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SOME NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR
FUNCTIONS WHOSE HIGHER ORDER PARTIAL DERIVATIVES
ARE CO-ORDINATED s-CONVEX

MUHAMMAD AMER LATIF

ABSTRACT. In this paper we point out some inequalities of Hermite-Hadamard
type for double integrals of functions whose partial derivatives of higher order are
co-ordinated s-convex in the second sense. Our established results generalize the
Hermite-Hadamard type inequalities established for co-ordinated s-convex functions
and refine those results established for differentiable functions whose partial deriva-
tives of higher order are co-ordinated convex proved in recent literature.

1. INTRODUCTION
A function f: I — R, () # I C R, is said to be convex on I if the inequality

(1.1) fQz+ 1 =Ny <Af(@)+(1-N)f(y),
holds for all z, y € I and A € [0, 1]. The inequality (1.1) holds in reverse direction if
f is concave.

The most famous inequality concerning the class of convex functions, is the Hermite-
Hadamard’s inequality.

This double inequality is stated as

(1.2) f(a;b)Sbia/a"f(x)dngm);f(b)

where f: I - R, ) # I C R a convex function, a, b € I with a < b. The inequalities
in (1.2) are in reversed order if f a concave function.

The inequalities (1.2) have become an important cornerstone in mathematical anal-
ysis and optimization and many uses of these inequalities have been discovered in a
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variety of settings. Moreover, many inequalities of special means can be obtained for a
particular choice of the function f. Due to the rich geometrical significance of Hermite-
Hadamard’s inequality (1.2), there is growing literature providing its new proofs, ex-
tensions, refinements and generalizations, see for example [8, 14, 19, 29, 32, 33] and
the references therein.

In the paper [15], Hudzik and Maligranda considered, among others, the class of
functions which are s-convex in the second sense. This class is defined follows.

A function f :[0,00) — R is said to be s-convex in the second sense if

fOz+1=Ny) <Nf)+1=Nf(y)

holds for all z,y € [0,00), A € [0, 1] and for some fixed s € (0, 1].

It can be easily seen that for s = 1, s-convexity reduces to ordinary convexity of
functions defined on [0, 00).

In [9], Dragomir and Fitzpatrick proved a variant of Hadamard’s inequality which
holds for s-convex functions in the second sense.

Theorem 1.1. [9] Suppose that f : [0,00) — [0,00) is an s-convex function in the
second sense, where s € (0,1) and a,b € [0,00), a < b. If f € L'[a,b], then the
following inequalities hold

(1.3 rf (7)< 52 [ @< KOO

The constant k = 3%1 is the best possible in the second inequality in (1.3).

For more about properties and Hermite-Hadamard type inequalities of s-convex
functions in the second sense we refer the interested readers to [7, 9, 12, 15, 20].

Let us consider now a bidimensional interval A =: [a,b] X [c,d] in R? with a < b
and ¢ < d. A mapping f : A — R is said to be convex on A if the inequality

fOAz+ (1 =Nz, Ay+ (1 = Nw) < Af(z,y) + (1 =N f(z,w)
holds for all (z,y), (z,w) € A and X € [0, 1].

A modification for convex functions on A, known as co-ordinated convex functions,
was introduced by S. S. Dragomir [10] as follows.

A function f: A — R is said to be convex on the co-ordinates on A if the partial
mappings f, : [a,b] = R, f,(uv) = f(u,y) and f, : [e,d] = R, f,(v) = f(z,v) are
convex where defined for all x € [a, b,y € [c,d].

A formal definition for co-ordinated convex functions may be stated as follow.

Definition 1.1. [21] A function f: A — R is said to be convex on the co-ordinates
on A if the following inequality holds for all ¢, € [0,1] and (z,u), (y,w) € A

fz+ (1 =ty,ru+ (1 —r)w) <trf(z,u)+t(1—7)f(x,w)+r(1 —1t)f(y,u)
+ (1 =11 =r)f(y,w).
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Clearly, every convex mapping f : A — R is convex on the co-ordinates but
converse may not be true [10].

The following Hermite-Hadamard type inequalities for co-ordinated convex func-
tions on the rectangle from the plane R? were established in [10].

Theorem 1.2. [10] Suppose that f : A — R is co-ordinated convex on A, then

JEE B S A
< gaa—a | [ 10 i
m <i[its [rwas rwaa

d

g R R

_ F @)+ f(a.d)+ f(bo) + £ (bd)
< 1 :
The above inequalities are sharp.

The concept of s-convex functions on the co-ordinates in the second sense was
introduced by Alomari and Darus in [3] as a generalization of the usual co-ordinated
convexity.

Definition 1.2. [3] Consider the bidimensional interval A = [a,b] X [¢,d] in [0, 00)?
with @ < b and ¢ < d. The mapping f : A — R is s-convex in the second sense
on Aif fAx + (1 =Nz, \y+ (1 =N w) < XNf(z,y) + (1 —N)° f(z,w), holds for all
(x,y), (z,w) € A, X € [0,1] with some fixed s € (0, 1].

A function f : A C [0,00)> — R is called s-convex in the second sense on the
co-ordinates on A if the partial mappings f, : [a,b] = R, f,(u) = f(u,y) and f, :
le,d] = R, f.(v) = f(x,v), are s-convex in the second sense for all y € [¢,d], = € [a, ]]
and s € (0,1], i.e., the partial mappings f, and f, are s-convex in the second sense
with some fixed s € (0, 1].

A formal definition of co-ordinated s-convex function in second sense may be stated
as follows.

Definition 1.3. A function f : A C [0,00)® — R is called s-convex in the second
sense on the co-ordinates on A if

. fltx+ (1 =t)y,ru+ (1 —r)w) < rf(x,u) +t°(1 — r)°f(z,w)
.= (1= 0" () + (L= (L= )" (g 0)
holds for all £, € [0,1] and (z,u), (y,u), (z,w), (y,w) € A, for some fixed s € (0, 1].

The mapping f is concave on the co-ordinates on A if the inequality (1.5) holds in
reversed direction for all ¢,7 € [0,1] and (z,y), (u,w) € A with some fixed s € (0, 1].
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Furthermore, Alomari and Darus [5] introduced a new class of s-convex functions
on the co-ordinates on the rectangle from the plane as follows.

Definition 1.4. [5] Consider the bidimensional interval A =: [a, b] X [c,d] in [0, 00)?
with a < b and ¢ < d. The mapping f : A — R is s-convex in the second sense on A
if there exist s1, sy € (0, 1] with s = 2422 such that

fOAz+ 1 =Nz, y+ (1 =Nw) <N f(z,y)+ (1 =N f(z,w)

holds for all (z,y),(z,w) € A, A € [0,1]. This class of functions is denoted by
MWO?

51,82°

A function f : A C [0,00)> — R is called s-convex in the second sense on the
co-ordinates on A if the partial mappings f, : [a,b] = R, f,(u) = f(u,y) and f, :
le,d] = R, fo(v) = f(x,v), are sj-convex and se-convex in the second sense for all
y € [c,d], z € [a,b] and 51,55 € (0,1] with s = 2522 respectively, i.e., the partial
mappings f, and f, are sj-convex and sy-convex in the second sense, sq,s9 € (0, 1]
with s = %

The definition 1.3 can be generalized as follows.

Definition 1.5. A function f : A =: [a,b] X [¢,d] C [0,00)* — R is called s-convex
in the second sense on the co-ordinates on A if

fltr+ (1 —t)y,ru+ (1 —r)w) < %2 f(x,u) + (1 —7)% f (2, w)
(1.6) +r2(1 =0 fy,u) + (1 =) (1 =) fy, w)
holds for all t,r € [0,1] and (z,u), (y,u), (z,w), (y,w) € A, s1,s9 € (0,1] with

s = % The mapping f is concave on the co-ordinates on A if the inequality (1.6)
holds in reversed direction for all ¢, € [0, 1] and (z,¥), (u,w) € A, s1, 59 € (0,1] with

S1+s2

S = B}

In [5], Alomari et al. also proved a variant of inequalities given above by (1.4) for
s-convex functions in the second sense on the co-ordinates on a rectangle from the
plane R2.

Theorem 1.3. [5] Suppose f : A C [0,00)? — [0,00) is s-convexr function in the
second sense on the co-ordinates on A. Then one has the inequalities

4s1—1 4 gs2-1 a+b c+d 9s1-2 b c+d
. <
(1.7) 2 f(2’ 2)_b—a/af<w’ 2)dx
9s2=2  rd a-+b
+2 /f( ,y>dy

2
1 b pd
Sm j /C f(x,y)dydz
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1 1 b 1 d
< s (s [ o raldes 72 [+ 7 6alan)

1 1 1
=32 ((sl 7 (s 1)2) [fla,e) + f(b,e) + fla, d) + f(b, )]

In recent years, many authors have proved several inequalities for co-ordinated
convex functions. These studies include, among others, the works in [1, 3, 4, 5, 6],
[10], [13], [21]-[24], [25]-[28] and [31]. Alomari et al. [1, 3, 4, 5, 6], proved sev-
eral Hermite-Hadamard type inequalities for co-ordinated s-convex functions and co-
ordinated log-convex functions. Dragomir [10], proved the Hermite-Hadamard type
inequalities for co-ordinated convex functions. Hwang et. al [13], also proved some
Hermite-Hadamard type inequalities for co-ordinated convex function of two variables
by considering some mappings directly associated to the Hermite-Hadamard type in-
equality for co-ordinated convex mappings of two variables. Latif et. al [12]-[14],
proved some inequalities of Hermite-Hadamard type for differentiable co-ordinated
convex functions, differentiable functions whose higher order partial derivatives are co-
ordinated convex, product of two co-ordinated convex mappings and for co-ordinated
h-convex mappings. Ozdemir et. al [25]-[28], proved Hadamard’s type inequalities
for co-ordinated convex functions, co-ordinated s-convex functions and co-ordinated
m-convex and («, m)-convex functions.

The main aim of this paper is to establish some new Hermite-Hadamard type
inequalities for differentiable functions whose partial derivatives of higher order are
co-ordinated s-convex in the second sense on the rectangle from the plane R? which
generalize the Hermite-Hadamard type inequalities proved for co-ordinated s-convex
functions in the second sense and refine those results established for differentiable
functions whose partial derivatives of higher order are co-ordinated convex on the
rectangle from the plane R? (see [24]).

2. MAIN RESULTS

In this section we establish new Hermite-Hadamard type inequalities for double
integrals of functions whose partial derivatives of higher order are co-ordinated s-
convex in the second sense.

To make the presentation easier and compact to understand, we make some sym-
bolic representations as follows

A=l [f@,c)mx,d)]mdéc/c £ (@w)+ G dy

2
““1—1 — o) [8f (a,c) O'F (b,c)
; )! { o oy ]

DN | —

+

[y

N (k—1) (b—a)k {akf(a,c) +8’“f(a,d)}

1«
24~ 2(k+1)! Ok Ok
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1 &R (=1 (d—c) [POf(x,0)
ol /a dx

b—a= 2(+ oyt
L (k=1 —a) / *f(ay)
d—ce= 2(k+1) ozt Y
R k=1 (1=1)(b—a)" (d— ) o**f (a,c)
| | kol ’
prr e 4+ DI+ 1)! Ozky
and
_ |t f(ae) _ |omtm f(ad) _ |omtmre)
B(n,m) = | " otmorm | O(nm = | " amarm | D(mm) = | " armorm |
_Jontmpbd _ontmp(adt el _|ortmf(a, g
Enm =|%ma2|s  Fom = —c’%gaim =), Gom) = —atngrm” )
an+mf(a7+b7c 8”+mf(’1—+b,d) B”"'mf(b,ﬂ)
Hamy = |—mgm— )|, Jom) = |=Zmgr— | Anm) = |gmem |

where the sums above take 0, when m = n =1 and m = n = 2 and hence

d=a=g it [vwasrwajas 2 e+ s

In what follows A° is the interior of A = [a,b] X [¢,d] and L (A) is the space of
integrable functions over A.
The following two results will be very useful in the sequel of the paper

Theorem 2.1. [18] Let f : A — R be a continuous mapping such that the partial
derivatives %’ Ek=01,...,n—1,1=0,1,...,m — 1 exist on A° and are
continuous on A, then

/ab/cdf(t,r)drdt m*"/ / K, (2,t) S )W;:;J;(fnr)d dt

n—1 m—1
9415 2, 0 )
X Y, _ S —=d
+ZZ i) S S ) [ S
-1
anJrl t
+(—-1)" Yl /K at{a( y)dt,
l y!
where, for (x,y) € A, we have
( (t=a)"
€ [a, ]
K, (z,t) = nl? ’ Ve (L 1)E ()
(1) { 0 b e (1] X (¢) = G20
and

S (3.7 = G

_eym oL 1y o)Lt
{ =" e e,y Y (y) = oD g
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Lemma 2.1. [24] Let f : A — R, be a continuous mapping such that na = exists
on A° and atgni € L(A) form,n > 1, then
(2.1) (b_zn,m‘ / / (=11 (0 24) (m — 2r)
8”+mf ta+ ( 18;1;;:”07* + (1 - )d)dtdr A
:f@wﬁ+fmﬂ{$”@@+f“”W+@_aid_@[f[fﬂ%wdwm

Now we prove our main results.

Theorem 2.2. Let f: A C [0, ) — —[0,00), a < b, ¢ < d, be a continuous mapping
such that ina,{i exists on A° and a;gn,{ e L(A). If a;t;i
co-ordinates on A in the second sense, for m, n € N, m, n > 2, then we have the
following inequality

f(a,0)+ f(a,d) + £ (b.0) + f (b.d) I g ,
! +(b_a>(d—c)/G/cf(‘ruy)dydl’—A
b—a)"(d—c)™
S( in!(m! )

where sy, 55 € (0,1] with s = 2522,

I _n(n—l)—i—sl(n—Q)] [m(m—l)—i—sQ(m—Q)]
L (n+s1)(n+s1+1) (m+ s9) (m+ sy + 1)

n(n—1)+s (n—2)

L (n+s1)(n+s1+1)

[m (m — 1) + 55 (m — 2)

st sn D } nB(n,s1+1)—2B(n+1,s1 +1)],

R=[nB(n,s1+1)—2B(n+1,8+1)][mB (m,sa +1) —2B(m+ 1,55 + 1)],

‘ 18 s-conver on the

(2.2)

[LBnm) + MCnmy + NDm) + RE(nm)]

][mB(m,82+1)—2B(m+1,82+1)],

and B(x,y) = fol t*=1(1 — )V~ dt is the Euler Beta function.

Proof. Suppose m,n > 2. By Lemma 2.1, we have

fla,c)+ f(a,d)+ f(b,c)+ f(b,d) 1 b pd -
‘ 4 +(b_a)<d_c)/a/cf(x,y)dydx A

(2.3)

g(b_“mm'_c //t”lmln—Zt)( — o)

n—+m _
y ot f (ta+ (1 —t)byer + (1 —r)d) dtdr.
otrorm
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By s-convexity of mn S

/01 /01 "™ (0 — 2t) (m — 2r) x

(2.4)
1
< Bin,m) / / ghtsitpmtse =l (p  9t) (m — 2r) drdt

- ‘ on the co-ordinates on A, we get that

amm f (ta+ (1 — t)b,er + (1 — 1) d)

S oym dtdr

1
/ st lpm=l ()2 (g — 2t) (m — 2r) drdt
/ " U —2t)r™ (1 — 1) (m — 2r) drdt

/ thlpmte =l (1 ) (n — 2t) (m — 2r) drdt.
0

1
(2.5) / / trtsimtpmtse=l(n o) (m — 2r) drdt
0

1 1
= / s (g — 2t) dt / rm 2=t (m — 2r) drr
0 0

- { nn+_811 Jrrzil ET; 12))] { (ﬂ(% +;21))(7—;S+2 gﬁf))

Analogously,

(2.6) / / pres=lm=l (1 )2 (30— 98) (m — 2r) drdt

[ (n—1)+ s (n—2)
ol (nts)(nds+1)

}[mB(m So+1)—2B(m+1,s9+1)],

2.7) / / grLymetsa=L (1 4 (30— 98) (m — 20) drdt

[ — 1)+ 59 (m —2)
L (m o) (m sy + 1)

} nB(n,s1+1)—2B(n+1,s; +1)]
and

1 /1 "1 =) (n—2t)r™ (1 — 1) (m — 2r) drdt

o

(2.8) [nOB (n,s14+1)=2B(n+ 1,51+ 1) [mB (m,sa +1) —2B (m+ 1,55 + 1)].

From (2.4)-(2.8) in (2.3), we get the required inequality. This completes the proof of
the theorem. ]
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Theorem 2.3. Let f: A C [0,00) x [0,00) — [0,00), a < b, ¢ < d, be a continuous
M1 T 1710 q

61‘,”87]; exists on A° and gt”:;NJVZ L(A). If gt,fo; ,q>1, s

s-convex on the co-ordinates on A, m,n € N, m,n > 2, then

f(a,e)+ f(a,d)+ f(b,c) + f(b,d) 1 b -
‘ 4 +(b_a)<d_c)/a/cf(x,y)dydx A'

(2.9)
b—a)"(d—c)™ ((n—1)(m—1)\"""
ST ((n 1) (m 1))

+MD{, .+ NC! .+ RE!

mapping such that

q
X g LB(n,m)

(nm)’

where sy, 52 € (0,1] with s = 22 and L, M, N, R and B(x,y) are as defined in
Theorem 2.2.

Proof. The case ¢ = 1 is the Theorem 2.2. Suppose ¢ > 1, then by Lemma 2.1 and
the power mean inequality, we have

f(a,e)+ f(a,d) + f(b,c) + f(b,d) 1 b ,
‘ 1 Yoaaa ) [ T

(2.10)

_(b_a4n,m,_c {//t“mln—zt)( —2r)drdt}1 "
{//t”lmln—%)(m 2r)

ot f (ta+ (1 —t)byer + (1 —r)d)
X
otnorm

1/q
dtdr} .

By the similar arguments used to obtain (2.2) and the fact

S _(n=1)(m—-1)
/o/ot r (n—2t)(m—2r)drdt—(n+1 ik

we get (2.9). This completes the proof of the theorem. O

Theorem 2.4. Let f: A C [0,00) x [0,00) — [0,00), a < b, ¢ < d, be a continuous

M -1+1 n-+1m q
mapping such that atnavj:b exist on A° and gtn:;w’i e L(A). If gtnt’)s’{b ,qg > 1, 1s

s-convex on the co-ordinates on A, sy, s9 € (0,1] with s = %, m,neN, mn>1.
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S

1 [1 I (_1>k} [1 n (_Dl} (b= a) (d — ¢ OFHf (22, exd)
Oh+1+2 (k+ 1)1+ 1) Ozk0y!

" (b—a)l(d_c) /ab/cdf(t,r)drdt

(_1>m+1 n—1 [1 + (_l)k} (b— a)k / o) 8k+mf (a+b )

(d —c)m! 2k+1 (B +1)! dzkorm

(1t et [L () - / p2TI ),
(b—a)n! < 2641 (14 1)! ot oyt

dr

+

_|_

(2.11)
1

S4n!m!<(n+1)4(m+1) (b_a)< >

x[(Bg +(Jq +anm)+E )Bn+181+1)B(m+1,32+1)

2 (Gl + 1

(n,m

) B Lsi+ 1) 2(HY, )+ I ) B+ 1s+1)
+
m-+ sy + 1 n+s +1
AF z
N (n.m)
m+s1+1)(m+sy+1)

+

I

) ash —o" 5
p = { GZii it e e { T )

c+d

Proof. By letting x +— “*b and y — in Theorem 2.1 and using the properties of

the absolute value, we obtaln

Lt |1 (SDY] T4 (D] (2 gy (4 — o)l 9FHLf (25t exd
(2.12) - Z lz [ Qk]—l—lE-Q ] (k+ D!+ 1) 82’68?/ )

k=0

b—a) d_c>//ftrdrdt

(_1)m+1 n—1 [1 + )k} (b — a) akerf (a+b )
(d—c)m! 2k+1 (k4 1)! /C Q) ozkorm

3

dr

+
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(—1)"*! m—1 [1 + (—1)1} (d—c)

iy 05
o —ayn IZ:; (1 4 1) / PO—5mgy
L e o f (¢, )

< .

~(b—a)(d—c)m!n! /a /C PO otnorm drdt
By the power mean inequality for double integrals, we have

3"+mf o f(t,r)
P(t
/ / PONRMIN =g |drdt
(2.13)
8”“” t,r .

< (/ [ e |Q<r>|drdt) (/ / Poo) | T L drar)

(//|P nee |drdt> [ o 8”;;2%” drdt
+/ /Hd(b—t)(r—c)

o g (t,r) |

S gy drdt
otmf (t )|
/ ﬁﬂlt—a d—r)" Sy drdt
o (t,r) 7
O R e

a+b —a

c+d
r= <C+d z> c+ (cidcc) ¢td By the co-ordinated s-convexity of

axb_
Now we calculate each integral in (2.13). Since ¢t = ( t) a + (ai;a_ > a4 and
2 a

n+m

e
atnam‘ we have
c+d
3"“"(}”( r)|? 2\ 2 0\
(2.14) (t — — drdt <
/ / ) (r—o)” - otorm “\b—a d—c
a+b c+d 51 52
nm/ / (t—a)"(r—c)™ (a+b—t> (C;d—r> drdt
b o
nm)/ / (t—a)" (ChL —t) (r —¢) ™ drdt
d 52
(n m)/ / 51+n <C—;_ - T> (T — C)dedt

a)™ M (r =)™ drdt] :

135
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Now by the change of Variables u=1t—a, v =r—cand then by the change of

variables © = ==, y = , we get that
(a+b ) (C+d—r> drdt
2
2 \" /[ 2 = (b—a 2
“G) @) 1 ) f ()
/bf < )Sld /%C m(1 2v )52d
= U v — v
0 b— 0 d—c
bh— d— m+1 1
— ( a) ( ) x”(l—x)sldx/ y™ (1 —y)™ dy
2 2 0

b— n+1 d m+1
:< ) (2> Bn+1,s1+1)B(m+1,s9+1).

Similarly,

(2.16) ((f@) (_C) /a+b/c+dt—a (a+b—t)81(r—c)s2+mdrdt

()" ()" Bt Lsi 4 D)

m+4 ss+ 1

9 S1 9 S2 ”T*b %d . c+d S2 .
(2.17) (b—a> <d—c) /a /C (t —a) (T—r) (r —c)"drdt

(2.15)

(=) (=) //

, we obtain

Using (2.15)-(2.18) in (2.14

a+b C+d n+1 m+1
(21 (t—a)"(r - drdt <
9) / / a)*(r—co™ 325”87“ < - .
Gl(ln m)B (n + 17 $1+ 1)
X Bgn,m)B(”+1,81+1)B(m—|—1732+1)+ ;

m-+ sy + 1
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Hi, 2 B(m+1 s +1) o m
) + )
n+s;+1 (n4+s1+1)(m+s2+1)
Analogously,
c+d n+1 m+1

ot )| b—a\"" (d—c

(2.20) (b—t)"(r — drdt < —_—
/wb / =" |~ mgem =\ 2

(nm)B(m—l—l so + 1)
X +D! Bn+1,s1+1)B(m+1,s9+1)

n+s;+1 (n;m)

LG mB(n+1,5+1)

_l’_
(n+s1+1)(m+sy+1) m+ sg+ 1

a+b
(2.21) / / (t—a)"(d—r)"
c+d
G! B(n+1s+1)

n+1 m+1
< b—a d—c (n,m)
- 2 2 m—+ sy +1

+ChmBn+1Lsi+1)B(m+1,s+1)

Fq

(n,m)

Y

8n+mf (t T)

drdt
~ Otmorm

JonmyB (m+1,524+1) N FGm)
n+s +1 (n+s1+1)(m+s2+1)
ot (t,r
/ Ldb—t d—r)" 81&”](;7”) drdt
(2.22)
< (b 3 a) h (E) - Fom Ly B (41,51 4 1)
- 2 2 n+s1+1)(m+sy+1) m+ sy + 1

q
JopmyB (m+ 1,554+ 1) L E
n+s+1 (r.m)

It is not difficult to observe that

(2:23) //'P NN drdt = oy (b5><d%)m

From (2.12)-(2.23), we get the desired inequality. The proof of the Theorem for ¢ = 1
is the same. This completes the proof. O

B(n—i—l,sl—l-l)B(m%—l,sQ%—l)}.

Some results can be deduced from the inequalities (2.9) and (2.12) as follows.
Letting s;1 = sy = 1 in Theorem 2.3 gives the following corollary.
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Corollary 2.1. Let f: A C [0,00) X [0,00) — [0,00), a < b, ¢ < d, be a continuous

o omtn ontm a .
61‘,”87]; exists on A° and 8t”87{l L(A). If W ,q>1, s

convex on the co-ordinates on A, m,n € N, m,n > 2, then

mapping such that

fla.0) + flad)+ [ (b.c) + f (bd) | b g .
4 +(b_a)(d—c)/a /C f(xay)dydl‘ A'

(2.24)
_(b-a)"[d=0)" (n =)' (m - 1)
4(n+ 1D m+ 1D (n+ 2)1/q (m + 2)1/(1

[(m? = 2) (n* = 2) B,

+m (n* — 2) Cq )+ n (m* —2) D? my T+ nmEfmm)}

Corollary 2.2. Under the assumptions of Corollary 2.1 with m = n = 2, we have

f(a,e)+ f(a,d) + f(b,c) + f(b,d) 1 b ,
i toaaal | f(”"””dyd“”""“l'

_(b-a (d—c)Q\q/
- 9 2q+4

The following corollary is a special case of Theorem 2.4 for s; = s9 = 1.

0'f (a,c)|*
ot20r?

0'f (b, o) |
01201

0*f (a,d)|*
12012

04f (b, d)|*
012017

Corollary 2.3. Let f: A C[0,00) x [0,00) — [0,00), a < b, ¢ < d, be a continuous

gm+n gntm q .
8t”8£ exist on A° and atnar{ e L(A). If W ,q > 1, is

convex on the co-ordinates on A, m, n € N, m,n > 1. Then

mapping such that

n—1m-1 [1+( 1)’“] [1+(—1)l] (b—a)* (d— ) OFF f (452, <54)

2 0 2
2k++2 (k+ D)1+ 1)! Ozkoy!

+m/ab/cdf(t,r)drdt

(_1)m+1 n—1 [1 + (_1>k} (b— a)k / o) ak-ﬁ-mf (a+b )

(2.25) -

i (d—c)m! 2k+1 (k4 1)! ozkorm dr
(- e L+ e "pin )
+(b —a)n! 241 (1 + 1)! /a ) ot oyt
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(b—a)"(d—o)"

T2 (i 4 1) (m+ 1)
(n+2) (m+2) + n+2) (m+2)

4(n+1)(m+1)F!

(n,m)

(n+2)(m+2)

Bl + Clomy T Plnny + Elum)
(n+2)(m+2)

Y

where P(t) and Q(r) are as defined in Theorem 2.4.

The following corollary is a special case of Theorem 2.4 for s; = sy = 1 and
m = n = 1, which gives tighter estimate than those from [23, Theorem 4, page 8|.

Corollary 2.4. Under the assumptions of Corollary 2.3 with m =n =1, we have

‘(b—a)l(d—c) /ab/cdf(t,r)drdt+f(G;Lbjc;rd>
_ﬁ/cdf(a%b’r) dr_ﬁ/abf<t’cgd) dt’

(2 26) < (b B CL) (d B C) 1 1 _I_ C(l 1 + D(l 1) + Eglvl)
' = oi+2 9

s(Ghy+ 1) A(HLy+ ) sEg, ]
o o) ) 8F

* 9 9 9 ’

where P(t) and Q(r) are as defined in Theorem 2.4.

q
, ¢ > 1, is convex on the co-ordinates on A,

ont
otnos™

It is easy to see that, when
m, n €N, m,n>1, then

q q q q q
2 (Gmm) I, m>> < Blomy T Clomy T Py T Emy:

2 (Hgn,m) + J(qn,m)) < Bgn,m) + an,m) + Dq n,m) + E (n,m)

and
ARG, < Bl T Clumy T Dy + B,

(n,m) (n, (n,m) (n,m)°
Substituting these inequalities in Corollary 2.3, we get the following corollary which
is [24, Theorem 2.3, page 12].

Corollary 2.5. Let f: A C [0,00) x [0,00) — [0,00), a < b, ¢ < d, be a continuous

t”&”{ exist on A° and 8;gﬂ{ € L(A). If ,q > 1, 1s

mapping such that

Btnhs™
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convex on the co-ordinates on A, m, n € N, m,n > 1. Then

n

I [1 n (_1)k] [1 n (_1)z] (b—a)f (d — c) OFHLf (5, etd)

2 7 2

(2.27) Qh-+1+2 (k+D!I(I+1)!  Ozkoy

x>
Il

0 =0

+m/ab/cdf(t,r)drdt

(_1)m+1 n—1 [1 + (—1)"3} (b— a)k /dQ(r) rtm f (a+b )

(d—c)m! — 2k+1 (k4 1)! oxkorm

= Il K N O
(b—ajni &= 20T+ 1) /aP O —may

(b—a)"(d—0o)"
< 5 {/ Blomy T Clomy + D}
gmtntg (n+1)!(m+1)!\/ (

+

dr

+

dt

+ El

(nm) T En,m)

where P(t) and Q(r) are as defined in Theorem 2.4.
A different approach leads us to the following result.

Theorem 2.5. Let f: A C [0,00) x [0,00) = [0,00), a < b, ¢ < d, be a continuous

mapping such that tnaﬁ,i exist on A° and atf:?;ni e L(A). If 3:n+££

s-convez on the co-ordinates on A, s1, 82 € (0,1] with s = 51+52 ,m,neN, mn>1.
Then

,q > 1,18

2 0 2
k42 (k+ D!+ 1) Ozk oyt

+W1(d—c)/ab/cdf(t,r)drdt

(—1)™*! n—1 [1 + (—1)’“} (b— a)k /dQ(T)ak+mf (a—‘rb )

B> Rl el [ e e

d
* (d—c)m! p 2k+1 (k: + 1)! ozkorm "
N (_1)n+1 m—1 |:1 —|— /bP an-l—lf t C+d) oLt )
(b—a)n! — 2”1 (l + 1)! ot oyt

(2.28) §4n:!lm!((n—l—1)1(m+1) ( 2 ) <d2 )
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B B(nt st 1)B(m Lyt 1) 4 oD@ Lot
>< b
(n,m) (n“‘ 731“‘ ) (m+ ,32+ )—|— m+82+1
1
Hgnm)B (m+1752+1> F(li@m) q
9 + s
n+s +1 (n+s1+1)(m+sy+1)
HE,  B(m+1,s5+1)
T + D! B(n+1s+1)B(m+1,s+1)
n+s +1 (n,m)
1
+ Fg%m) Ign,m)B<n+1731+1) e
(n+4s1+1)(m+ s+ 1) m-+sq+ 1
G((Zn,m)B(n—i_lasl"i_l) q
+ m -+ sq+ 1 +O(n,m)B(n+1usl+1)B(m+1782+1)
1
J((]nm)B(m+1782+1) F(qnm) a
+— + ’
n+4s; +1 n+s1+1)(m+sy+1)
Fg%m) Ign,m)B (n + 1,51+ 1) J(qnym)B (m + 1,8 + 1)
(n+81+1)(m—|—32—|—1) m-+ sy + 1 n+s +1

+E7 )B(n+1,31—1—1)B(m—|—1,32—|—1)}q},

(n,m

where P(t) and Q(r) are as defined in Theorem 2.4.

Proof. By letting x +— “TH’ and y +— %1 in Theorem 2.1, using the properties of the
absolute value, we obtain

wtmd (14 (P (14 (0] (= o (= o)t 015 (222, et

20 2

3 h-++2 (k+1D)I(1+1) dzkdy!

" (b—a)l(d—c) /ab/cdf(t,r)drdt

oy S [T V-t e g ()
(d—c)m! — 2k+1 (k4 1)! /c Q) ozkorm

dr

+

dt

+

(_1)n+1 m—1 [1 + (—1)1} (d — c)l bP oL f (t, c+Td)
(b—aynl &= 21+ 1) / D pmay
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a+b c+d a"+mf t,r
229) <<b_a><d_cm.n,[/ J R i

Sngym drdt

b

n m |07 ()
+ a+b (b — t) (’f’ — C) W d’l“dt
a.+b d
oM (t, )
+ / [M (t—a)" (d—r)" g drdt
an+mf (t ’I")
/ / (b—1)" (d = r)" | T T drdt |

Using the power-mean inequality for each integral on the right-side of (2.29) and by
the similar arguments as in proving Theorem 2.4, we get (2.28). U

Corollary 2.6. If the conditions of Theorem 2.5 are satisfied and if m =n =1 and
s1 = So = 1, then we have the inequality

‘(b—a)l(d—c /b/df(t,r)drdt+ <a‘2"b,0%2—d)

1 a+b b c+d
_ d t dt
2<d—c> ( ) i /f< 2 ) ‘
1
1 b—a 1 1 q
<(5) ( ) (% ){[ o 150 * 35 + 5
(1 1 1 1 a
q q q

1 1 1 1 a
q q q q
+ ]__SG(LI) + %C(lal) + EJ(LI) + §F(171):|

1, 1 1 1, e
+ g F T 1glt + 15/t 55 EG, )] }

If we use the Holder’s inequality instead of the power-mean inequality we get the
following result.

Theorem 2.6. Let f : A C [0,00) x [0,00) = [0,00), a < b, c <d, be a continuous

f ° am+nf 8n+mf p
S exist on A° and Sro—n € L(A). If | gmgan

s-convex on the co-ordinates on A, sy, s9 € (0,1] with s = %, m,neN, mn>1.

mapping such that 2

,p>1, 1s




INEQUALITIES OF HERMITE-HADAMARD TYPE FOR DOUBLE INTEGRALS 143

Then for P(t) and Q(r) defined as in Theorem 2.4 and % + % =1 we have

hb—aid—cyéaldfﬂwﬁhm

et [ 0 [ 0 )t o 01 (52, 5)
-2 Qh+1+2 (k+D1(1+1)!  ozkay

dr

(_1)m+1 n—1 [1 + (—1)16} (b— a)k ak—i—mf (a+b )
(d—c)m! 2k+1 (k4 1)! /C Q) ozkorm

ot e L V=g ey o, e
(b—ajni =" 2011+ 1) [:P“) oty

+

dt

+

(b—a)"(d—rc) [1( 1 N 1 )}q
- vmplm! [(np 4 1) (mp + 1)]% 2\(s14+1)*  (s2+1)
q q q .
X | By + Clmy + Dby + By |
Proof. The inequality (2.30) follows from the Hélder’s inequality and (1.7). O

Corollary 2.7. Under the assumptions of Theorem 2.6, if m =n =1 and s; = s =
1, then for + = =1 we have the inequality

a+bc+d

’b—a d—c//f drdt—{—f( 2 2 )
1 a+b 1 b c+d

‘2<d—c>/c f<T’T)d“2<b—a>/af<t’ 2 )dt'

Lb-ad=) \/ Pf (a,0) " |2F b0 |92 (a.d)|"
T2 (p+ 1)

otor otor otor
Our last result is for the s-concave functions can be stated as follows.

q

0% f (b,d)|"
otor

Theorem 2.7. Let f A C [0,00) X [0,00) = [0,00), a < b, ¢ < d, be a continuous

n ° am+nf 8n+mf p .
mapping such that 2 S evist on A° and mommh € L(A). If | G5aan| » P > 1, is s-

concave on the co-ordinates on A, sy, s9 € (0,1] with s = %, m,neN, m,n>1.

Then for P(t) and Q(r) defined as in Theorem 2.4 and % + % =1 we have
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k142 (k+ D!+ 1)! 0x’“8y

(—1)m™+ n—1 [1 + (—1)’“] (b—a)* grmf (et )
(d —c)m! e 2+ (k4 1)] /C Q(r) Dok dr

(-1t et 1 Do [ o7 )

* (b—a)n! < 21 (14 1)1 otroy! dt
(2.31) < (b—a)"(d—c)" {451“ + 482“] o f (5, 57)
' —2ntmplm! [(np + 1) (mp + 1)]% 2 otnorm

Proof. The inequality (2.31) follows from the Hélder’s inequality and the inequality
(1.7) with inequalities in reversed direction. O

Corollary 2.8. If the conditions of Theorem 2.7 are satisfied and if m =n =1 and
s1 = sg = 1, then for }D + é = 1 we have the inequality

hb—aid—cyéildeJOMdr+f(w;ﬁc;d)
a4 (5 (5

cb—a)(d— ) 0*f (44, <47)
- 22** (p+ 1) otor
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