
Kragujevac Journal of Mathematics

Volume 38(1) (2014), Pages 83–94.

SOME RESULTS FOR ROMAN DOMINATION NUMBER ON
CARDINAL PRODUCT OF PATHS AND CYCLES

A. KLOBUČAR1 AND I. PULJIĆ2

Abstract. For a graph G = (V,E), a Roman dominating function (RDF) is a
function f : V → {0, 1, 2} satisfying the condition that every vertex u for which
f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of
an RDF equals w(f) =

∑
v∈V f(v) = |V1| + 2|V2| where Vi = {v ∈ V : f(v) = i},

i ∈ {1, 2}. An RDF for which w(f) achieves its minimum is called a γR-function
and its weight, denoted by γR(G), is called the Roman domination number.
In this paper we determine a lower and the upper bounds for γR(Pm × Pn) as well

as the exact value of lim
m,n→∞

γR(Pm × Pn)

mn
where Pm × Pn stands for the cardinal

product of two paths. We also present some results concerning the cardinal product

of two cycles Cm × Cn as well as the exact value of lim
m,n→∞

γR(Cm × Cn)

mn
.

1. Basic definitions and historical background

Let G = (V,E) be a graph of order n. If G′ = (V ′, E ′) is also a graph such that
V ′ ⊆ V and E ′ ⊆ E, then G′ is said to be a subgraph of graph G. In case every pair
of vertices in V ′ which are adjacent in G, if and only if, are also adjacent in G′, the
subgraph G′ is called an induced subgraph. A subgraph induced by the set of vertices
V ′ is usually denoted by G′ = G[V ′]. We can define the open neighborhood of S ⊆ V
to be the set N(S) =

⋃
v∈S N(v), where N(v) = {u ∈ V : uv ∈ E} represents the

open neighborhood of vertex v ∈ V . We also define the closed neighborhood of S,
denoted by N [S], as a union of sets S and N(S).
A dominating function on G is any function f : V → {0, 1} satisfying the condition

that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which
f(v) = 1. Such a function obviously induces the ordered partition (V0, V1) of V such
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that each vertex in V0 is adjacent to at least one vertex in V1. Therefore, the set V1
is called a dominating set.

A dominating set D ⊆ V is perfect if all vertices not in D are dominated only by
one vertex from D.

There is a bijection between the set of all functions f : V → {0, 1} and the set of all
ordered partitions (V0, V1). Thus we are allowed to write f = (V0, V1). The weight of
f equals w(f) =

∑
v∈V f(v) = 0 · |V0|+ 1 · |V1| = |V1|. Obviously, the most interesting

dominating functions are those of minimum weight.
Since we established a 1-1 correspondence between the set of all functions and the

set of all ordered partitions they induce, this optimization problem can be interpreted
as finding a dominating set V1 of minimum cardinality. Such a set is called a γ-set
of G and its weight, denoted by γ(G), is called the domination number of G.

Domination on graphs is well studied, but in 1999 an article ”Defend the Roman
Empire” written by Ian Stewart motivated numerous mathematicians to expand their
understanding of this topic. In that article the author suggested a new variant of
domination known as Roman domination thanks to its historical background.

In the 4th century AD the Roman Empire was under the rule of Constantine the
Great. During that time the Empire suffered from numerous barbaric attacks, so
Constantine had to arrange Roman legions in a way all strategically important places
were protected. Not only did this arrangement have to be successful in defending the
Empire, it also had to be easy to maintain.

If at least one Roman legion was stationed at a certain location, that location was
considered to be secured. Unsecured locations, on the other hand, had no legions
stationed at them, but they had to be adjacent to at least one secured location. If an
unsecured location was under attack, sending a legion from its secured neighbor would
not be effective if doing so makes that location unsecured. Therefore, Constantine
decreed that at least two legions must be stationed at a location before one of them
is sent to help its attacked neighbor. In order to reduce costs of maintaining an army,
Constantine had to use as few legions as possible, but still secure the whole Empire.

Representing locations of the Empire as graph vertices and roads of the Empire as
graph edges, the problem of defending the Roman Empire transforms to the problem
of protecting (or dominating) a graph. However, this type of domination is slightly
different from the one previously described because it uses another type of dominating
function called a Roman dominating function.

For a graph G = (V,E), a Roman dominating function (RDF) is a function f : V →
{0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent
to at least one vertex v for which f(v) = 2. Since this function also induces the
ordered partition of V , Vi = {v ∈ V : f(v) = i}, i ∈ {0, 1, 2}, we are allowed to write
f = (V0, V1, V2). The weight of an RDF equals w(f) =

∑
v∈V f(v) = 0 · |V0|+1 · |V1|+

2 · |V2| = |V1|+ 2|V2|.
The vertex partition (V0, V1, V2) gives us another definition of an RDF. A function

f is called an RDF if V0 ⊆ N(V2), i.e. if the set V2 is a dominating set of G[V0 ∪ V2].
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This definition implies that the same graph can be protected under several different
RDFs, but the most important RDFs are those for which w(f) achieves its minimum.
Such minimum weight is called the Roman domination number of G and we denote
it by γR(G). An RDF which satisfies w(f) = γR(G) is called a γR-function. It is
obvious that γR(G) ≤ |V1|+ 2|V2| for any RDF f = (V0, V1, V2).

The main result describing a connection between domination and Roman domina-
tion number of an arbitrary graph G is γ(G) ≤ γR(G) ≤ 2γ(G). Graphs for which
γR(G) = 2γ(G) are called Roman graphs. It is obvious that |V1| = 0 for every mini-
mum weight RDF of any Roman graph.

Despite the fact that Roman domination has been studied for jast a little over
a decade, we already know the exact values of Roman domination numbers for
many classes of graphs ([1], [2]). However, the complexity of some graphs allows
the author(s) to establish only an upper bound. An example of such a graph is the
grid graph, i.e. the Cartesian product of two paths Pm�Pn. An upper bound for
γR(Pm�Pn) is

γR(Pm�Pn) ≤ 2

(⌈
mn

5

⌉
+

⌈
m

5

⌉
+

⌈
n

5

⌉)
and it was determined by Cockayne et al (for complete proof see [2]).

Motivated by this result we used the same idea to study the cardinal (tensor, direct,
Kronecker) product of two paths Pm×Pn. For arbitrary graphs G and H, the cardinal
product of G and H is the graph G×H which satisfies the following

• its vertex set is V (G×H) = V (G)× V (H);
• two vertices (g, h), (g′, h′) ∈ V (G×H) are adjacent if and only if g is adjacent

to g′ in G and h is adjacent to h′ in H.

The cardinal product of two paths Pm × Pn has two connected components. If the
vertices of Pm and Pn are denoted by {1, 2, 3, . . . ,m} and {1, 2, 3, . . . , n}, respectively,
then the component of Pm × Pn containing the vertex (1, 1) will be denoted by K1,
and the other component by K2. If at least one of the parameters m or n is even,
components K1 and K2 are isomorphic. Otherwise, the component K1 has one vertex
more than the component K2. Further in the text we will mostly be using K1 (and
K2) not as a label of a connected component, but as a label of its vertex set. The
meaning of K1 and K2 will be clear from the context.

2. Upper and lower bound for γR(Pm × Pn)

Theorem 2.1. For every two paths Pm and Pn, m,n ≥ 2

γR(Pm × Pn) ≤ 4

⌈
mn

10

⌉
+ 8

⌈
m

10

⌉
+ 8

⌈
n

10

⌉
.

Proof. Let us assume that at least one of the parameters m or n is even. This allows
us to observe only the component K1. Since K1 and K2 in this case are isomorphic,
|K1| = mn

2
. Let us construct an RDF f = (V0, V1, V2) on the component K1. First
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let us color the vertices of K1 with three colors - yellow, red and black following the
pattern shown in Fig. 1, and then label them by 0,1 and 2, respectively. Doing so,
we partition the vertex set of K1 into V0, V1 and V2, where Vi represents the subset of
K1 labeled by i, i ∈ {0, 1, 2}. Fig. 1 also shows vertices of the component K2, but in
order to draw the graph as simple as possible they were intentionally left uncolored
and isolated. �

Figure 1. A pattern of coloring the vertices of the component K1 of
P20 × P19.

Note that all yellow vertices are adjacent to at least one black vertex, i.e. V0 ⊆
N [V2]. This is enough to conclude that the function f under which the vertex partition
(V0, V1, V2) was made is an RDF. Let us calculate the upper bound of it’s weight.

Black vertices placed on boundaries dominate themselves and two of their neigh-
bors, while inner black vertices dominate themselves and four of their neighbors.
Therefore, the vertex set of the induced subgraph G[V0 ∪ V2] can be partitioned into
disjoint subsets of cardinality 5 (one inner black vertex and four yellow vertices it
dominates) or 3 (one boundary black vertex and two yellow vertices it dominates).
Since N [u] ∩N [v] = ∅ for all u, v ∈ V2, we conclude that the set V2 is a dominating
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set of G[V0 ∪ V2] which implies that |V2| in the component K1 achieved its minimum.
Furthermore, note that the red vertices of K1, i.e. vertices not in G[V0 ∪ V2], appear
only on boundaries where every two of them are either preceded or followed by a
boundary black vertex. These conclusions enable us to determine the following upper
bound for |V2|

|V2| ≤
⌈ mn

2

5

⌉
=

⌈
mn

10

⌉
.

Let R1 be the set of vertices placed in the first row, Rm the set of vertices placed
in the last row, S1 the set of vertices placed in the first column and Sn the set of
vertices placed in the last column of Pm × Pn. Let (i, j) ∈ V2 ∩K1 be an inner black
vertex such that 4 ≤ i ≤ m − 3 and 4 ≤ j ≤ n − 3. An example of such vertex is
marked in Fig. 1. Now let us observe the subgraph induced by the set of vertices
S = {(k, l) ∈ K1 : i− 3 ≤ k ≤ i + 3, j − 3 ≤ l ≤ j + 3}, emphasized in Fig. 1 with a
square. Let U be the set of all unprotected (undominated) vertices of the S-induced
subgraph

U = {(i− 3, j − 3), (i− 1, j − 3), (i+ 3, j − 3), (i+ 3, j − 1),

(i+ 3, j + 3), (i+ 1, j + 3), (i− 3, j + 3), (i− 3, j + 1)}.

Note that all vertices in U appear only on boundaries of the S-induced subgraph and
that they are either preceded or followed by a boundary black vertex. In order to
protect them, they must be labeled by 1, i.e. colored red.

Exactly the same conclusion holds for boundary vertices of the component K1.
One can easily show that red vertices in sets (R1 ∪ Sn) ∩ K1 and (S1 ∪ Rm) ∩ K1

appear only in positions i + 2 and i + 4 (or i − 6 and i − 8) for (R1 ∪ Sn) ∩ K1,
and i − 2 and i − 4 (or i + 6 and i + 8) for (S1 ∪ Rm) ∩ K1, with i in both cases
marking the position of a boundary black vertex. Now the set V1 can be represented
as V1 = V1 ∩

(
(R1 ∪ Sn ∪ S1 ∪Rm) ∩K1

)
and an upper bound of its cardinality is

|V1| ≤ 2

⌈
m

10

⌉
+ 2

⌈
m

10

⌉
+ 2

⌈
n

10

⌉
+ 2

⌈
n

10

⌉
= 4

⌈
m

10

⌉
+ 4

⌈
n

10

⌉
.

Therefore, γR(Pm × Pn) = 2γR(K1) ≤ 2
(
|V1|+ 2|V2|

)
≤ 4

⌈
mn
10

⌉
+ 8

⌈
m
10

⌉
+ 8

⌈
n
10

⌉
.

Remark 2.1. In case both parameters m and n are odd we obtain the same final
result, although components K1 and K2 are not isomorphic. However, red vertices
will again appear only on the boundaries R1, Rm, S1 and Sn. Furthermore, they
appear in exactly the same positions with regard to the positions of black vertices
as we described in the proof of Theorem (2.1). The only difference is that the set
R1∩K2 always starts with a red vertex as shown in Fig. 2, but the following sequence
of colors is the same as in the set R1 ∩K1, and since we give only upper bound that
particular vertex doesn’t change our result.
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Figure 2. A pattern of coloring the vertices of the component K2 in
case both m and n are odd.

Theorem 2.2. For every two paths Pm and Pn, m,n ≥ 2 we have that

γR(Pm × Pn) > 4

⌊
mn−m− n+ 1

10

⌋
+ 4

⌊
m− 1

10

⌋
+ 4

⌊
n− 1

10

⌋
.

Proof. The assumption that at least one of the parameters m or n is even allows us to
make all observations only on the component K1, as we did in the proof of the previous
theorem. Yellow, red and black color are again used as substitutes for vertex labels
0, 1 and 2, respectively. Now let us observe the graph H = G[K1 \ (Rm∪Sn)], a color
preserving subgraph induced by all vertices of K1 with the exception of those vertices
placed in the last row and the last column. The vertices of H can be represented as
the set

(
V (Pm × Pn) \ (Rm ∪ Sn)

)
\K2. Therefore,

|V (H)| ≥ |V (Pm × Pn)| −m− n+ 1

2
=
mn−m− n+ 1

2
.

Note that the function f = (V0, V1, V2) which was an RDF on K1 isn’t an RDF
on H because the construction of H leaves some of its boundary yellow vertices
undominated. To be more precise, a yellow vertex u ∈ H is undominated if and only
if u ∈ N [v] for some black v ∈ (Rm ∪ Sn) ∩K1. Let us this disregard undominated
vertices of H. By the same methods as in the proof of Theorem (2.1) it follows that
γR(K1) > 2|V2 ∩ V (H)| + |V1 ∩ V (H)|. Because the best case is that each ”black”
vertex r-dominates 5 vertices, and that ”red” vertices are on the bound of graph, it
follows

|V2 ∩ V (H)| ≥
⌊ mn−m−n+1

2

5

⌋
=

⌊
mn−m− n+ 1

10

⌋
and |V1 ∩ V (H)| ≥ 2

⌊
m−1
10

⌋
+ 2

⌊
n−1
10

⌋
.
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Now the following is obvious

γR(Pm × Pn) = 2γR(K1) > 4

(⌊
mn−m− n+ 1

10

⌋
+

⌊
m− 1

10

⌋
+

⌊
n− 1

10

⌋)
.

�

3. Determining lim
m,n→∞

γR(Pm × Pn)

mn

First let us observe a similar result limm,n→∞
γ(Pm�Pn)

mn
= 1

5
, presented by Klobučar

in [4], which we use as a motivation to determine limm,n→∞
γR(Pm×Pn)

mn
.

Theorem 3.1. For every two paths Pm and Pn, m,n ≥ 2 we have that

limm,n→∞
γR(Pm×Pn)

mn
= 2

5
.

Proof. In Theorem (2.1) and Theorem (2.2) we have determined the upper and the
lower bound for γR(Pm × Pn). Furthermore, we know that the floor and ceiling
functions satisfy the following

(3.1)
k

10
− 1 <

⌊
k

10

⌋
≤ k

10
≤
⌈
k

10

⌉
<

k

10
+ 1, k ∈ N.

Now Theorem (2.1), Theorem (2.2) and inequality (3.1) imply

(3.2)
2mn

5
− 62

5
< γR(Pm × Pn) <

2mn

5
+

4m

5
+

4n

5
+ 20.

If we divide (3.2) by mn, we obtain

(3.3)
2

5
− 62

5mn
<
γR(Pm × Pn)

mn
<

2

5
+

4

5n
+

4

5m
+

20

mn
.

For m,n → ∞, the left and the right hand side of (3.3) tend to 2
5
. Applying the

sandwich rule gives us the desired result limm,n→∞
γR(Pm×Pn)

mn
= 2

5
. �

4. Some results about γR(Cm × Cn)

Back in 1968. D. J. Miller had shown that the cardinal and Cartesian product of
two graphs G and H are mutually nonisomorphic, except in case when both G and
H are odd cycles of the same size [8]. This obviously implies that for odd m

γR(Cm�Cm) = γR(Cm × Cm).

More general result concerning domination number of Cartesian product of two cycles
Cm�Cn was given by Klavžar and Seifter in [3]. They had shown that in case when
m,n ≡ 0 ( mod 5) we have that γ(Cm�Cn) = mn

5
, which can easily be verified by

observing one example of such graph and concluding the following:

• each dominating vertex dominates all four of its neighbors,
• each dominated vertex is dominated only by one dominating vertex.

Corollary 4.1. For m,n ≡ 0 ( mod 5) it holds that γ(Cm × Cn) = mn
5
.
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Proof. Each vertex of Cm × Cn, m,n ≡ 0 ( mod 5) satisfies the above listed cor-
responding condition which makes that the dominating set is perfect and therefore
minimal. �

Theorem 4.1. In case when m,n ≡ 0 ( mod 10), Cm × Cn is a Roman graph, i. e.

γR(Cm × Cn) = 2γ(Cm × Cn) =
2mn

5
.

Proof. Similarly as in previous corollary, black vertices make perfect dominating set

D = {(i1, j1), i1 ≡ 1(mod 5), j1 ≡ 0(mod 5), (i2, j2), i2, j2 ≡ 2(mod 5),

(i3, j3), i3 ≡ 3(mod 5), j3 ≡ 4(mod 5), (i4, j4), i4 ≡ 4(mod 5), j4 ≡ 1(mod 5),

(i5, j5), i5 ≡ 0(mod 5), j5 ≡ 3(mod 5)}

and giving them weight 2 instead of 1 we obtain minimal Roman dominating set as
one can see in Fig. 3. �

Figure 3. C15 × C20 drawn on torus. The set V2 is represented by
black and the set V0 by yellow vertices.

Theorem 4.2. For m ≡ 0 ( mod 6) and n ≡ 0 ( mod 4) we have that
γR(Cm × Cn) ≤ mn

2
.

Proof. Vertex set of Cm × Cn can be partitioned into mn
24

disjoint blocks as one can
see in Fig. 4. If we denote the vertex set of one of such blocks by B = {(i, j) : i ∈
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{1, 2, 3, 4, 5, 6}, j ∈ {1, 2, 3, 4}}, the Roman dominating function used for domination
of Cm × Cn induces the following partition of B

V2 = {(2, k), (3, k), (5, k + 1), (6, k + 1) : k ∈ {1, 2, 3, 4}}
V1 = {(2, k + 2), (3, k + 2), (5, k + 3), (6, k + 3)}
V0 = B \ (V1 ∪ V2)

with all addition performed modulo 4. It is obvious that γR(B) = γR(C6 × C4) = 12
from which directly follows that γR(Cm × Cn) ≤ mn

24
· 12 = mn

2
. �

Figure 4. C12×C16 drawn on torus and divided on 8 blocks. The set
V2 is represented by black, the set V1 by red and the set V0 by yellow
vertices.

Theorem 4.3. For odd m ≥ 11

γR(Cm × Cm) ≤


2m(m−1)

5
+m, m ≡ 1 ( mod 10);

2m(m−3)
5

+ 3m, m ≡ 3 ( mod 10);
2m(m−k)

5
+ 4m, m ≡ k ( mod 10), k ∈ {7, 9}.

γR(Cm × Cm) =
2m2

5
,m ≡ 5 ( mod 10)

Proof. a) m ≡ 1(mod 10)
Let us construct an RDF f on Cm × Cm. The easiest and the most logical

way to do that is first to determine the sets V2 and V0, and finally the set V1.
If the vertices of Cm × Cm are denoted by (i, j), i, j ∈ {1, 2, . . . ,m}, the

first vertex we add into the set V2 is denoted by (2, 2). Once we have chosen
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this initial vertex, determining its followers is easy. Starting from the vertex
(2, 2), the rule is to move along Cm × Cm three rows down and one column
to the right and add to V2 all vertices we come across. Since these vertices
are characterized as dominating, at the same time their neighbors are used for
construction of the set V0.

Note that after we have added first m vertices into the set V2, the regularity
of Cm×Cm will return us to our first initial vertex (2, 2). Thus we must repeat
the rule explained above, but this time with another initial vertex chosen by
one of the following two criteria:
– if an arbitrary column of Cm × Cm contains odd number of vertices we

added into V2 and if among them we detect some vertex (i, j), but not the
vertex (i+ 1, j), then the latter is chosen to be the next initial vertex;

– if an arbitrary column of Cm × Cm contains even number of vertices we
added into V2 and if among them we detect both vertices (i, j) and (i+1, j),
then the vertex (i+ 2, j + 4) is chosen to be the next initial vertex.

When we have exhausted all possible initial vertices, i.e. when both sets V2
and V0 are fully determined, the remaining m vertices of Cm×Cm (one vertex
at each column) are used for construction of the set V1.
The described construction of the sets V2 and V1 enables us to easily deter-
mine their cardinality |V2| = m · m−1

10
· 2, |V1| = m from which follows that

γR(Cm×Cm) ≤ 2|V2|+ |V1| = 2m(m−1)
5

+m. Fig. 5 a) showing vertex partition
of C11×C11 illustrates this result. Note that the red vertices of C11×C11, i.e.
vertices added into V1, are additionally emphasized with purple square.

Remark 4.1. Vertex partition of Cm × Cm in the following three cases when
m ≡ k ( mod 10), k ∈ {3, 7, 9} is obtained by applying the same logic as
described in case a). However, exhausting all possible initial vertices in each
of the following cases leaves us with exactly k unsorted vertices in each column
of Cm×Cm. These mk unsorted vertices (emphasized with purple rectangles)
must be colored by following the pattern shown in Fig. 5.

b) m ≡ 3(mod 10)

|V2| = m · m− 3

10
· 2 +m, |V1| = m

γR(Cm × Cm) ≤ 2m(m− 3)

5
+ 3m

c) m ≡ 7(mod 10)

|V2| = m · m− 7

10
· 2 + 2m

γR(Cm × Cm) ≤ 2m(m− 7)

5
+ 4m
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Figure 5. a) C11 × C11; b) C13 × C13; c) C17 × C17; d) C19 × C19; e)
C15 × C15 all drawn on torus.

d) m ≡ 9(mod 10)

|V2| = m · m− 9

10
· 2 + 2m

γR(Cm × Cm) ≤ 2m(m− 9)

5
+ 4m

e) m ≡ 5(mod 10)
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Follows directly from Theorem 4.1.
�

Proposition 4.1. limm,n→∞
γR(Cm×Cn)

mn
= 2

5

Proof. Since limm,n
γR(Pm×Pn)

mn
= 2

5
, the claim follows from the relations 2

5
≤ γR(Cm×Cn)

mn

≤ γR(Pm×Pn)
mn

≤ 2
5
. The central inequality is true since Pm×Pn is a spanning subgraph

of Cm × Cn. �
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