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A CONCISE MINI HISTORY OF GEOMETRY

LEOPOLD VERSTRAELEN

1. Origin and development in Old Greece

Mathematics was the crowning and lasting achievement of the ancient Greek cul-
ture. To more or less extent, arithmetical and geometrical problems had been ex-
plored already before, in several previous civilisations at various parts of the world,
within a kind of practical mathematical scientific context. The knowledge which in
particular as such first had been acquired in Mesopotamia and later on in Egypt,
and the philosophical reflections on its meaning and its nature by “the Old Greeks”,
resulted in the sublime creation of mathematics as a characteristically abstract and
deductive science. The name for this science, “mathematics”, stems from the Greek
language, and basically means “knowledge and understanding”, and became of use
in most other languages as well; realising however that, as a matter of fact, it is
really an art to reach new knowledge and better understanding, the Dutch term for
mathematics, “wiskunde”, in translation: “the art to achieve wisdom”, might be even
more appropriate.

For specimens of the human kind, “nature” essentially stands for their organised
thoughts about sensations and perceptions of “their worlds outside and inside” and
“doing mathematics” basically stands for their thoughtful living in “the universe”
of their idealisations and abstractions of these sensations and perceptions. Or, as
Stewart stated in the revised book “What is Mathematics?” of Courant and Robbins:
“Mathematics links the abstract world of mental concepts to the real world of physical
things without being located completely in either”. Amongst the main Greek schools
and their mathematical heroes, one has: Milete (now Turkey) with Thales (∼ -624/
-548), Croton (now Italy) with Pythagoras (∼ -566/-497), Athens with Eudoxos (∼
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-408/-355), Alexandria (now Egypt) with Euclides (∼ -365/-285) and Apollonius (∼
-260/-170), and Syracuse (now Sicilia) with Archimedes (∼ -287/-212).

From the introduction of the book by Courant and Robbins comes the quote:
“Mathematics as an expression of the human mind reflects the active will, the con-
templative reason, and the desire for aesthetic perfection. Its basic elements are logic
and intuition, analysis and construction, generality and individuality. Though dif-
ferent traditions may emphasize different aspects, it is only the interplay of these
antithetic forces and the struggle for their synthesis that constitute the life, useful-
ness, and supreme value of mathematical science”. Thales is considered as one of
the founding fathers of mathematics and his theorem essentially concerns the basic
notion of similarity. The theorem of Pythagoras, [in any rectangular triangle with
sides of lengths A (for the hypothenusa) and B, C (for the sides along the right an-
gle): A2 = B2 + C2], remains the cornerstone of the geometry of the human kind.
In the school of Pythagoras, it was shown that the side (–) and the diagonal (—)
of a regular 5–gon, which was in the logo of this school, are incommensurable line
segments, i.e. that their ratio (–“over”—) is an irrational number, [“a decimal num-
ber running on to infinity after the decimal sign, comma or point, without thereby,
starting at some place before or after this sign, for always to repeat a fixed sequence
of ciphers of any length”], namely the golden section ϕ = 0, 618 . . . , which turned out
to be of ever actual distinguished importance in geometry, in nature and in the arts
alike. The theory of the geometrical continuum of Eudoxos properly dealt with the
incorporation in the mathematical reality of such pairs of line segments -which earlier
had been tacitly assumed not to exist-, thereby setting the deductive–postulational
trend which aims for “security” of the mathematical reasoning as necessary counter-
part for otherwise mostly intuitive, and eventually too loose ways of imagining and
exploring problems in mathematics and in its applications. The crystallisation of this
mode of thinking in Euclid’s “Elements”, of which the purpose was to survey the
mathematics of its time, became a landmark in the history of our civilisation. And
Euclid’s complementing “Optics” may be seen as one of the first systematic studies
of human vision. The parallel postulate in planar Euclidean geometry inevitably was
pretty intriguing for many a scholar, already since Euclid’s time, because “it involves
a happening taking place at infinity, and our kind is not able to see so far”. And this
was so good, because, as formulated by Coolidge in his book “A History of Geometri-
cal Methods”: “It is to the doubts about Euclid’s parallel postulate and the efforts of
many thinkers to settle these doubts that we owe the whole modern abstract concep-
tion of mathematical science”. Both from the angle of perspective and from the use
of sundials, the conic sections came in focus and Apollonius’ studies of them became
the geometrical classics which played a vital role in the discovery of Kepler’s laws
of the planetary motions. Archimedes studied geometry and the laws of nature by
making use of the powerful reasoning involving “infinitesimals”, thereby anticipating
the differential and integral calculus.
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2. European renaissance and global modern development

What remained preserved of the mathematics and of the exact, medical and human
sciences of the ancient times, in original form and in translations, in Byzantium, in
European monasteries and elsewhere, and also the extensions of and additions to this
heritage in general by the Chinese, Japanese, Jewish and other civilisations, and, in
mathematics, in particular by the Hindu and the Arabic contributions on trigonom-
etry and on algebra, after a long dark period, again became sources of reflection and
inspiration for European scholars like, amongst others, Fibonacci, Oresme, da Vinci
and Dürer. And one of the historical lines of significant new developments in math-
ematics and its applications traces back to Gemma Frisius (1508–1555), a professor
at provincial Leuven which is situated a little distance south of Antwerpen, the then
cultural and mercantile center of the Low Counties and “abroad”. Frisius studied the
triangulations of surfaces, (related to elementary cartography), and explicitly wrote
down some of the first tables of interests (to be paid on loans according to a new
catholic deviation from the former Christian loaning systems), and so, for compound
interests, basically tables of exponential functions. Together with his student Mer-
cator (1512–1594), he studied the stereographic projection and made celestial and
worldly globes. And later Mercator composed his first collection of charts of parts of
the earth and introduced for it the name “atlas”. Around 1550 he started to work
at his map of the world, specially designed to serve navigation, hereby using what
became known as “Mercator’s projection”, i.e. the conformal map that turns loxo-
dromes on a sphere into straight lines on their planar image, and which analytically
involves logarithmic functions. And in this environment Simon Stevin (1548–1620)
learned and matured to become one of the great geometers in the period between
Archimedes and Newton. One of his earliest booklets was printed by Plantijn at
Antwerp and, as far as known, was the first real publication of tables of interests,
(and he wrote it to inform the normal people of his time about the actual meaning of
such interests in order to prevent them from being lured into some unpleasant traps).
His booklet “De Thiende” was printed by Plantijn at Leiden in 1585 and definitely
settled the concrete performance of all calculations involving real numbers in terms of
elementary computations exclusively involving natural numbers, by making use of the
decimal system, which system he moreover strongly advocated to be used universally
for the practical benefit of international commerce. Among Simon Stevin’s manifold
other achievements in the sciences, one may remember in particular his composition
law of forces, “the parallelogram rule”, i.e. essentially the equilibrium illustrated in
his logo with as motto “Wonder en is gheen wonder”, and which is at the basis both of
abstract algebra and of multidimensional geometry. Optics and the theory of vision,
amongst others the study of perspective, were further developed too, trigonometry
also hereby showing its use e.g. in Snellius’ law of refraction. In physics, the Coper-
nican cosmology was geometrically explicited in the observed laws of Kepler, which
would later find their mathematical description in Newton’s mechanics, of which the
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central idea is to geometrically conceive the forces which act on moving bodies as the
curvature vector fields of their trajectories in space, up to a multiplicative constant
which corresponds to the masses of these bodies.

Archimedes’ classical problem to determine the tangent lines to arbitrary planar
curves at any of their points and Simon Stevin’s problem concretely to find all the
spherical loxodromes were at the origin of the creations of the differential and of the
integral calculus, i.e. of the mathematical discipline called analysis. Essentially this
became possible only by the systematic use of the co–ordinate method of Descartes’
“Géométrie” of 1637, which itself likely resulted from the human perceptual difficul-
ties with the notion of parallelism. Hereby the delicate role played by the axiomatic
foundation of synthetic geometry basically was taken over by the geometrical foun-
dation of the real number system and, paraphrasing Descartes, by the fact that all
Euclidean geometrical problems can be reduced to the knowledge of the distance between
any two points (the theorem of Pythagoras). And, for most practical purposes, the
procedures of analysis were reduced to the so–called theorem of Taylor–Maclaurin to
which Newton, at Cambridge, was inspired by the consideration of the real functions
in analogy to the consideration of the real numbers in the decimal system. Already
before, his teacher Barrow had obtained the fundamental theorem of analysis which
interrelates integration and differentiation as mutually inverse operations. Around
1670, Newton moreover could analytically determine the curvature of any Euclidean
planar curve at any of its points, hereby following the considerations of amongst oth-
ers Descartes and Kepler on the osculating approximation of general curves by circles
and of Huygens on caustics etc. related to his studies of pendulum clocks.

And, since 1760, with the works of Euler, Monge, Meusnier, Dupin, Rodrigues,
Germain, Casorati, etc., accordingly the curvature behaviour of surfaces in Euclidean
spaces geometrically and analytically became more and more clear, and in this context
Gauss discovered the 2D classical non–Euclidean geometries, the hyperbolic versions
of which having been treated also axiomatically and independently by Lobachevsky
and by Bolyai. According to Galileo, “The book of Nature is written in a mathemat-
ical language and the characters are triangles, circles and other geometrical objects”,
i.e. many natural phenomena can be described in terms of geometrical notions and, in
particular, in terms of curvatures, of which in the mean time the analytical expressions
were known. Hence, since moreover many of these phenomena concern realisations
of various kinds of extremal values and of certain equilibria or symmetries within
given situations, the solutions of many variational principles of Maupertuis, Fermat,
Leibniz, Bernoulli’s, etc., often by applying the variational calculus of Euler and La-
grange, yielded spectacular developments in natural philosophy. For instance, several
cycloids, catenaries and spirals, with most in particular the spira mirabilis (the nat-
ural logarithmic spiral), and, for instance, surfaces of constant mean curvature and
surfaces of constant Gauss curvature and their geodesics and eventual loxodromes,
showed up in this way as curves and surfaces of very special importance indeed, for
geometry and for the applications of geometry in science and in technology alike.
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Gauss’ 1827 Göttingen “Disquisitiones generalis circa superficies curvas” contained
the germ of the notion of differential manifolds, i.e. of the mathematical field of
“global analysis”, and it made the crucial distinction for surfaces in Euclidean 3D
spaces between their intrinsic and their extrinsic geometrical properties, i.e. between
the properties which exclusively depend on the distances between the points of these
surfaces such as these distances result from the measurements of the lengths of the
curves which lie completely on these surfaces and which connect these points and the
properties which basically depend on the shapes that these surfaces assume in the
ambient Euclidean spaces, or still on “the looks” of these surfaces when observing
them in space. As described by Dombrowski in his historical comments on Gauss’
geometrical disquisitiones, Gauss delayed the presentation of this fundamental work
till he had obtained an analytical proof of the theorema egregium -the invariance of
his “Krümmung” K under isometrical surface transformations- in terms of general
curvilinear surface co–ordinates, while in the course of his earlier investigations on
general conformal transformations of surfaces, (his extension of the stereographic and
Mercator projections of spheres on planes, whereby stating that “interesting maps
between two arbitrary surfaces would indeed better be similar in their infinitesimal
parts”), he already had found such proof in terms of isothermal co–ordinates; and,
by the way, these investigations were at the basis of complex analysis. Roughly
speaking, “global analysis” deals with the essentials of the traditional fields of al-
gebra and analysis. And the awareness of an intrinsic geometry of surfaces in 3D
Euclidean space amounts to the awareness of the existence of “abstract” Riemann–
Finsler geometries on the not too weird differential manifolds. The establishment of
these geometries was done independently by Riemann and, respectively, Helmholtz,
in their “Ueber die Hypothesen, respectively, Tatsachen, welche der Geometrie zu
Grunde liegen”, published in 1866 (though Riemann’s lecture at Göttingen with this
title was delivered already in 1854), respectively, in 1868, who were hereby reflecting
in the spheres of natural philosophy, and, in particular, about the physical spacetime,
respectively, about human visual perception. And, in his “Ueber die tatsächlichen
Grundlagen der Geometrie (1866–1869)”, Helmholtz drew attention to the approach
first taken by Gauss with the purpose to finally settle the Euclidean parallel postulate
problem, not in the least done so in order to solidly attain some “objective control of
the geometry of our kind’s most basic visual and motoric senses”, and later followed
by Riemann in his generalisation of the intrinsic geometry of the 2D surfaces M2

in Euclidean 3D spaces E3 to the nD abstract Riemannian geometry. That is, to
begin with, in a way to carry over Descartes’ “programme” which had built up the
whole of the classical 2D Euclidean geometry solely starting from the determination
of the distances between pairs of points by means of the theorem of Pythagoras ex-
pressed in a 2D Cartesian co–ordinate system, (and which programme is completely
the same for all dimensions), to the inner geometry of surfaces M2 in E3, whereby the
surfaces are described by curvilinear, say (u, v) co–ordinates or charts and whereby
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“a geometrical structure” is defined on these surfaces M2 by their first or metri-
cal fundamental form g or originally called line element ds as being expressed by
the infinitesimal distance function which is naturally induced on these surfaces M2

from the standard theorem of Pythagoras’ Euclidean distance function of the ambient
space E3, i.e. via a generalised theorem of Pythagoras on M2: a squared infinitesimal
line element given by a general homogeneous quadratic polynomial in infinitesimal
changes du, dv of the curvilinear co–ordinates, ds2 = E du2 +2F du dv+Gdv2. Then,
locally, the 2D Euclidean geometry and the classical elliptical 2D non–Euclidean
geometry and the classical hyperbolic 2D non–Euclidean geometry of Lobachevsky–
Bolyai are realised on surfaces M2 in E3 with constant Gauss curvature K = o
(i.e. on “developpable surfaces”), K > o (like on spheres) and K < o (like on
pseudospheres or tractroids), respectively. And, where for the Riemann–Finsler
nD geometries both Riemann and Helmholtz started from analytically n–fold ex-
tended “Mannigfaltigkeiten” for their basic spaces, i.e. both used systems of local
co–ordinates (x1, x2, . . . , xn) -essentially the later charts of atlases on nD differential
manifolds-, Riemann then by hypothesis set off with a quite arbitrary Riemann–
Finsler “geometrical structure” or line element ds and, to get more explicit and to
go for most possible simplicity in his exposition, further specified his hypothesis to a
positive definite metric tensor g given in classical notation by g = ghkdx

h dxk, whereas
Helmholtz straightforwardly came up with this same latter geometrical structure, i.e.
at once set off with a squared line element given by a generalised theorem of Pythago-
ras as a general quadratic homogeneous polynomial in infinitesimal changes of the
co–ordinates as variables, because he found this to be the only factual possibility to
allow for measurements of distances invariant under congruences. The intrinsic geom-
etry of surfaces M2 in E3 thus having been the inspiration for the creation of the more
general Riemannian geometry on 2D differential manifolds (cfr. e.g. Vincent Borrelli
e.a.’s “tore plat en 3D”), i.e. of 2D Riemannian spaces, may show how human’s
geometrical experiences in “their space” actually have influenced their definition of
abstract metrical Riemannian spaces (Mn, g) of arbitrary dimension n.

The successful demonstration of the existence of non–Euclidean geometries, which
had been understood right away by the few mathematicians who in private talked and
corresponded about the controversial parallel postulate amongst each other, at last
became clear for all after Beltrami’s publication in 1868 of the intimate link between
the validity of the classical non–Euclidean hyperbolic geometry on the one hand and
the validity of Euclidean geometry itself on the other. And this brought along the
profound and quite revolutionary re–evaluation of the whole field of mathematical
logic on which, till at present, we can pretty well base actual confidence when doing
our mathematical doings.

Following Minkowski’s 1908 Köln lecture on “Raum und Zeit”, Riemannian geom-
etry was put in the indefinite setting that became the language in which Einstein in
1916 could formulate his general theory of relativity, (which may explain the above
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notation g for ds2); actually, Einstein’s field equations basically define mass and en-
ergy in terms of the Ricci curvatures of “our” physical spacetime. The opening lines of
this lecture will remain remembered forever: “M. H.! Die Anschauungen über Raum
und Zeit die ich Ihnen entwickeln möchte, sind auf experimentell–physikalischen Bo-
den erwachsen. Darin lieght ihre Stärke. Ihre Tendenz ist eine Radikale. Von Stund
an sollen Raum für sich und Zeit für sich völlig zu Schatten herabsinken, und nur
noch eine Art Union der beiden soll Selbständigkeit bewahren”. And, our kind’s per-
ceptions of the space dimensions, or, say, of the space co–ordinates x, y and z, and
of the time dimension, or, say, of the time co–ordinate t, naturally being of different
natures, in Minkowski’s determination of a Pythagorean measure of the distances
in the (x, y, z; t) spacetime according to the Weltpostulat, basically the three letter
combination ict showed up for the very first time, and, as he put it: “Man kann
danach das Wesen dieses Postulates mathematisch sehr prägnant in die magische
Formel kleiden: 300000 km = i sek”. In local co–ordinates (x, y, z; t) thus originated
the Minkowski metric ds2 = dx2 +dy2 +dz2−dt2 of index 1 as first indefinite revision
of the classical theorem of Pythagoras. And accordingly could begin the development
of pseudo Riemannian geometry along the lines of proper, definite Riemannian ge-
ometry. The proper Euclidean, respectively the proper Riemannian spaces, in some
sense conversely, then are the pseudo Euclidean, respectively the pseudo Riemannian
spaces of index 0. In his thesis with Carathéodory, Finsler initiated the systematic
study of “his” geometry, which recently became more widely accessible thanks to the
research of Chern and co–workers.

And, mostly from Helmholtz’s thoughts about a role to be played in Riemannian
spaces (Mn, g) by congruences, (like in the sense of classical Euclidean spaces En),
as a necessity to actually allow for measurements of distances “in a normal way”,
resulted the characterisation by Riemann, Helmholtz, Lie, Klein and Tits of the
utmost possible symmetrical Riemannian spaces, i.e. of the spaces which look the
same at all their points and which at every point look the same in all directions,
or, still, of the perfectly homogeneous and isotropic spaces, as the spaces (Mn, g) of
constant Riemannian or sectional curvature K, say K = c (for possibly c = o, c >
o and c < o), these “real space forms” then being denoted by Mn(c). Or, still, the
spaces Mn(c) are the Riemannian spaces which satisfy the axiom of free mobility,
i.e. for which “the measurements of all beings living in such spaces do not change
however whereabouts these beings may move to in these spaces”. According to what
is known as the theorem of Beltrami, the real space forms Mn(c) are the Riemannian
manifolds (Mn, g) which are projectively equivalent to the locally Euclidean spaces.
And these spaces Mn(c) all are very nice geometrical models indeed for “our real
outside worlds” since, as discussed in particular by Klein, in view of the threshold of
our sense perceptions and the fact that our space perception is adapted to a limited
part of space only, our space perception can be described as closely as desired by
real space forms of zero, positive or negative curvatures c alike. The above studies
are highlights among the efforts to well answer the question of how to objectively
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describe in a reasonable way “the theatre in which we have the impression to be on
stage”, which, like in antiquity, again took up a central position in scientific research
since the second half of the 19th century. In the words of Chern: “While algebra and
analysis provide the foundations of mathematics, geometry is at the core”.

In the same way as Euclidean geometry in dimension 2 essentially derives from the
circle as ground figure by which distances may be determined in an isotropic way
when considered from a human point of view, the Lamé curves (which were called
supercircles by Piet Hein) are at the basis of the simplest definite Minkowski–Finsler
geometries in which 4–fold anisotropies occur when considered from a human point
of view, and analogous observations can be made in dimensions 3 and more. In this
respect, the so–called Gielis curves for dimension 2 and the Gielis (hyper)surfaces for
dimension 3 (and more) turned out to be ground figures for describing most natural
s–fold anisotropies (for s = 0, 1, 2, 3, 4, 5, . . . , or, for that matter, for any s ∈ R). And,
closely related herewith, by application of the corresponding Gielis transformations to
the “most natural” curves and surfaces of Euclidean geometry (e.g., for dimension 2:
the circles amongst the closed curves and the logarithmic spirals amongst the non–
closed curves), do result many of the forms that we do observe in nature -in biology,
cristallography, physics, chemistry, etc.- . Hereby, a motivation of “Euclidean most
natural” fitting in as special case of Bang–Yen Chen’s recent theory of “submanifolds
of constant ratio”, being that in the evolution of these shapes of any dimension n
starting off out of a pole, say the origin O of a Euclidean ambient space of any
dimension n+m, the length of the gradient of the polar distance always remains the
same, which for curves in a Euclidean plane amounts to D’Arcy Thompson’s basic
principle of growth in biology.

Roughly speaking, the main algebraic–analytic formalisms employed in differential
geometry are threefold. First, one has the Ricci calculus, which essentially concerns
tensor calculus in local co–ordinates; it was developed a.o. by Ricci, Levi–Civita,
Schouten and Struik. Next, one has the Cartan calculus or ω–calculus, (Cartan
often denoted the connection differential forms and the curvature differential forms
by omega’s), which basically is the method of “the moving frames”. It goes back to
Euler’s view on the meaning of the curvature of Euclidean planar curves and then was
further developed by Pagani, Frenet, Serret, Ribeaucour and Darboux for curves and
surfaces in Euclidean 3D space. It was intrinsically extended to full generality by É.
Cartan, following Lamé’s studies using curvilinear co–ordinates for the 3–dimensional
Euclidean spaces themselves and Demoulin’s likewise studies of projective spaces.
And, only recently, it was extended extrinsically to full generality too, of which the
main step, the determination of the geometrically most adapted principal orthonormal
frame fields on submanifolds of arbitrary dimensions and co–dimensions, was made
by Kostadin Trenčevski; the best choices of moving frames before had been done
almost one and a half century ago by Camille Jordan for dimension 1 and arbitrary
co–dimensions, (i.e. for curves in general), and by Kronecker and by Jordan for
submanifolds of arbitrary dimensions and, respectively, of co–dimension 1 and of
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arbitrary co–dimensions, in the latter case however, as indicated above, till only
recently having been restricted to the tangential parts of such frames only. Finally, one
has the nabla–calculus or the co–ordinate invariant calculus, which was thought of at
Chicago by Koszul and fully developed there by Katsumi Nomizu in the 19fifties. The
importance of well designed formalisms may not be underestimated: for a geometer
whose intuition is perfectly in tune with one of such formalisms, its playful use in
doing research may sometimes be like interactive, in that it may sometimes like guide
and inspire this geometer further than he would have imagined to be able to get
in the first place or indicate new directions to be explored completely beyond his
scope when starting to work. And though every geometer is at ease with each of the
methodologies of his field, most geometers are inclined to favour one of the three when
studying some problems which are neutral with respect to methodology; for instance,
amongst the students of Cartan who became themselves leading geometers in their
own right with remaining contributions to intrinsic and extrinsic geometry, Kentaro
Yano and Radu Rosca were champions in tensor calculus and in omega calculus,
respectively.

Generalising the 1917 (pseudo) parallel transport of Levi–Civita (and Schouten,
1918) of tangent vectors along curves in (pseudo) Riemannian manifolds, in some
sense as farthest thinkable reasonable extension of Euclidean geometry up till now,
after some two millennia of reflecting on the parallel postulate, one further came to
the study of the geometry of general connections in fibre bundles. But, according
to Chern and in any case in our present times, Riemannian geometry is the central
topic in geometry. And, by the 1956 isometrical embedding theorem of Nash, every
abstract n–dimensional (definite) Riemannian manifold can, in many ways, be con-
sidered as a submanifold in Euclidean spaces of sufficiently high dimensions n + m,
and a Lorentzian version and the general indefinite Riemannian manifold version of
this fundamental result concerning isometrical embeddings in appropriate pseudo Eu-
clidean spaces of sufficiently high dimensions were later given by Friedman and by
Clarke and Greene. Thus, (pseudo) Riemannian geometry conceptually essentially is
equivalent with the intrinsic geometry of the (pseudo) Riemannian submanifolds of
arbitrary dimensions n and co–dimensions m in (pseudo) Euclidean spaces, and, as
such, is part of the geometry of submanifolds of (pseudo) Euclidean spaces which itself
can be seen for arbitrary dimensions and co–dimensions in our natural imagination
to correspond to the abstraction of our basic visual and motoric sense–experiences of
“the real curves and the real surfaces that we do encounter in our real worlds”. In
this respect, from Jacob Bronowski’s “The Origins of Knowledge and Imagination”
come the following complementary quotes: “The place of sight in human evolution is
cardinal” and “The world of science is wholly dominated by the sense of sight”, and in
the same author’s chapter “On the music of the spheres” in his book “The Ascent of
Man” one finds a so beautiful discussion on the Euclidean theorem of Pythagoras as
wonderful connection between the two. In this light, the appreciation of the geometry
of submanifolds as the geometry of our human kind may be seen in not too misty a way
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after all. Further along these lines, one might consider the goals of Hugo Steinhaus’
“Kaleidoskop der Mathematik”: to show that (1) “Der Gegenstand der Mathematik
ist die Wirklichkeit” and that (2) “Die Mathematik ist universell”. And, in his “La
valeur de la science”, Henri Poincaré like rounded off observations of the sorts just
made by the following statements: “Ce que nous appelous la réalité objective, c’est,
en dernier̀e analyse, ce qui est commun à plusieres êtres pensants, et pourrait être
commun à tous; cette partie commune ne peut être que l’harmonie exprimée par les
lois mathématiques” and “La pensée n’est qu’un éclair au milieu d’une longue nuit.
Mais c’est cet éclair qui est tout”.

In the geometry of general submanifolds Mn in Euclidean spaces En+m, or in gen-
eral (pseudo) Riemannian ambient spaces M̃n+m for that matter, the knowledge of
fundamental links between the intrinsic and the extrinsic geometries of submanifolds
is crucial. In the 19nineties, Bang–Yen Chen initiated significant advances in this
respect, to begin with in terms of his new scalar valued Riemannian curvature invari-
ants, by deriving general optimal inequalities between various intrinsic and extrinsic
characteristics of submanifolds (cfr. B.-Y. Chen, “Pseudo–Riemannian Geometry,
δ–invariants and Applications”, World Scientific Publ. Co., Singapore, 2011). The
corresponding Chen and Wintgen ideal submanifolds, i.e. the shapes which are as-
sumed by given abstract Riemannian manifolds when realising them in Euclidean
spaces as submanifolds for which the extrinsic tensions (which for the Chen ideal
submanifolds involve the squared mean curvature and for the Wintgen ideal subman-
ifolds moreover involve the curvature of the normal bundle) are as small as possible,
turn out to manifest intrinsic symmetry properties of a special basic type studied since
the 19eighties, in particular by Ryszard Deszcz. When these properties concern the
Riemann curvature tensor, the manifolds involved are called Deszcz symmetric spaces,
and the following brief introduction to such spaces, leading up to quasi–umbilical hy-
persurfaces in space forms as visualisations of “our theatre” in the above sense, will
end the first part of this little hi-story of geometry.

The fundamental lemma of Riemannian geometry states that there exists a unique
Riemannian connection ∇, i.e. a derivation on any Riemannian manifold (Mn, g)
of vector fields with respect to vector fields following the rules of linearity and the
product rule of Leibniz and which is compatible with the differential structure on Mn,
(in that the commutator of this connection is identical with the Lie bracket of vector
fields), and which, as well is compatible with the geometrical structure g on (Mn, g),
(in that ∇g = 0; -from deriving vector fields by ∇ one can normally get to deriving
arbitrary tensor fields by∇- ). This Riemannian connection∇ is given by the standard
formula of Koszul and the corresponding expressions for the Riemann–Christoffel, for
the Ricci and for the Weyl conformal curvature tensors R, S and C respectively, etc.,
were systematically developed by Nomizu in his thesis with Chern. The Riemannian
or sectional curvatures K(p, π) were known to be scalar valued isometric invariants
of (Mn, g), determined at any point p and for any 2D tangent plane section π at
p, right away since their very introduction by Riemann, but their name “curvature”
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merely derived from the analogy of their calculation with the intrinsic formula for
the Gauss curvature K of surfaces M2 in E3, now applied for the Gauss curvature
at p of the 2D surface G2 formed around p by the geodesics of (Mn, g) which at p
are tangent to π. Of course, as regards further appreciations of curvatures K, one
could also base e.g. on the formulas of Bertrand–Puisseux and of Diguet referring
to the perimeters or the areas of geodesic circles or discs on (Mn, g) in comparison
with the perimeters and areas of Euclidean circles and discs of the same radii. But
striving for better truly geometrical insights in the curvature tensor R or equivalently
in the sectional curvatures K, as already mentioned before, around the same time and
independently, Levi–Civita and Schouten introduced the notion of parallel (or pseudo
parallel) transport of vectors along curves in (Mn, g), -which is equivalent with the
notion of Riemannian connection- to obtain their geometrical interpretations of R
and K in terms of the lengths of the sides and the areas of parallelogramoids and of
holonomy of vectors or of directions, respectively.

Pretty oversimplifying for instance Weyl’s view on this matter in his “Symmetry”
book, it could be stated that “symmetry means that something keeps the same measure
after something has been done with it”. As such essentially, “the something that
we want to do with things”, i.e. the transformations or operations that we want
to consider in the following discussions on symmetry of Riemannian spaces are the
parallel transports around infinitesimal co–ordinate parallelograms. These likely are
the most natural transformations to perform on Riemannian manifolds (Mn, g) when
showing proper respect for both the differential and the metrical structures of these
spaces; (cfr. the chapter “On Natural Symmetries” with Ryszard Deszcz and Stefan
Haesen in the Ed. Acad. Romania’s “Topics in Differential Geometry”, 2008, Eds.
A. and I. Mihai and R. Miron, and cfr. the article “Natural Intrinsic Geometric
Symmetries” with Stefan Haesen in the 2009 SIGMA special volume on “Élie Cartan
and Differential Geometry”, where these matters are dealt with a bit more delicately
as compared to the sometimes rather rough formulations that will come hereafter).

After thus having decided on the type of transformations for which we will consider
corresponding symmetries, next we should choose “what kind of things” actually to
transform. And to begin with, as Schouten was first to think of, long ago, the very
simplest “beings” to parallely move around, of course, are vectors. As is well known,
certainly since the general use of the ∇ formalism in most current introductions to
Riemannian geometry, it in fact became the definition self of the Riemann–Christoffel
curvature tensor: R measures the difference between any vector −→v at any point p
of a Riemannian space (Mn, g) and the corresponding vector −→v ∗π̄ which results from
parallely moving −→v completely around any infinitesimal co–ordinate parallelogram
P which is “cornered” at p and whose sides at p are tangent to any non co–linear
vectors −→x and −→y at p, (and before we have already denoted π̄ for the tangent 2–plane

π̄ = −→x ∧ −→y ); or, still, in a terminology of Élie Cartan: R constitutes the holonomy
(from “holos” and “nomos”) for vectors or equivalently for tangent directions on
Riemannian manifolds (Mn, g) under their parallel transports all around infinitesimal



16 L. VERSTRAELEN

co–ordinate parallelograms. And, by a theorem of Cartan, the information contained
in R is the same as the information given by the sectional curvatures K(p, π) for all
points p and for all 2D planes π tangent to Mn at p. So, in conclusion of the above:
the Riemannian manifolds (Mn, g) which satisfy the symmetry property that all their
directions at all their points remain invariant under all such parallel transports are
the locally flat or locally Euclidean spaces, i.e. the Riemannian spaces for which R = 0
or, equivalently, for which K = o. In passing, it could be worthwhile to point our here
that, in the mean time, via the theorem of Nash, various aspects of interest concerning
abstract Riemannian manifolds (Mn, g) can well be interpreted pretty “concretely”
when actually viewing these manifolds as submanifolds in ambient Euclidean spaces
En+m. As such, in particular, any sectional curvature K(p, π) of (Mn, g) can be seen
as the Gauss curvature at p of the 2D surface Σ2 in E2+m which is the 2D normal
section at p of the submanifold (Mn, g) of En+m by the (2 + m)D normal space to
this submanifold spanned by the normal space T⊥p M

nas such to the submanifold Mn

in En+m at p together with the 2D tangent plane π to this submanifold at p. And
the Gauss curvature at p of such surfaces Σ2 in E2+m may further be “reduced” to
Gauss curvatures at p of surfaces Σ2

ξ in 3D Euclidean spaces E3, these latter surfaces

Σ2
ξ resulting by projecting surfaces Σ2 in E2+m onto the subspaces E3 of E2+m which

are spanned at p by π together with any normal ξ to Mn in En+m at p. And,
finally, in some sense closing up a sort of “curvature–circle” which in a way started
with Newton’s determination of the curvature of Euclidean planar curves, via Euler’s
normal (1D) sections of surfaces M2 in E3 and thus via the principal curvatures k1 and
k2 of such surfaces a.o. came to the intrinsic Gauss curvature K = k1.k2, the extrinsic
mean curvature of Germain H = (k1 + k2)/2 which relates to the surface tension
that results from the surface’s shape in E3 and the extrinsic curvature of Casorati
C = (k2

1 + k2
2)/2 which, in best accordance with our visual intuition and common

sense, relates to the form proper of surfaces M2 in E3, and then via Gauss’ theorema
egregium formula, with Riemann, led to the notion of the sectional curvatures K
of his manifolds (Mn, g), which now, in turn, reducible back to Gauss curvatures of
surfaces Σ2

ξ in E3, can be determined by curvatures of Euclidean planar curves, or,

restating this last step more precisely: the Gauss curvature of any surface M2 in E3

at any of its points is, up to sign, the squared curvature of a Euclidean planar normal
section (which section can be easily determined using Euler’s formula).

Now, let it be recalled that the locally Euclidean spaces are characterised among all
Riemannian manifolds by the symmetry property of the invariance of their directions
under the parallel transports around their infinitesimal co–ordinate parallelograms.
And, as also was mentioned before: the projective class of the locally Euclidean Rie-
mannian manifolds consists of the Riemannian spaces of constant curvature K = c,
or, still, of the real space forms Mn(c), (flat or parabolic for c = o, elliptic for c > o
and hyperbolic for c < o). In other words, by application of projective transformations
to the locally flat spaces one obtains real space forms and the class of real space forms
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is closed under projective transformations. At this stage it might be not unappropri-
ate to reflect a while on the geometrical meaning of projective transformations also in
relation with the fundamental naturalness in our kind’s visual and motoric abilities
to metrically look at the same things from different points of view. Moreover, it could
be remarked here and now that, in view of the projective models of the Euclidean and
of the elliptic and hyperbolic non–Euclidean geometries which were established prior
to the above recalled theorem of Beltrami, Cayley made the following observation:
“Metric geometry is a part of descriptive geometry, and descriptive geometry is all
geometry”, herewith in his way neatly illustrating the psychologically based interwo-
veness of “our” visual experiences and of “our” geometries. In any case, the Euclidean
and the non–Euclidean real space forms Mn(c), -by Schur’s lemma, for dimensions
n ≥ 3, the Riemannian manifolds (Mn, g) for which the main Riemannian invariant,
the Riemannian or sectional curvature function, K(p, π) is isotropic in the sense as to
be the same for all 2D planes π at any of its points-, constitute the projective class of
the Riemannian manifolds for which likely their simplest geometrical objects, namely
their tangent directions, remain invariant under likely their most natural transforma-
tions, namely the parallel transports around infinitesimal co–ordinate parallelograms.
As stated before, it are the spaces (Mn, g) satisfying the axiom of free mobility, or,
still, the spaces (Mn, g) whose group of isometries has the maximal possible dimension
d = n(n+1)/2, and, speaking about symmetry in its plainest meaning of our common
sense: these spaces look the same at all of their points and at every point these spaces
look the same in all directions, being thus both in the mathematical sense and in the
common sense likely the most perfect spaces that we could imagine, when allowing to
leave the boundaries of Euclidean geometry per se, and which do correspond to our
most immediate and unsophisticated description of “the world of our human sight”,
and, as touched upon before, these kinds of speculations could be carried through
too for the indefinite case as well. The geometry of “our” nature however, in sev-
eral factual situations, sometimes also drastically opposes to the formerly described
ultimate mathematical perfection. For instance, “thinking large”, and, regarding the
spacetimes of the general theory of relativity, thinking for instance of the Friedmann–
Lemàıtre cosmological models of the 19twenties, isotropy as such -all 1D directions
being the same- obviously cannot be expected to occur: in particular such isotropy
here implying that it would be impossible to distinguish between the “wheres” and
the “whens” of any event. And, for instance, “thinking small”, the homochiralities in
biochemistry, going back to a discovery of Pasteur in 1848 and probably best known
from DNA molecules with torsions exclusively being of only one sign, naturally may
appear to us as in conflict with the mirror or bilateral symmetries which are so signifi-
cantly present in the real space forms indeed. Thus it came about to look for, in some
sense, “the second best possible symmetric spaces”, or, still, “the anisotropic spaces
which are most symmetrical”, properly determined from within geometry itself and
such that the main symmetries of these spaces would a.o. better tolerate the kinds of
directional or orientational preferences that just have been mentioned. In the above
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contexts, a rather reasonable way to do so could well be the following. Here is the
opening paragraph of Robert Osserman’s “Curvature in the Eighties”: “The notion
of curvature is one of the central concepts of differential geometry; one could argue
that it is the central one, distinguishing the geometrical core of the subject from those
aspects that are analytic, algebraic, or topological. In the words of Marcel Berger,
curvature is the number one Riemannian invariant and the most natural. Gauss and
then Riemann saw it instantly”; and for a panoramic view of Riemannian geometry,
see Marcel Berger’s book “A Panoramic View of Riemannian geometry”, Springer,
Berlin, 2003). And, also directly from these words alone, the real space forms Mn(c)
present themselves as the most perfect Riemannian spaces, their most important Rie-
mannian invariant K(p, π) being the same at all points p and in all 2D directions
π. So, next, we take a keen interest in the Riemannian spaces (Mn, g) for which
the sectional curvatures K(p, π) are invariant under the parallel transports around all
infinitesimal co–ordinate parallelograms P cornered at p and tangent to all planes π̄.
As noted with Stefan Haesen, these Riemannian spaces turn out to be the so–called
semi symmetric spaces, i.e. the spaces for which R ·R = 0 whereby the first R stands
for the curvature operator and the second R stands for the (0, 4) Riemann–Christoffel
curvature tensor (thus meaning that for all vector fields X and Y : R(X, Y ) · R = 0,
R(X, Y ) = ∇X∇Y −∇Y∇X−∇[X,Y ] hereby acting as a derivation on R). The class of
the semi symmetric spaces evidently encloses the class of Cartan’s locally symmetric
spaces, which are defined as the Riemannian manifolds for which ∇R = 0, and which
geometrically correspond to the geodesic symmetries around all points of such spaces
being local isometries; Zoltan Szabó gave a full classification of the semi symmetric
spaces in the 19eighties while the locally symmetric spaces had been fully classified
long before by Élie Cartan. Of course, the semi symmetric spaces contain the real
space forms as their most trivial examples. As shown by Levy in 1926, the Cartan
or locally symmetric Riemannian spaces are characterised by the fact that their sec-
tional curvatures are invariant under the parallel transport along all infinitesimal line
segments; in a loose way, this visualises into these curvatures remaining the same
under the reflections in all infinitesimally nearby mirrors. And, in this way looking at
things, for semi symmetry the geometric transformations, the invariance of the Rie-
mannian curvatures under which is the defining characteristic, are the compositions
of four parallel transports along such line segments, namely along the consecutive
sides of the co–ordinate parallelograms P.

And now, in a manner of speech in a sense as used before, we finally consider the
class of the so–called pseudo symmetric or Deszcz symmetric spaces, which spaces
are seen when looking at the semi symmetric or Szabó symmetric spaces from differ-
ent points of view. When applying a projective transformation to a semi symmetric
space, in general, the semi symmetry condition R · R = 0 is no longer satisfied, but
after such transformation the resulting Riemannian manifold’s (0, 6) curvature ten-
sors R · R and ∧g · R, whereby ∧g stands for the natural metrical endomorphism,
are proportional, which is the tensorial definition of pseudo symmetry, and the class
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of all pseudo symmetric spaces itself is closed under projective transformations. The
step from the semi symmetric to the pseudo symmetric spaces basically is completely
analogous with the step from the locally Euclidean spaces (K = o) to the real space
forms (K is constant; c=o or c >o or c <o). Just as the Riemann–Christoffel (0, 4)
curvature tensor R is fully determined by the Riemannian or sectional curvatures
K(p, π), the (0, 6) curvature tensor R ·R is fully determined by the so–called Deszcz
or double sectional curvatures L(p, π, π̄); (these latter were introduced with Stefan
Haesen in the paper “Properties of a scalar curvature invariant depending on two
planes”, manuscripta math. 122, 2007). Unlike for the sectional curvatures K(p, π)
there does not hold a lemma of Schur for the double sectional curvatures L(p, π, π̄);
but apart from this, just like real space forms -at least for n ≥ 3- are characterised
by the fact that their curvatures K(p, π) do not depend on the planes π, (say by the
fact that their sectional curvatures are isotropic, i.e. do not depend on the choice
of 2D directions π), the Deszcz symmetric spaces are characterised by the fact that
their curvatures L(p, π, π̄) do not depend on the planes π and π̄, (i.e. by the fact that
their double sectional curvatures are isotropic, namely do not depend on the choice
of the 2D directions π and π̄). And L = o characterises the Szabó or semi symmetric
spaces. In the same notations as used before, the invariance of the curvatures K(p, π)
under parallel transports around infinitesimal co–ordinate parallelograms P cornered
at p and tangent there to a plane π̄ = −→x ∧−→y means the following: when the plane π
is spanned by two vectors −→v and −→w at p, π = −→v ∧−→w , after the parallel transports of
−→v and −→w around P, although in general the plane π∗π̄ spanned by the then obtained
vectors −→v ∗π̄ and −→w ∗π̄ at p, π∗π̄ = −→v ∗π̄ ∧ −→w ∗π̄, is different from the original plane π,
the sectional curvatures of both these planes at p are the same: K(p, π∗π̄) = K(p, π).
And, in the same sense that the sectional curvatures measure the change of directions
under the parallel transports around parallelograms P, the double sectional curvatures
measure the change of sectional curvatures under such parallel transports.

In the standard way, in particular what was done in the last few paragraphs, may
be readily repeated also for the indefinite case, i.e. the above semi symmetry and
pseudo symmetry conditions can be considered equally well in the pseudo Riemannian
setting. And, as such, for instance in the case of 4D Lorentzian geometry, most of the
physically relevant spacetimes which have been studied so far turn out to be Deszcz
symmetric spaces indeed like i.p. the Friedman–Lemâitre spacetimes. Besides, and
hereby again focusing in the following on proper Riemannian geometry, next come
some further comments about the “mild” anisotropies as manifested by the non–
trivial pseudo symmetric spaces, i.e. by the pseudo symmetric spaces which do not
have constant Riemannian curvatures K, (these latter spaces being fully isotropic,
all their tangent directions enjoying a same status, all enjoying the same geometric
qualities). A 3D Riemannian manifold (M3, g) is pseudo symmetric if and only if it is
quasi Einstein, i.e. if and only if its Ricci tensor S has an eigenvalue, or, still, a Ricci
principal curvature, of multiplicity ≥ 2. In particular, when (M3, g) is Einstein, i.e.
when its Ricci tensor S is proportional to the metric tensor g, or, still, when all tangent



20 L. VERSTRAELEN

directions of (M3, g) have the same Ricci curvatures, by a theorem of Schouten and
Struik, (M3, g) then is a real space form; (hereby the property to be Einstein and
the isotropy of 1D directions amounting to the same, in this very special situation).
But on the non–trivial pseudo symmetric spaces of dimension 3, the properly quasi
Einstein spaces, the tangent spaces split up in a 2D plane and its orthogonal 1D
line which are then the two eigenspaces of S belonging to the then two distinct Ricci
principal curvatures of multiplicities 2 and 1, respectively. In particular, as such are
also the five non–trivial 3D Thurston spaces, and it moreover could be noted here
that their Deszcz curvatures are constant; (more precisely L = o, +1 or −1). On
a randomly choosen 3D Riemannian manifold on the other hand, the Ricci tensor
has 3 mutually distinct principal curvatures with 3 mutually orthogonal principal 1D
directions, thus showing in a sense a “wild” anisotropy, as such spaces geometrically
do behave quite differently in almost all directions.

In the present paragraph we will only consider Riemannian spaces (Mn, g) of di-
mensions n > 3 which are conformally flat or, using some earlier formulation, spaces
which in their smallest parts are similar to Euclidean spaces, or, still, to the spaces
(Mn, g) of dimension n > 3 with vanishing Weyl conformal curvature tensor C. Such
spaces are Deszcz symmetric if and only if they are “partially” Einstein, i.e. if and
only if their Ricci tensor S has at most two distinct principal values. In the particular
case of Einstein spaces proper, as is well known, then again we are dealing with the
real space forms and there is full 1D isotropy. In the non–trivial case however, the
tangent spaces of the Deszcz symmetric conformally flat manifolds split up in two
orthogonally complementary subspaces S1 and S2, namely the eigenspaces belong-
ing to the two distinct Ricci curvatures, say ρ1 and ρ2, with dimensions n1 and n2,
respectively, the multiplicities of ρ1 and ρ2; and in directions of S1 as compared to
in directions of S2 such spaces look essentially different, but all directions of S1 are
equivalent among each other and likewise all directions of S2 are equivalent among
each other, which expresses the meaning of the mild anisotropy that was alluded to
before. After the real space forms, the most special conformally flat Deszcz symmet-
ric spaces likely are those which are properly quasi Einstein, i.e. those for which, say,
n1 = 1 and n2 = n − 1, i.e. for which there is a unique privileged direction S1, the
principal Ricci direction corresponding to the Ricci curvature ρ1 of multiplicity 1, and
all directions perpendicular to S1 are mutually the same, or, still, all directions of the
(n− 1)D eigenspace S2 of the Ricci tensor do share the same properties among each
other, but these properties are different from those that the direction S1 in some sense
enjoys on its own. Now, as was basically shown already in the early 19seventies by
B.-Y. Chen, K. Yano and C.-S. Houh, these special conformally flat Deszcz symmetric
spaces are what -by a pretty well choosen name for that matter- at present are called
the spaces with quasi constant sectional curvatures, and already then, they moreover
identified these Riemannian spaces (Mn, g) with the quasi umbilical hypersurfaces Mn

in the real space forms Mn(c), or, still, with the loci of spheres in the real space forms,
(cfr. Bang-Yen Chen’s chapter 3 on “Riemannian Submanifolds” in “Handbook of
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Differential Geometry, Volume 1”, Elsevier, A’dam, 2000, Eds. Franki Dillen e.a.). In
particular, in Euclidean ambient spaces En+1, the special pseudo symmetric spaces
(Mn, g) concerned can thus be visualised as the envelopes of 1–parameter families
of spheres, and, when λ and µ denote the principal curvatures of these proper quasi
umbilical hypersurfaces Mn in En+1, then one can also readily visualise their Deszcz
sectional curvature too, namely as being given by L = λµ.

The Dutch word for “geometry” is “meetkunde”, which may actually much better
than the term geometry itself indicate what geometry is really all about. “To measure
the earth” was and remains a fascinating endeavor, and, for instance, Mercator’s
projection for ever will remain a great example of meetkunde, both from the pure
and from the applied points of view. But meetkunde, literally, stands for “the art to
achieve measure, balance, what is just (meaning here correct as well as precise)”, or,
still, meetkunde stands for “the art to see things right or to see things as they really
are” (which should be interpreted in the context of our understanding of human
sensations and perceptions), and the Dutch “meten” means “to measure”, i.e. to
take the measure, i.e. to take, in Dutch, “de maat”, and “maât” was the name of an
Egyptian goddess of justice. Maybe in other languages such better terms are in use
as well; in any case, Kepler tried in vain to introduce the term “Mass–Kunst” also in
German, and, as far as I know, “mértan” means meetkunde in Hungarian.

(to be continued)
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