2,€2,¢ EB_2> ®1/276/2,i
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