ON CHAIN CONDITIONS AND FINITELY GENERATED MULTIPLICATION MODULES

B. DAVVAZ, A. KARAMZADEH, AND F. KARAMZADEH

Abstract

In this short paper, we study multiplication modules that satisfy ascending (respectively, descending) chain condition for multiplication submodules and we investigate some properties of finitely generated multiplication modules.

1. Introduction

Let R be a commutative ring with identity and M be a unitary R-module. According to [2], M is called a multiplication module if every submodule of M is of the form $I M$, for some ideal I of R. Barnard [2] showed that distributive modules are characterized as modules for which every finitely generated submodule is a multiplication module. Then many mathematicians worked on multiplication modules, for example see $[1,3-6,8]$. A survey about this subject is collected in [7]. For any submodule N of an R-module M, we define $(N: M)=\{r \in R \mid r M \subseteq N\}$ and denote $(0: M)$ by $A n n_{R}(M)$.

2. Main Results

Remark 2.1. Let M be a multiplication R-module and $\varphi \in \operatorname{End}(M)$. Since $\operatorname{ker} \varphi \cap$ $M I=(\operatorname{ker} \varphi) I$ for every ideal I of R, we conclude that $\operatorname{ker} \varphi$ is a multiplication submodule of M. Also, according to Note 1.4 in [7], every homomorphic image of a multiplication module is a multiplication module.

Proposition 2.1. Let M be a multiplication R-modules. If M satisfies ascending and descending chain conditions for multiplication submodules and $\varphi \in \operatorname{End}(M)$, then there exists $n \geq 1$ such that $M=\operatorname{ker} \varphi^{n} \oplus \operatorname{Im} \varphi^{n}$.

[^0]Proof. By Remark 2.1, the proof is straightforward.
We recall that an R-module M is indecomposable if it is non-zero and can not be written as a direct sum of two non-zero submodules.

Proposition 2.2. Let M be an indecomposable multiplication R-modules. If M satisfies ascending and descending chain conditions for multiplication submodules and $\varphi \in \operatorname{End}(M)$, then φ is bijective or nilpotent.

Proof. By Proposition 2.1, the proof is straightforward.
Lemma 2.1. [7] Let M be a multiplication R-module. If N is a submodule of M such that $N \cap I M=I N$ for every ideal I of R, then N is a multiplication module.

Theorem 2.1. Let $M=R m_{1}+\ldots+R m_{j}$ be a finitely generated multiplication R module. Let I be an ideal of R and $I m_{i}=R m_{i} \cap I M$, for every i. Then, M satisfies the ascending (respectively, descending) chain conditions on multiplication submodules if and only if for every $i, R m_{i}$ satisfies the ascending (respectively, descending) chain conditions of multiplication submodules.

Proof. We prove the theorem for the ascending chain condition. The proof for the descending chain condition is analogous.

Since $I m_{i}=R m_{i} \cap I M$, by Lemma 2.1, $I m_{i}$ is a multiplication submodule of $R m_{i}$. Suppose that

$$
I_{1} m_{i} \subseteq I_{2} m_{i} \subseteq I_{3} m_{i} \subseteq \ldots
$$

is a chain of multiplication submodules of $R m_{i}$. Then,

$$
A n n_{R}\left(\frac{R m_{i}}{I_{1} m_{i}}\right) \subseteq A n n_{R}\left(\frac{R m_{i}}{I_{2} m_{i}}\right) \subseteq A n n_{R}\left(\frac{R m_{i}}{I_{3} m_{i}}\right) \subseteq \ldots
$$

is a chain of ideals of R. Since $A n n_{R}\left(\frac{R m_{i}}{I_{k} m_{i}}\right)=I_{k}+A n n_{R}\left(m_{i}\right)$,

$$
\left(I_{1}+A n n_{R}\left(m_{i}\right)\right) M \subseteq\left(I_{2}+A n n_{R}\left(m_{i}\right)\right) M \subseteq\left(I_{3}+A n n_{R}\left(m_{i}\right)\right) M \subseteq \ldots
$$

is a chain of multiplication submodules of M. Hence, there exists a positive integer n such that for every $k \geq n$,

$$
\left(I_{n}+A n n_{R}\left(m_{i}\right)\right) M=\left(I_{k}+A n n_{R}\left(m_{i}\right)\right) M .
$$

Thus,

$$
\begin{aligned}
I_{k} m_{i} & =R m_{i} \cap I_{k} M \subseteq R m_{i} \cap\left(I_{k}+\operatorname{Ann}_{R}\left(m_{i}\right)\right) M=R m_{i} \cap\left(I_{n}+\operatorname{Ann}_{R}\left(m_{i}\right)\right) M \\
& =\left(I_{n}+\operatorname{Ann}_{R}\left(m_{i}\right)\right) m_{i}=I_{n} m_{i} .
\end{aligned}
$$

On the other hand, for every $k \geq n$, we have $I_{n} m_{i} \subseteq I_{k} m_{i}$. Therefore, $R m_{i}$ satisfies the ascending chain condition.

Conversely, suppose that for every $i, R m_{i}$ satisfies the ascending chain condition. By Lemma 2.1, for every $i, I_{i} M$ is multiplication. Now, let

$$
I_{1} M \subseteq I_{2} M \subseteq I_{3} M \subseteq \ldots
$$

be a chain of multiplication submodules of M. Then, we have

$$
R m_{i} \cap I_{1} M \subseteq R m_{i} \cap I_{2} M \subseteq R m_{i} \cap I_{3} M \subseteq \ldots \quad(i=1, \ldots, j)
$$

Since $R m_{i} \cap I_{n} M=I_{n} m_{i}$, for every $1 \leq i \leq j$ and $n \geq 1$ and $R m_{i}$ satisfies ascending chain condition, then there exists r_{i} such that $I_{n} m_{i}=I_{r_{i}} m_{i}$, for every $n \geq r_{i}$. Now, we take $r=\max \left\{r_{1}, r_{2}, \ldots, r_{j}\right\}$. Then, $I_{n} m_{i}=I_{r} m_{i}$, for every $n \geq r$. Thus,

$$
I_{n} M=I_{n} m_{1}+I_{n} m_{2}+\ldots+I_{n} m_{j}=I_{r} m_{1}+I_{r} m_{2}+\ldots+I_{r} m_{j}=I_{r} M
$$

for every $n \geq r$. Therefore, M satisfies ascending chain condition.
Theorem 2.2. Let $M=R m_{1}+\ldots+R m_{j}$ be a finitely generated multiplication R-module. Let for every ideal I of $R, I m_{i}=R m_{i} \cap I M$ and M satisfy ascending (respectively, descending) chain condition of multiplication submodules. Then,
(1) M is a Noetherian (respectively, Artinian) R-module.
(2) $\frac{R}{A n n_{R}(M)}$ is a Noetherian (respectively, Artinian) ring.

Proof. (1) Suppose that M satisfies ascending chain condition of multiplication submodules. Then, by previous theorem, for every $i, R m_{i}$ satisfies ascending chain condition of multiplication submodules. Every submodule of $R m_{i}$ is the form $I_{k} m_{i}$, where I_{k} is an ideal of R. By Lemma 2.1, $I_{k} m_{i}$ is a multiplication submodule of $R m_{i}$. Thus, $R m_{i}$ is Noetherian. Therefore, we conclude that $R m_{1} \oplus \ldots \oplus R m_{j}$ is also Noetherian. The map $\varphi: R m_{1} \oplus \ldots \oplus R m_{j} \rightarrow R m_{1}+\ldots+R m_{j}$ by $\varphi\left(r_{1} m_{1}, \ldots, r_{j} m_{j}\right)=r_{1} m_{1}+\ldots+r_{j} m_{j}$ is an epimorphism. Since the sequence

$$
0 \rightarrow \operatorname{ker} \psi \rightarrow R m_{1} \oplus \ldots \oplus R m_{j} \rightarrow 0
$$

is exact, we conclude that M is Noetherian.
(2) We consider the map $\psi: R \rightarrow R m_{1} \oplus \ldots \oplus R m_{j}$ by $\psi(r)=\left(r m_{1}, \ldots, r m_{j}\right)$ such that $r \in R$. Then, ψ is an R-homomorphism and $\operatorname{ker} \psi=A n n_{R}(M)$. Therefore, $\frac{R}{A n n_{R}(M)}$ is isomorphic to a submodule of $R m_{1} \oplus \ldots \oplus R m_{j}$. Since $R m_{1} \oplus \ldots \oplus R m_{j}$ is Noetherian and every submodule of a Noetherian module is Noetherian, we conclude that $\frac{R}{A n n_{R}(M)}$ is Noetherian.
Definition 2.1. An element $m \in M$ is called devisable if for every $r \in R \backslash Z(R)$, there exists $m^{\prime} \in M$ such that $m=r m^{\prime}$. If every element of M is devisable, then M is a devisable module. In other words, M is devisable if $M=r M$ for every $r \in R \backslash Z(R)$.

Proposition 2.3. Let R be an integral domain and $M=R m_{1}+\ldots+R m_{j}$ be a finitely generated multiplication R-module. If $M \neq 0$ is a divisible module, then M is faithful. Moreover, if M is a faithful simple R-module, then M is a divisible R-module.

Proof. Suppose that $r \in A n n_{R}(M)$. Hence, for every $m \in M$, $r m=0$. Since M is divisible, for every $m \in M, r^{\prime} \in R \backslash Z(R)$, there exists $m^{\prime} \in M$ such that $m=r^{\prime} m^{\prime}$. Thus, $r r^{\prime} m=0$. Since $M \neq 0$ and R is integral domain, we obtain $r=0$ and so M is faithful.

If M is faithful simple R-module, then $M=R M$ and so M is divisible.

References

[1] M. M. Ali, Idempotent and nilpotent submodules of multiplication modules, Comm. Algebra 36 (2008), 4620-4642.
[2] A. Barnard, Multiplication modules, J. Algebra 71 (1981), 174-178.
[3] Y. H. Cho, On multiplication modules. IV, Korean Ann. Math. 23 (2006), 77-83.
[4] S. C. Lee, C. Sang and R. Varmazyar, Semiprime submodules of graded multiplication modules, J. Korean Math. Soc. 49 (2012), 435-447.
[5] S. C. Lee, Multiplication modules whose endomorphism rings are integral domains, Bull. Korean Math. Soc. 47 (2010), 1053-1066.
[6] A. Parkash, A.K. Maloo, Distributive and multiplication modules, Beitr. Algebra Geom. 52 (2011), 405-412.
[7] A. A. Tuganbaev, Multiplication modules, Journal of Mathematical Sciences 132 (2004), 3839-3905.
[8] A. A. Tuganbaev, Multiplication modules and ideals, Algebra. J. Math. Sci. (N. Y.) 136 (2006), 4116-4130.

Department of Mathematics,
Yazd University,
Yazd, Iran
E-mail address: davvaz@yazd.ac.ir

[^0]: Key words and phrases. Ring, Module, Multiplication module, Devisable module, Chain condition.

 2010 Mathematics Subject Classification. 13A02, 13C13.
 Received: January 18, 2013.
 Revised: June 14, 2013.

