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ON CHAIN CONDITIONS AND FINITELY GENERATED
MULTIPLICATION MODULES

B. DAVVAZ, A. KARAMZADEH, AND F. KARAMZADEH

Abstract. In this short paper, we study multiplication modules that satisfy as-
cending (respectively, descending) chain condition for multiplication submodules
and we investigate some properties of finitely generated multiplication modules.

1. Introduction

Let R be a commutative ring with identity and Mbe a unitary R-module. Accord-
ing to [2], M is called a multiplication module if every submodule of M is of the form
IM , for some ideal I of R. Barnard [2] showed that distributive modules are charac-
terized as modules for which every finitely generated submodule is a multiplication
module. Then many mathematicians worked on multiplication modules, for example
see [1, 3–6, 8]. A survey about this subject is collected in [7]. For any submodule N
of an R-module M , we define (N : M) = {r 2 R | rM ✓ N} and denote (0 : M) by
AnnR(M).

2. Main results

Remark 2.1. Let M be a multiplication R-module and ' 2 End(M). Since ker' \
MI = (ker')I for every ideal I of R, we conclude that ker' is a multiplication
submodule of M . Also, according to Note 1.4 in [7], every homomorphic image of a
multiplication module is a multiplication module.

Proposition 2.1. Let M be a multiplication R-modules. If M satisfies ascending
and descending chain conditions for multiplication submodules and ' 2 End(M),
then there exists n � 1 such that M = ker'n � Im'n.
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Proof. By Remark 2.1, the proof is straightforward. ⇤

We recall that an R-module M is indecomposable if it is non-zero and can not be
written as a direct sum of two non-zero submodules.

Proposition 2.2. Let M be an indecomposable multiplication R-modules. If M sat-
isfies ascending and descending chain conditions for multiplication submodules and
' 2 End(M), then ' is bijective or nilpotent.

Proof. By Proposition 2.1, the proof is straightforward. ⇤

Lemma 2.1. [7] Let M be a multiplication R-module. If N is a submodule of M such
that N \ IM = IN for every ideal I of R, then N is a multiplication module.

Theorem 2.1. Let M = Rm1 + . . . + Rmj be a finitely generated multiplication R-
module. Let I be an ideal of R and Imi = Rmi \ IM , for every i. Then, M satisfies
the ascending (respectively, descending) chain conditions on multiplication submodules
if and only if for every i, Rmi satisfies the ascending (respectively, descending) chain
conditions of multiplication submodules.

Proof. We prove the theorem for the ascending chain condition. The proof for the
descending chain condition is analogous.

Since Imi = Rmi\ IM , by Lemma 2.1, Imi is a multiplication submodule of Rmi.
Suppose that

I1mi ✓ I2mi ✓ I3mi ✓ . . .

is a chain of multiplication submodules of Rmi. Then,

AnnR

✓
Rmi

I1mi

◆
✓ AnnR

✓
Rmi

I2mi

◆
✓ AnnR

✓
Rmi

I3mi

◆
✓ . . .

is a chain of ideals of R. Since AnnR

⇣
Rmi
Ikmi

⌘
= Ik + AnnR(mi),

(I1 + AnnR(mi))M ✓ (I2 + AnnR(mi))M ✓ (I3 + AnnR(mi))M ✓ . . .

is a chain of multiplication submodules of M . Hence, there exists a positive integer
n such that for every k � n,

(In + AnnR(mi))M = (Ik + AnnR(mi))M.

Thus,

Ikmi = Rmi \ IkM ✓ Rmi \ (Ik + AnnR(mi))M = Rmi \ (In + AnnR(mi))M

= (In + AnnR(mi))mi = Inmi.

On the other hand, for every k � n, we have Inmi ✓ Ikmi. Therefore, Rmi satisfies
the ascending chain condition.
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Conversely, suppose that for every i, Rmi satisfies the ascending chain condition.
By Lemma 2.1, for every i, IiM is multiplication. Now, let

I1M ✓ I2M ✓ I3M ✓ . . .

be a chain of multiplication submodules of M . Then, we have

Rmi \ I1M ✓ Rmi \ I2M ✓ Rmi \ I3M ✓ . . . (i = 1, . . . , j).

Since Rmi \ InM = Inmi, for every 1  i  j and n � 1 and Rmi satisfies ascending
chain condition, then there exists ri such that Inmi = Irimi, for every n � ri. Now,
we take r = max{r1, r2, . . . , rj}. Then, Inmi = Irmi, for every n � r. Thus,

InM = Inm1 + Inm2 + . . .+ Inmj = Irm1 + Irm2 + . . .+ Irmj = IrM,

for every n � r. Therefore, M satisfies ascending chain condition. ⇤

Theorem 2.2. Let M = Rm1 + . . . + Rmj be a finitely generated multiplication
R-module. Let for every ideal I of R, Imi = Rmi \ IM and M satisfy ascending
(respectively, descending) chain condition of multiplication submodules. Then,

(1) M is a Noetherian (respectively, Artinian) R-module.
(2) R

AnnR(M) is a Noetherian (respectively, Artinian) ring.

Proof. (1) Suppose that M satisfies ascending chain condition of multiplication sub-
modules. Then, by previous theorem, for every i, Rmi satisfies ascending chain
condition of multiplication submodules. Every submodule of Rmi is the form Ikmi,
where Ik is an ideal of R. By Lemma 2.1, Ikmi is a multiplication submodule of
Rmi. Thus, Rmi is Noetherian. Therefore, we conclude that Rm1 � . . . � Rmj

is also Noetherian. The map ' : Rm1 � . . . � Rmj ! Rm1 + . . . + Rmj by
'(r1m1, . . . , rjmj) = r1m1 + . . .+ rjmj is an epimorphism. Since the sequence

0 ! ker ! Rm1 � . . .�Rmj ! 0

is exact, we conclude that M is Noetherian.
(2) We consider the map  : R ! Rm1 � . . . � Rmj by  (r) = (rm1, . . . , rmj)

such that r 2 R. Then,  is an R-homomorphism and ker = AnnR(M). Therefore,
R

AnnR(M) is isomorphic to a submodule of Rm1� . . .�Rmj. Since Rm1� . . .�Rmj is
Noetherian and every submodule of a Noetherian module is Noetherian, we conclude
that R

AnnR(M) is Noetherian. ⇤

Definition 2.1. An element m 2 M is called devisable if for every r 2 R\Z(R), there
exists m0 2 M such that m = rm0. If every element of M is devisable, then M is a
devisable module. In other words, M is devisable if M = rM for every r 2 R \Z(R).

Proposition 2.3. Let R be an integral domain and M = Rm1+. . .+Rmj be a finitely
generated multiplication R-module. If M 6= 0 is a divisible module, then M is faithful.
Moreover, if M is a faithful simple R-module, then M is a divisible R-module.
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Proof. Suppose that r 2 AnnR(M). Hence, for every m 2 M , rm = 0. Since M is
divisible, for every m 2 M , r0 2 R \ Z(R), there exists m0 2 M such that m = r0m0.
Thus, rr0m = 0. Since M 6= 0 and R is integral domain, we obtain r = 0 and so M
is faithful.

If M is faithful simple R-module, then M = RM and so M is divisible. ⇤
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