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SOLUBLE GROUPS WITH F-PERMUTABLE SUBGROUPS

CHANGWEN LI1 AND YAN WANG2

Abstract. Let G be a finite group and F a class of finite groups. A subgroup H
of G is said to be F-permutable in G if there exists a subgroup T of G such that
HT is s-permutable in G and (H \ T )HG/HG is contained in the F-hypercenter
ZF
1(G/HG) of G/HG. By using this new concept, we establish some new criteria

for a group G to be soluble.

1. Introduction

Throughout this article, all groups considered are finite and G always denotes a
group. The terminologies and notations are standard, as in [4] and [9].

Recall that a subgroup H of G is said to be s-permutable, or ⇡-quasinormal [7] in
G if H is permutable with every Sylow subgroup P of G (that is, HP = PH). A
subgroup H of G is said to be c-supplemented [11] in G if there exists a subgroup K of
G such that G = HK and H\K  H

G

, where H
G

is the maximal normal subgroup of
G contained in H. By using the s-permutability and c-supplementation of subgroups,
people have obtained many interesting results; see, for example, [1, 5, 7, 8, 10–12],
etc.

In this article, we give the following more generalized concept.

Definition 1.1. Let H be a subgroup of G and F a class of finite groups. We say
that H is F-permutable in G if there exists a subgroup T of G such that HT is s-
permutable in G and (H \ T )H

G

/H
G

is contained in the F-hypercenter ZF
1(G/H

G

)
of G/H

G

.

Recall that, for a class F of groups, a chief factor H/K of a group G is called
F-central (see [4]) if [H/K](G/C

G

(H/K)) 2 F. The symbol ZF
1(G) denotes the F-

hypercenter of a group G, that is, the product of all such normal subgroups H of G
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whose G-chief factors are F-central. A subgroup H of G is said to be F-hypercenter
in G if H  ZF

1(G). A class F of groups is called a formation if it is closed under a
homomorphic image and a subdirect product. It is clear that every group G has a
smallest normal subgroup (called F-residual of G and denoted by GF) with quotient in
F. A formation F is said to be saturated if it contains every groupG withG/�(G) 2 F.
We use S to denote the formation of all soluble groups.

Obviously, all s-permutable subgroups and all c-supplemented subgroups are all
F-permutable subgroups. However, the following examples show that the converse is
not true.

Example 1.1. Let G = C7 o C3 = [K]C3 be a regular wreath product, where K is the
base group of C7 o C3 and |C

i

| = i. Then K = F (G) is the Sylow 7- subgroup of G
and the subgroup H = {(a1, a2, 1) | a1, a2 2 C7} is maximal in K. It is clear that H
is F-permutable in G. However, H is not s-permutable in G.

Example 1.2. Let G = A o B, where A is a cyclic group of order 5 and B = h↵i,
where ↵ 2 Aut(A) with |↵| = 4. It is easy to see that h↵2

i is F-permutable in G.
However, h↵2

i is not c-supplemented in G.

2. Preliminaries

Lemma 2.1. Let A,B and K be subgroups of a group G.

(1) If (|G : A|, |G : B|) = 1, then G = AB [4, Lemma 3.8.1].
(2) If (|G : A|, |G : B|) = 1 and K is normal in G, then K = (K \A)(K \B) [4,

Lemma 3.8.2].
(3) K \AB = (K \A)(K \B) if and only if KA \KB = K(A \B) [2, Lemma

A.1.2].

A formation F is said to be S-closed (S
n

-closed) if it contains all subgroups (all
normal subgroups, respectively) of all its groups. The following lemma is well known.

Lemma 2.2. Let G be a group and A  G. Let F be a non-empty saturated formation.
Then

(1) If A is normal in G, then AZF
1(G)/A  ZF

1(G/A).
(2) If F is S-closed, then ZF

1(G) \ A  ZF
1(A).

(3) If F is S
n

-closed and A is normal in G, then ZF
1(G) \ A  ZF

1(A).
(4) If G 2 F, then ZF

1(G) = G.

Lemma 2.3. Suppose that H be a subgroup of G and H is s-permutable in G. Then

(1) If H  K  G, then H is s-permutable in K.
(2) If N is a normal subgroup of G, then HN is s-permutable in G and HN/N is

s-permutable in G/N .
(3) H is subnormal in G.

In view of Lemmas 2.2 and 2.3, we can get the following lemma easily.
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Lemma 2.4. Let G be a group and H  M  G.

(1) If H is F-permutable in G and F is S-closed, then H is F-permutable in M .
(2) Suppose that H EG. Then M/H is F-permutable in G/H if and only if M is

F-permutable in G.
(3) If H E G, then for every F-permutable subgroup E of G with (|H|, |E|) = 1,

HE/H is F-permutable in G/H.

Lemma 2.5. [3, Theorem A] Suppose that G has a Hall ⇡-subgroup, where ⇡ is a set
of odd primes. Then all Hall ⇡-subgroups of G are conjugate.

Lemma 2.6. [10, Lemma A] If P is an s-permutable p-subgroup of a group G for
some prime p, then N

G

(P ) � Op(G).

Lemma 2.7. [8, Lemma 2.4] Suppose that H is s-permutable in G, and let P be a
Sylow p-subgroup of H. If H

G

= 1, then P is s-permutable in G.

3. Main results

Theorem 3.1. Let P be a Sylow p-subgroup of a group G, where p is the smallest
prime dividing the order of G. If all maximal subgroups of P are S-permutable in G,
then G is soluble.

Proof. Suppose that the assertion is false and let G be a counterexample of minimal
order. Then by the well known Feit-Thompson’s theorem, we have that p = 2. We
now proceed the proof by the following steps.

(1) O2(G) = 1.
Assume that L = O2(G) 6= 1. Obviously, P/L is a Sylow 2-subgroup of G/L. Let

M/L be a maximal subgroup of P/L. Then M is a maximal subgroup of P . By the
hypothesis and Lemma 2.4(2), M/L is S-permutable in G/L. The minimal choice of
G implies that G/L is soluble. Consequently, G is soluble. This contradiction shows
that step (1) holds.

(2) O20(G) = 1.
Assume that E = O20(G) 6= 1. Then, obviously, PE/E is a Sylow 2-subgroup

of G/E. Suppose that M/E is a maximal subgroup of PE/E. Then there exists
a maximal subgroup P1 of P such that M = P1E. By the hypothesis and Lemma
2.4(3), M/E = P1E/E is S-permutable in G/E. The minimal choice of G implies
that G/E is soluble. By the well known Feit-Thompson’s theorem, we know that E
is soluble. It follows that G is soluble, a contradiction.

(3) P is not cyclic.
If P is cyclic, then G is 2-nilpotent by [9, Theorem 10.1.9]. This implies that G is

soluble, a contradiction.
(4) If 1 6= N EG, then N is not soluble and G = PN .
If N is soluble, then O2(N) 6= 1 or O20(N) 6= 1. Since O2(N) char N EG, O2(N) 

O2(G). Analogously O20(N)  O20(G). Hence O2(G) 6= 1 or O20(G) 6= 1, which
contradicts step (1) or step (2). Therefore N is not soluble. Assume that PN < G.
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By Lemma 2.4(1), every maximal subgroup of P is S-permutable in PN . Thus PN
satisfies the hypothesis. By the minimal choice of G, PN is soluble and so N is. This
contradiction shows that G = PN .

(5) G has a unique minimal normal subgroup, N say (where N maybe is G).
By step (4), we see that G = PN for every non-identity normal subgroup N of G.

It follows that G/N is soluble. Since S is closed under subdirect product, G has a
unique minimal normal subgroup, N say.

(6) ZS
1(G) = 1.

If ZS
1(G) 6= 1, then we may take a minimal normal subgroup N of G which con-

tained in ZS
1(G). Obviously, N is an elementary Abelian r-subgroup for some prime

r, which contradicts steps (1) and (2).
(7) Final contradiction.
Let P1 be a maximal subgroup of P . By the hypothesis, there exists a subgroup

K1 of G such that P1K1 is s-permutable in G and

(P1 \K1)(P1)G/(P1)G ✓ ZS
1(G/(P1)G).

In view of steps (1) and (6), we get P1 \K1 = 1. This means that 4 - |K1|. Hence
by [9, Theorem 10.1.9], K1 has a normal Hall 20-subgroup M1. Evidently, M1 is also
a Hall 20-subgroup of P1K1. Obviously, there exists a Sylow 2-subgroup (K1)2 of
K1 such that P1(K1)2 is a Sylow 2-subgroup P1K1. If (P1K1)G = 1, then P1(K1)2 is
s-permutable in G by Lemma 2.7. Assume that |(K1)2| = 1. Then P1 is s-permutable
in G. In view of Lemma 2.6, P1 E POp(G) = G, and so P1  (P1K1)G = 1. This
shows that P is cyclic, a contradiction. Hence we have |(K1)2| = 2. Then P1(K1)2 is
a Sylow 2-subgroup of G. Applying Lemma 2.6 again, P1(K1)2 is normal in G, which
contradicts (P1K1)G = 1. Therefore, (P1K1)G 6= 1. By steps (4) and (5), N  P1K1.
Since N E G, N E P1K1. It is easy to see that M1 \N is also a Hall 20-subgroup of
N . Since G = PN , we have

|G : M1 \N | = |PN : M1 \N | =
|P ||N |

|N \ P ||M1 \N |

= |N : M1 \N ||P : P \N |

is a 2-number. This implies thatM1\N is a Hall 20-subgroup ofG. ThusM1\N = M1

is a Hall 20-subgroup of N and also a Hall 20-subgroup of G. For any element x 2 G,
both Mx

1 and M1 are Hall 20-subgroups of N . Since any two Hall 20-subgroups of a
group are conjugate by Lemma 2.5,Mx

1 andM1 are conjugate inN . LetH = N
G

(M1).
By Frattini argument, G = NH. Since (|N : N \ P |, |N : M1|) = 1, N = (N \ P )M1

by Lemma 2.1(1). Hence G = (N \ P )H. It follows that

P = P \ (N \ P )H = (N \ P )(P \H).

Since (|G : P |, |G : M1|) = 1, we have G = PM1 = PH by Lemma 2.1(1). If
P \H = P , then P  H and so G = H has a non-identity normal Hall 20-subgroup
M1, which contradicts O20(G) = 1. Thus P \H < P and so there exists a maximal
subgroup P2 of P such that P \H  P2. Then P = (N \ P )(P \H) = (N \ P )P2.
By the hypothesis, there exists a subgroup K2 of G such that P2K2 is s-permutable
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in G and P2 \K2 = 1. Using the same argument as above, we can see that K2 has
a non-identity normal Hall 20-subgroup M2 such that M2 is a Hall 20-subgroup of N
and also a Hall 20-subgroup of G. Moreover, N  P2K2. Hence

G = PM2 = PK2 = (N \ P )P2K2 = P2K2.

Since both M1 and M2 are Hall 20-subgroups of G, by Lemma 2.5 there exists an
element g 2 P such thatM g

2 = M1. Since (|H : P\H|, |H : M1|) = 1, H = (P\H)M1

by Lemma 2.1(1). Therefore,

G = (P2K2)
g = P2NG

(M g

2 ) = P2NG

(M1) = P2H = P2(P \H)M1 = P2M1.

It follows that |G| = |P2||M1| < |P ||M1| = |G|. The final contradiction completes the
proof. ⇤
Corollary 3.1. Let M be a maximal subgroup of a group G with |G : M | = r, where
r is a prime. Let p be the smallest prime dividing |M |. If there exists a Sylow p-
subgroup P of M such that every maximal subgroup of P is S-permutable in G, then
G is soluble.

Proof. If |G| is odd number, then G is soluble by the well known Feit-Thompson’s
theorem. Now we assume that 2||G|. If r = 2, then M is normal in G. By Lemma
2.4(1), every maximal subgroup of P is S-permutable in M . Theorem 3.1 implies
that M is soluble. It follows that G is soluble. If r 6= 2, then p = 2 and P is a Sylow
2-subgroup of G. By using our Theorem 3.1, we obtain that G is soluble. ⇤
Theorem 3.2. A group G is soluble if and only if every Sylow subgroup of G is
S-permutable in G.

Proof. The necessity is obvious. We need only prove the su�ciency. Suppose that
the assertion is false and let G be a counterexample of minimal order. Then:

(1) P
G

= 1 for any prime p dividing |G| and any Sylow p-subgroup P of G.
If there exists a Sylow p-subgroup P of G such that P

G

6= 1, then by Lemma 2.4(1),
it is easy to see that G/P

G

satisfies the hypothesis of the theorem. Hence the minimal
choice of G implies that G/P

G

is soluble, and so G is soluble, a contradiction.
(2) ZS

1(G) = 1.
If ZS

1(G) 6= 1, then we may take a minimal normal subgroup N of G which is
contained in ZS

1(G). Obviously, N is abelian. With the same argument as step (1),
we have that G is soluble, a contradiction.

(3) If 1 6= N EG, then G/N is soluble.
Let M/N be a Sylow p-subgroup of G/N , where p||G/N |. Then, obviously M/N =

PN/N , where P is a Sylow p-subgroup of G. By the hypothesis, there exists a
subgroup K of G such that PK is s-permutable in G and P \K = 1. Hence

(|PK \N : N \K|, |PK \N : N \ P |) = 1.

By Lemma 2.1(1), PK \ N = (P \ N)(K \ N). In view of Lemma 2.1(3), PN \

KN = N(P \ K) = N . This implies that (PN/N) \ (KN/N) = 1. By Lemma
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2.3(2), (PN/N)(NK/N) = (PK)N/N is s-permutable in G/N . Therefore, M/N =
PN/N is S-permutable in G/N . This shows that G/N satisfies the hypothesis of the
theorem. The minimal choice of G implies that G/N is soluble.

(4) Final contradiction.
Since S is closed under subdirect product, by step (3), G has only one minimal

normal subgroup, N say. For any prime p dividing the order of N , we claim that every
Sylow p-subgroupN

p

ofN is complemented inN . In fact, let P be a Sylow p-subgroup
of G such that N

p

 P . Then, obviously, N
p

= N\P . By the hypothesis, there exists
a subgroup K of G such that PK is s-permutable in G and P \K = 1. Obviously,
K is a p-complement of PK. If (PK)

G

= 1, P is s-permutable in G by Lemma
2.7. It follows that P E POp(G) = G from Lemma 2.6, a contradiction. The unique
minimal normality of N implies that N  PK. Since (|PK : K|, |PK : P |) = 1,
N = (N \ P )(N \ K) = N

p

(N \ K) by Lemma 2.1(2). Then N
p

\ (N \ K) =
(P\N)\(N\K) = 1. This shows that every Sylow p-subgroup of N is complemented
in N . Hence N is soluble by Hall’s theorem [6], which induces that G is soluble. This
contradiction completes the proof. ⇤
Corollary 3.2. [11, Theorem 2.4] A group G is soluble if and only if every Sylow
subgroup of G is c-supplemented in G.
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