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PULLBACK DIAGRAM OF HILBERT MODULES OVER
H∗-ALGEBRAS

M. KHANEHGIR1, M. AMYARI∗1, AND M. MORADIAN KHIBARY1

Abstract. In this paper, we generalize the construction of a pullback diagram in
the framework of Hilbert modules over H∗-algebras. More precisely we prove that
if a commutative diagram of Hilbert H∗-modules and morphisms

X1
Φ1−−−−→ Y1yΨ1

yΨ2

X2
Φ2−−−−→ Y2

is pullback and Ψ2 is a surjection, then (i) Ψ1 is a surjection and (ii) ker Φ1 ∩
ker Ψ1 = {0}. Conversely, if (i) and (ii) hold, ψ1(τ(A1)) is τA2-closed and Ψ2 is
injective, then the above diagram is pullback.

1. Introduction and Preliminaries

Pedersen [9] studied pullback diagrams of C∗-algebras. He found conditions under
which a commutative diagram of C∗-algebras and morphisms is pullback. Then Amyari
and Chakoshi [2] studied it in the framework of Hilbert C∗-modules. In reference [8],
we study pullback diagram of H*-algebras and morphisms. We also find conditions
for pullbackness such a commutative diagram and its underlying trace classes. In this
paper, we generalized the notion of pullback diagram in the framework of Hilbert
H∗-modules and describe some new relations between faithful Hilbert modules over
commutative proper H∗-algebras and morphisms.

Some properties of pullback diagrams are stable under Hilbert modules over H∗-
algebras. We use these properties to discover new ones for pullback diagram of Hilbert
modules over H∗-algebras. An H∗-algebra, introduced by Ambrose [1] is a complex

Key words and phrases. H∗-algebra, morphism, Hilbert module, pullback diagram, trace-class.
2010 Mathematics Subject Classification. Primary: 46L08. Secondary: 46L05, 46C50.

*Corresponding author
Received: April 9, 2014
Accepted: February 10, 2015.

21



22 M. KHANEHGIR, M. AMYARI, AND M. MORADIAN KHIBARY

algebra A with a conjugate-linear mapping ∗ : A → A and an inner product 〈., .〉
such that it is a Hilbert space and satisfies a∗∗ = a, (ab)∗ = b∗a∗, 〈ab, c〉 = 〈a, cb∗〉
and 〈ab, c〉 = 〈b, a∗c〉 for all a, b, c ∈ A. Recall that A0 = {a ∈ A : aA = {0}} =
{a ∈ A : Aa = {0}} is called the annihilator ideal of A. A proper H∗-algebra is
an H∗-algebra with zero annihilator ideal. The trace-class τ(A) of an H∗-algebra
A is defined by the set τ(A) = {ab : a, b ∈ A}. It is known that τ(A) is an
ideal of A, which is a Banach algebra under a suitable norm τA(.). The norm τA
is related to the given norm ‖.‖ on A by ‖a‖2 = τA(a∗a) for each a ∈ A. By [1,
Lemma 2.7], if A is proper, then τ(A) is dense in A. The trace functional tr on
τ(A) is defined by tr(ab) = 〈b, a∗〉 = 〈a, b∗〉 = tr(ba) for each a, b ∈ A, in particular
tr(aa∗) = 〈a, a〉 = ‖a‖2 = τA(a∗a) for all a ∈ A.

A nonzero element e ∈ A is called a projection, if it is self-adjoint and idempotent.
In addition, if eAe = Ce, then it is called a minimal projection. Two idempotents
e and e′ are doubly orthogonal if 〈e, e′〉 = 0 and ee′ = e′e = 0. An idempotent is
primitive if it can not be expressed as the sum of two doubly orthogonal idempotent.

Lemma 1.1. Suppose that A is a commutative H∗-algebra. Then e is a minimal
projection if and only if e is a primitive projection.

Proof. Suppose that e is a minimal projection. Then Ae = eAe = Ce, but Ce is a
minimal ideal of A of rank one. So by [1, Lemma 3.4] e is primitive. Conversely,
suppose e is a primitive projection in A. We will show that eAe = Ce or Ae2 = Ce.
Obviously e = e2 ∈ Ae. Therefore Ce ⊆ Ae. For the other side, on the contrary,
suppose that there exists an element a ∈ Ae such that a /∈ Ce, so a and e are
independent. Then Aa is a proper ideal of Ae, which contradicts minimality of Ae
(Note that if e is primitive, then Ae is a minimal ideal). Hence Ae ⊆ Ce. �

Each simple H∗-algebra (an H∗-algebra without nontrivial closed two-sided ideals)
contains minimal projections. It is known that all minimal projections in a simple
H∗-algebra have equal norms [4]. Also note that if A and B are H∗-algebras, then
A⊕ B is an H∗-algebra with 〈(a1, b1), (a2, b2)〉 = 〈a1, a2〉+ 〈b1, b2〉. For more details
on H∗-algebras, see [5, 10] and references cited therein.

Definition 1.1. Let A be a proper H∗-algebra. A Hilbert H∗-module [4, 7] is a right
module X over A with a mapping [·|·] : X ×X → τ(A), which satisfies the following
conditions:

(i) [x|αy] = α[x|y],
(ii) [x+ y|z] = [x|z] + [y|z],
(iii) [x|ya] = [x|y]a,
(iv) [x|y]∗ = [y|x],
(v) For each nonzero element x in X there is a nonzero element a in A such that

[x|x] = a∗a,
(vi) X is a Hilbert space with the inner product (x, y) = tr([x|y]),

for each α ∈ C, x, y ∈ X, a ∈ A.
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The Hilbert H∗-module X is full if the ideal I = [X,X] = span{[x|y] : x, y ∈ X} is
dense in τ(A) under the norm τA(.).

Lemma 1.2. Let X be a full Hilbert module over a proper H∗-algebra A and a ∈ A.
Then xa = 0 for all x ∈ X if and only if a = 0.

Proof. If a ∈ τ(A) and xa = 0 for all x ∈ X, then [xa|ya] = 0 for all x, y ∈ X. Let
b ∈ τ(A) be arbitrary. Since X is full, there exists a sequence {un} in I such that

lim
n→∞

τAun = b. Each un is of the form
kn∑
i=1

αi[xi|yi] in which xi, yi ∈ X and αi ∈ C.

Hence a∗ba = lim
n→∞

τAa∗una = lim
n→∞

τAa∗

(
kn∑
i=1

αi[xi|yi]

)
a = lim

n→∞
τA

kn∑
i=1

αi[xia|yia] = 0.

Put b = aa∗. Therefore ‖a∗a‖2 = τA(a∗aa∗a) = tr(a∗aa∗a) = 0. By [1, Lemma 2.2],
a = 0.

Suppose that a ∈ A− τ(A) and xa = 0 for all x ∈ X. Let b ∈ A be arbitrary. So
ab ∈ τ(A) and xab = 0 for all x ∈ X. Recall that ‖xab‖ ≤ ‖xa‖‖b‖. By previous
argument ab = 0 or aA = {0}. It implies that a = 0, since A is proper. �

Let X and Y be Hilbert modules over proper H∗-algebras A and B, respectively,
and ϕ : τ(A) → τ(B) be a norm continuous ∗-homomorphism (morphism). A map
Φ : X → Y is said to be a ϕ-morphism if [Φ(x)|Φ(y)] = ϕ([x|y]) for all x, y in X. We
can extend ϕ to a continuous morphism ϕ̄ : A→ B. Obviously, Φ is a ϕ̄- morphism,
i.e. [Φ(x)|Φ(y)] = ϕ̄([x|y]) for each x, y in X. From now on we mean by a ϕ-morphism,
a ϕ̄-morphism. It is easy to see that each ϕ-morphism is necessarily a linear operator
and a module mapping in the sense that Φ(xa) = Φ(x)ϕ(a) for all x ∈ X, a ∈ A.

Let X be a Hilbert H∗-module over A and a ∈ A, the left translation La:X → X is
defined by La(x) = ax for x ∈ X. If e ∈ A is a projection, then Le is an orthogonal
projection defined on the Hilbert space (X, (., .)). Let us denote Xe = LeX. The
subspace Xe is a closed subspace of the Hilbert space (X, (., .)) [4].

Theorem 1.1. (see [4, Lemma 2.7]) Let X be a Hilbert H∗-module over A and e be
a minimal projection in A. Then Xe = {x ∈ X : [x|x] = λe, λ ≥ 0}. If A is a simple
H∗-algebra, then the subspace Xe generates a dense submodule in X.

Remark 1.1. In the above theorem if A is a commutative, simple and proper H∗-
algebra, then Xe = X. Recall that for each arbitrary minimal projection e ∈ A, we
have A = Ae = eAe = Ce [1, Theorem 4.1 and 4.2]. If x is a nonzero element in X,
then there is a nonzero element a in A such that [x|x] = a∗a. Hence [x|x] ∈ τ(A) ⊆
A = Ce. So there exists a positive number λ such that [x|x] = λe. Therefore x ∈ Xe.

In this paper, we obtain some conditions under which a commutative diagram of
Hilbert H∗-modules and morphisms is pullback.
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2. Pullback constructions in Hilbert modules over H∗-algebras

In this section we introduce a pullback diagram of H∗-algebras and investigate some
properties of them. For this we need the following definition.

Definition 2.1. A commutative diagram of H∗-algebras and morphisms

A1
ϕ1−−−→ B1yψ1

yψ2

A2
ϕ2−−−→ B2

is pullback if ker(ϕ1)∩ker(ψ1) = {0} and for any other pair of morphisms µ1 : A→ B1

and µ2 : A→ A2 from an H∗-algebra A that satisfy condition ψ2µ1 = ϕ2µ2, there is
a unique morphism µ : A→ A1 such that µ1 = ϕ1µ and µ2 = ψ1µ.

A

µ2

��

µ

  

µ1

$$
A1

ϕ1 //

ψ1

��

B1

ψ2

��
A2 ϕ2

// B2

It follows that A1 is isomorphic to the restricted direct sum A2

⊕
B2
B1 = {(a2, b1) ∈

A2

⊕
B1|ϕ2(a2) = ψ2(b1)}, so that ϕ1 and ψ1 can be identified with projections on

first and second coordinates, respectively. In particular, the pullback exists for any
triple of H∗-algebras A2, B1 and B2 with linking morphisms ϕ2 and ψ2.

Theorem 2.1. Suppose that

(2.1)

A1
ϕ1−−−→ B1yΨ1

yΨ2

A2
ϕ2−−−→ B2

is a commutative diagram of H∗-algebras and morphisms. If kerϕ1∩kerψ1 = {0} and
ψ1, ψ2 are surjective and injective, respectively, then the above diagram is pullback.

Proof. It is enough to show that the morphism ϕ : A1 → A2 ⊕B2 B1 defined by
ϕ(a1) = (ψ1(a1), ϕ1(a1)) is an isomorphism. Let (a2, b1) ∈ A2 ⊕B2 B1. Then ψ2(b1) =
ϕ2(a2). There exists a1 ∈ A1, such that ψ1(a1) = a2, since ψ1 is surjective. By
the commutativity of the diagram and injectivity of ψ2, we have b1 = ψ2

−1ϕ2(a2) =
ψ2
−1ϕ2ψ1(a1) = ψ2

−1ψ2ϕ1(a1) = ϕ1(a1). It proves the surjectivity of ϕ.
It is clear that if ψ1 is injective, then so is ϕ. For injectivity of ψ1, let ψ1(a1) = 0.

Thus ϕ2ψ1(a1) = ψ2ϕ1(a1) = 0 and injectivity of ψ2 implies that ϕ1(a1) = 0. Hence
a1 ∈ kerϕ1 ∩ kerψ1 = {0}. �
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Lemma 2.1. Suppose that Φ2 : X2 → Y2 and Ψ2 : Y1 → Y2 are ϕ2, ψ2-morphisms
of Hilbert H∗-modules, where ϕ2 : A2 → B2 and ψ2 : B1 → B2 are morphisms of
underlying H∗-algebras. Denote by X2 ⊕Y2 Y1 the set {(x2, y1) ∈ X2 ⊕ Y1 : Φ2(x2) =
Ψ2(y1)}, then X2⊕Y2Y1 is a Hilbert module over H∗-algebra A2⊕B2B1 (with operations
inherited from the Hilbert A2⊕B1-module X2⊕Y1). If X2 and Y1 are full, then X2⊕Y1

is a full A2 ⊕B1-module and one easily concludes that X2 ⊕Y2 Y1 is also a full Hilbert
module over A2 ⊕B2 B1.

Proof. Straightforward (see [3, Proposition 2.1]). �

Definition 2.2. A commutative diagram of Hilbert H∗-modules and morphisms

X1
Φ1−−−→ Y1yΨ1

yΨ2

X2
Φ2−−−→ Y2

is pullback if ker(Φ1)∩ker(Ψ1) = {0} and for any other pair of morphisms Υ1 : X → Y1

and Υ2 : X → X2 from a full Hilbert H∗-module X such that satisfy the condition
Ψ2Υ1 = Φ2Υ2, there exists a unique morphism Υ : X → X1 such that Υ1 = Φ1Υ and
Υ2 = Ψ1Υ.

X

Υ2

��

Υ
  

Υ1

$$
X1

Φ1 //

Ψ1

��

Y1

Ψ2

��
X2

Φ2

// Y2

It is easily verified that X1 is isomorphic to X2⊕Y2 Y1. The following proposition is
proved in framework of Hilbert C∗-modules. It is easy to show that this proposition
holds in the category of Hilbert H∗-modules. Density of trace class of a proper H∗-
algebra in its own is useful in checking commutativity of the diagram of underlying
H∗-algebras.

Proposition 2.1. (see [3, Proposition 2.3]) Let X2, Y1 and Y2 be Hilbert modules
over H∗-algebras with linking morphisms Φ2 and Ψ2. Then

X2 ⊕Y2 Y1
Φ1−−−→ Y1yΨ1

yΨ2

X2
Φ2−−−→ Y2

with the projections Φ1(x2, y1) = y1 and Ψ1(x2, y1) = x2 is a pullback diagram of
Hilbert modules overH∗-algebras, where Φ1 is a ϕ1-morphism and Ψ1 is a ψ1-morphism
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of Hilbert modules overH∗-algebras and ϕ1 : A2⊕B2B1 → B1 and ψ1 : A2⊕B2B1 → A1

are the corresponding projections.

A2 ⊕B2 B1
ϕ1−−−→ B1yψ1

yψ2

A2
ϕ2−−−→ B2

Now we are ready to prove the main theorem of this paper.

Theorem 2.2. Suppose that

(2.2)

X1
Φ1−−−→ Y1yΨ1

yΨ2

X2
Φ2−−−→ Y2

is a commutative diagram of full Hilbert H∗-modules X1, X2 and Y1 and arbitrary
Hilbert H∗-module Y2 and continuous morphisms. If this diagram is pullback and Ψ2

is surjective, then the following conditions hold
(i) ker Φ1 ∩ ker Ψ1 = {0},
(ii) Ψ1 is surjective.

Conversely, if (i) and (ii) hold, ψ1(τ(A1)) is τA2-closed and Ψ2 is injective, then (2.2)
is pullback.

Proof. Suppose that the above diagram is pullback. By the definition, (i) holds
and there exists a unique isomorphism Φ : X1 → X2 ⊕Y2 Y1 defined by Φ(x1) =
(Ψ1(x1),Φ1(x1)) = (x2, y1). We will show that the surjectivity of Ψ2 implies surjectivity
of Ψ1. Let x2 ∈ X2. Then Φ2(x2) ∈ Y2 = Ψ2(Y1). So Φ2(x2) = Ψ2(y1) for some
y1 ∈ Y1. Thus (x2, y1) ∈ X2 ⊕Y2 Y1. Therefore there exists x1 ∈ X1 such that
Φ(x1) = (Ψ1(x1),Φ1(x1)) = (x2, y1), since Φ is onto. Hence Ψ1 is surjective.

Conversely, suppose that conditions (i) and (ii) hold, ψ1(τ(A1)) is τA2-closed and
Ψ2 is injective and let (2.1) be the corresponding diagram of underlying H∗-algebras.
Clearly Ψ1,Ψ2 are ψ1, ψ2-morphisms and Φ1,Φ2 are ϕ1, ϕ2-morphisms of corresponding
Hilbert H∗-modules. We shall show that the three conditions of Theorem 2.1 hold for
the diagram of underlying H∗-algebras. The diagram of H∗-algebras is commutative,
since the diagram of their Hilbert modules is commutative. Note that density of
trace class of a proper H∗-algebra implies commutativity of the diagram of underlying
H∗-algebras.

(I) We want to show that kerϕ1 ∩ kerψ1 = {0}. Let a1 ∈ kerϕ1 ∩ kerψ1 and
x1 ∈ X1 be arbitrary. Then, we have that [Φ1(x1a1)|Φ1(x1a1)] = ϕ1([x1a1|x1a1]) =
ϕ1(a∗1)ϕ1([x1|x1])ϕ1(a1) = 0. Thus ‖Φ1(x1a1)‖2 = tr([Φ1(x1a1)|Φ1(x1a1)]) = 0, so
x1a1 ∈ ker Φ1. Similarly x1a1 ∈ ker Ψ1. Hence by (i), x1a1 = 0, for all x1 ∈ X1. Since
X1 is full, by Lemma 1.2, a1 = 0.
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(II) Let b1 ∈ B1 such that ψ2(b1) = 0 and y1 ∈ Y1 be arbitrary. Then we
have that [Ψ2(y1b1)|Ψ2(y1b1)] = ψ2(b∗1)ψ2([y1|y1])ψ2(b1) = 0. So ‖Ψ2(y1b1)‖2 =
tr([Ψ2(y1b1)|Ψ2(y1b1)]) = 0. Then y1b1 = 0 for each y1 ∈ Y1, since Ψ2 is an injection.
By the fullness of Y1, b1 = 0. Then ψ2 is injective.

(III) We will show that Ψ1 is surjective. First we show that ψ1 is injective. If
a1 ∈ kerψ1, then commutativity of (2.1), implies that ψ2ϕ1(a1) = ϕ2ψ1(a1) = 0. By
(II), ψ2 is injective, so ϕ1(a1) = 0 and by (I), a1 = 0. Since X2 is full, Ψ1 is surjective
and ψ1(τ(A1)) is τA2-closed, we have

τ(A2) = [X2|X2]
τA2 = [Ψ1(X1)|Ψ1(X1)]

τA2 = ψ1([X1|X1])
τA2

⊆ ψ1(τ(A1))
τA2

= ψ1(τ(A1)).

Clearly ψ1(τ(A1)) ⊆ τ(A2). Let a2 ∈ A2 be arbitrary, since A2 is proper, then
there exists a sequence {un} in τ(A2) = ψ1(τ(A1)) such that lim

n→∞
un = a2. Each

un is of the form ψ1(anbn) in which, an, bn ∈ A1. Since ψ1 : τ(A1) → τ(A2) is a
norm continuous isomorphism and the sequence {ψ1(anbn)} is Cauchy in τ(A2), then
{ψ−1

1 (ψ1(anbn))} = {anbn} is Cauchy in τ(A1) ⊆ A1. Hence this sequence is convergent
in A1 and a2 = lim

n→∞
un = lim

n→∞
ψ1(anbn) = ψ1( lim

n→∞
(anbn)) ∈ ψ1(A1), i.e., A2 ⊆ ψ1(A1).

Then ψ1 is surjective, and by Theorem 2.1, diagram (2.1) is pullback. Therefore
ϕ : A1 → A2 ⊕B2 B1 is defined by ϕ(a1) = (ψ1(a1), ϕ1(a1)), is an isomorphism.

Define Φ : X1 → X2 ⊕Y2 Y1 by Φ(x1) = (Ψ1(x1),Φ1(x1)) and show that Φ is an
isomorphism of Hilbert H∗-modules. Let (x2, y1) ∈ X2 ⊕Y2 Y1. By the surjectivity
of Ψ1, x2 = Ψ1(x1) for some x1 ∈ X1. By the commutativity of the diagram (2),
Ψ2Φ1(x1) = Φ2Ψ1(x1) = Φ2(x2) = Ψ2(y1). Since Ψ2 is injective, we have Φ1(x1) = y1.
So Φ is a surjection. Also (i) implies that Φ is an injection. On the other hand

[Φ(x1)|Φ(x1)] = [(Ψ1(x1),Φ1(x1))|(Ψ1(x1),Φ1(x1))]

= ([Ψ1(x1)|Ψ1(x1)], [Φ1(x1)|Φ1(x1)])

= (ψ1([x1|x1]), ϕ1([x1|x1])) = ϕ([x1|x1]).

So Φ is a ϕ-morphism. Hence X1 ' X2 ⊕Y2 Y1. By Proposition 2.1, diagram (2) is a
pullback diagram of Hilbert H∗-modules. �

Recall that a Hilbert H∗-module X over A is faithful if {a ∈ A : Xa = {0}} = {0}.
By [4, Remark 1.6], for each faithful Hilbert H∗-module X over a proper H∗-algebra
A there exists a family {Xi}i∈I of Hilbert H∗-modules, where each Xi is a Hilbert
H∗-module over a simple H∗-algebra Ai such that X is equal to the mixed product
of the family {Xi}i∈I ,

X =
⊗
i∈I

Xi =

{
{xi} ∈

∏
i∈I

Xi :
∑
i∈I

‖xi‖2 <∞

}
.
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Example 2.1. The Hilbert space l2 =

{
(an) : an ∈ C,

∞∑
n=1

|an|2 <∞

}
is a commu-

tative and proper H∗-algebra, where for each (an) and (bn) in l2, (an)(bn) = (anbn)
and (an)∗ = (an) [1, Example 3]. If e1 = (1, 0, 0, 0, . . . ), e2 = (0, 1, 0, 0, 0, . . . ), ...,
then {ei}i∈N is a maximal family of doubly orthogonal primitive elements of l2. Put
I = Cei for each i ∈ N. Then I is a simple and proper H∗-algebra. It is easy
to verify that l2 is a faithful Hilbert module over itself, under the inner product
[(aj)|(bj)] = (ajbj) ∈ τ(l2). Since l2 is also a proper H∗-algebra, then there exists the
family {Ii}i∈N of Hilbert H∗-modules, where each Ii is a Hilbert H∗-module over itself
as a simple H∗-algebra. Hence l2 =

⊗
i∈N

Ii.

Let A1 and A2 be simple and proper H∗-algebras and ϕ be a surjective morphism
from A1 into A2. If e1 is a minimal projection in A1, then ϕ(e1) is a minimal projection
in A2, since

(i) ϕ(e1) = ϕ(e1
2) = (ϕ(e1))2

(ii) ϕ(e1) = ϕ(e1
∗) = (ϕ(e1))∗

(iii) ϕ(e1)A2ϕ(e1) = ϕ(e1)ϕ(A1)ϕ(e1) = ϕ(e1A1e1) = ϕ(Ce1) = Cϕ(e1).

If A and B are commutative simple and proper H∗-algebras and ϕ : A → B is a
nonzero morphism and e,e′ are minimal projections in A and B, respectively, then
for some complex number λ, ϕ(λe) = e′. It implies that every nonzero morphism ϕ
is a surjection. One can easily concludes that ϕ is an injection, too. Let (2.2) be a
commutative diagram of Hilbert modules over commutative simple and proper H∗-
algebras and morphisms and let (2.1) be its underlying diagram of H∗-algebras and
morphisms. Then for an arbitrary minimal projection e1 in A1, there exist minimal
projections e1

′ = ϕ1(e1) in B1, e2 = ψ1(e1) in A2 and e2
′ = ψ2(e1

′) in B2. Obviously,
by the commutativity of diagram, ϕ2ψ1(e1) = ψ2ϕ1(e1). So ϕ2(e2) = e2

′.
Suppose that X1,e1 = {x1 ∈ X1 : [x1|x1] = λe1, λ ≥ 0} and Y1,e1′ , X2,e2 , Y2,e2′

are defined similarly. If x1 ∈ X1,e1 , then [Φ1(x1)|Φ1(x1)] = ϕ1([x1|x1]) = ϕ1(λe1) =
λϕ1(e1) = λe1

′ for some λ ≥ 0. Therefore the ϕ1-morphism Φ1 : X1,e1 → Y1,e1′ is
well-defined.

Recall that if {ei}i∈I is a maximal family of doubly orthogonal minimal projections
in commutative proper H∗-algebra A, then A is the direct sum of the minimal left
ideals Aei or the minimal right ideals eiA [1, Theorem 4.1]. Also by [6, Lemma 34.14],
we know that every minimal ideal in A is of the form Ae or eA for some minimal
projection e.

Corollary 2.1. Let (2.2) be a commutative diagram of faithful Hilbert modules over
commutative proper H∗-algebras and morphisms. If their underlying H∗-algebras have
the same cardinal of doubly orthogonal minimal projections and Ψ1 is surjective, then
(2.2) is pullback.
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Proof. Suppose that {e1,i}i∈I , {e2,i}i∈I = {ψ1(e1,i)}i∈I , {e′1,i}i∈I = {ϕ1(e1,i)}i∈I and
{ ´e2,i}i∈I = {ψ2(e′1,i)}i∈I are the maximal family of doubly orthogonal minimal projec-
tions of A1, A2, B1 and B2, respectively. Note that these H∗-algebras have the same
cardinal of doubly orthogonal minimal projections. Put A1,i(= A1e1,i) for each i ∈ I.
Then {A1,i}i∈I is the family of minimal closed ideals of A1. Also there exists a suitable
family {X1,i}i∈I , of faithful Hilbert modules over simple H∗-algebras A1,i, such that
X1 equals the mixed products of the family {X1,i}i∈I [7, Theorem 2.3].

Similarly we can assume that X2, Y1, Y2 are the mixed products of the family
{X2,i}i∈I , {Y1,i}i∈I , {Y2,i}i∈I , respectively.

Now by Theorem 1.1, we can replace the above families of Hilbert modules over the
simple and proper H∗-algebras {A1,i}i∈I , {B1,i}i∈I , {A2,i}i∈I , {B2,i}i∈I , by {X1,e1,i}i∈I ,
{Y1,e′1,i

}i∈I , {X2,e2,i}i∈I and {Y2,e′2,i
}i∈I , respectively. By the assumption Ψ1 is surjec-

tive, then Ψ1,i : X1,e1,i → X2,e2,i is surjective, where Ψ1,i = Ψ1|X1,e1,i
, for each i ∈ I.

Since for any arbitrary element x2 ∈ X2,e2,i and surjectivity of Ψ1, there exists x1 ∈ X1

such that [x2|x2] = [Ψ1(x1)|Ψ1(x1)] = ψ1([x1|x1]). Furthermore for some positive num-
ber λ, we have [x2|x2] = λe2,i = λψ1(e1,i) = ψ1(λe1,i). Since ψ1 is an isomorphism,
then [x1|x1] = λe1,i. So x1 ∈ X1,e1,i and Ψ1,i is surjective. Now we are going to
show the injectivity of Ψ2,i. Let y1 ∈ Y1,e′1

and Ψ2,i(y1) = 0. Then [y1|y1] = λe′1,i
for some positive number λ and [Ψ2,i(y1)|Ψ2,i(y1)] = ψ2,i(λe

′
1,i) = λe′2,i = 0. Hence,

λ = 0, so [y1|y1] = 0. By the definition of Hilbert H∗-module, y1 = 0. We can
prove the injectivity of other morphisms in a similar fashion. This implies that
ker(Φ1,i)∩ ker(Ψ1,i) = {0}. Finally one can easily verify the fullness of each of Hilbert
H∗-modules in the following diagram. Hence by Theorem 2.2, the following diagram
is pullback for each i ∈ I.

X1,e1,i

Φ1,i−−−→ Y1,e′1,iyΨ1,i

yΨ2,i

X2,e2,i

Φ2,i−−−→ Y2,e′2,i

In particular, the following diagram or (2.2) is pullback. (see [9, Proposition 4.8 ])⊗
X1,e1,i

⊕
Φ1,i−−−−→

⊗
Y1,e′1,iy⊕

Ψ1,i

y⊕
Ψ2,i⊗

X2,e2,i

⊕
Φ2,i−−−−→

⊗
Y2,e′2,i

�
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