DERIVED GRAPHS OF SUBDIVISION GRAPHS

S. P. HANDE ${ }^{1}$, S. R. JOG ${ }^{2}$, H. S. RAMANE ${ }^{2}$, P. R. HAMPIHOLI ${ }^{3}$, I. GUTMAN ${ }^{4}$, AND B. S. DURGI ${ }^{1}$

Abstract

The derived graph $[G]^{\dagger}$ of a graph G is the graph having the same vertex set as G, two vertices of $[G]^{\dagger}$ being adjacent if and only if their distance in G is two. In this paper the derived graphs of the subdivision graphs, their spectra and energies are determined.

1. Introduction

Let G be an undirected, simple graph with n vertices and m edges. Let the vertices of G be labeled as $v_{1}, v_{2}, \ldots, v_{n}$. The distance $d_{G}\left(v_{i}, v_{j}\right)$ between the vertices v_{i} and v_{j} is the length of a shortest path between them. If there is no path between v_{i} and v_{j} then we formally assume that $d_{G}\left(v_{i}, v_{j}\right)=\infty$.

The adjacency matrix $A(G)=\left[a_{i j}\right]$ of the graph G is the square matrix of order n in which $a_{i j}=1$ if v_{i} is adjacent to v_{j}, and $a_{i j}=0$ otherwise. The characteristic polynomial $\phi(G, \lambda)=\operatorname{det}(\lambda I-A(G))$ is the characteristic polynomial of G. The eigenvalues of $A(G)$, denoted by $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, are said to be the eigenvalues of the graph G and to form its spectrum [3].

The energy $E(G)$ of a graph G is defined as [4]

$$
E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|
$$

Details on graphs energy are found in the recent monograph [6].
If G_{1} and G_{2} are two graphs with disjoint vertex sets, then their union, denoted by $G_{1} \cup G_{2}$, is the graph whose vertex set is the union of the vertex sets of G_{1} and G_{2},

Key words and phrases. Derived graph, Subdivision graph, Spectrum (of graph), Energy (of graph).

2010 Mathematics Subject Classification. Primary: 05C12. Secondary: 05C50, 05C75.
Received: September 2, 2013.
and whose edge set is the union of the edge sets of G_{1} and G_{2}. Evidently,

$$
\begin{equation*}
\phi\left(G_{1} \cup G_{2}, \lambda\right)=\phi\left(G_{1}, \lambda\right) \phi\left(G_{2}, \lambda\right) \tag{1.1}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
E\left(G_{1} \cup G_{2}\right)=E\left(G_{1}\right)+E\left(G_{2}\right) \tag{1.2}
\end{equation*}
$$

If $G=H_{1} \cup H_{2} \cup \cdots \cup H_{p}$ and $H_{1} \cong H_{2} \cong \cdots \cong H_{p} \cong H$, then we write $G=p H$.
Definition 1.1. Let G be a simple graph. Its derived graph $[G]^{\dagger}$ is the graph whose vertices are same as the vertices of G and two vertices in $[G]^{\dagger}$ are adjacent if and only if the distance between them in G is two.

Directly from this definition follows that $\left[G_{1} \cup G_{2}\right]^{\dagger}=\left[G_{1}\right]^{\dagger} \cup\left[G_{2}\right]^{\dagger}$.
Spectra and energy of derived graphs of some graphs were earlier established in $[1,2,5]$. We now continue these studies by obtaining expressions for the derived graphs of subdivision graphs, their spectra, and energies.

2. Derived graphs of subdivision graphs

The ordinary subdivision graph $S(G)$ of the graph G is obtained from G by inserting a new vertex of degree 2 on each edge of G. For $k \geq 1$, the k-th subdivision graph $S_{k}(G)$ is obtained from G by inserting k new vertices of degree 2 on each edge of G. Thus $S_{0}(G) \cong G$ and $S_{1}(G) \cong S(G)$.

For $k \geq 1, \quad S_{k}\left(G_{1} \cup G_{2}\right)=S_{k}\left(G_{1}\right) \cup S_{k}\left(G_{2}\right)$.
The line graph $L(G)$ of G is the graph whose vertices are in one-to-one correspondence with the edges of G and two vertices of $L(G)$ are adjacent if and only if the corresponding edges in G share a common vertex. For $k \geq 1$, the k-th iterated line graph of G is $L^{k}(G)=L\left(L^{k-1}(G)\right)$, where $L^{0}(G)=G$ and $L^{1}(G)=L(G)$.

For $k \geq 1, \quad L^{k}\left(G_{1} \cup G_{2}\right)=L^{k}\left(G_{1}\right) \cup L^{k}\left(G_{2}\right)$.
Theorem 2.1. Let G be any simple graph. Then $[S(G)]^{\dagger} \cong G \cup L(G)$.
Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the graph G, and let $u_{1}, u_{2}, \ldots, u_{m}$ be the vertices of $S(G)$ inserted on the edges of G.

Two vertices v_{i} and v_{j} of $S(G)$ are at distance two if and only if v_{i} and v_{j} are adjacent in G. Therefore, the vertices $v_{1}, v_{2}, \ldots, v_{n}$ induce a subgraph of $[S(G)]^{\dagger}$ isomorphic to G.

Two vertices u_{i} and u_{j} of $S(G)$ are at distance two if and only if they are inserted on incident edges of G. Therefore, the vertices $u_{1}, u_{2}, \ldots, u_{m}$ induce a subgraph of $[S(G)]^{\dagger}$ isomorphic to $L(G)$.

Theorem 2.1 follows now from the fact that no two vertices v_{i} and u_{j} of $S(G)$ are at distance two.

Theorem 2.2. Let G be any simple graph. Let H_{0} be its ordinary subdivision graph, and let $H_{k+1}=S\left(\left[H_{k}\right]^{\dagger}\right)$ for $k=0,1,2, \ldots$. Then for $k=1,2, \ldots$,

$$
\left[H_{k-1}\right]^{\dagger}=G \cup\left\{\bigcup_{i=1}^{k}\binom{k}{i} L^{i}(G)\right\} .
$$

Proof. We prove Theorem 2.2 by induction on k. For $k=1$, from Theorem 2.1,

$$
\left[H_{0}\right]^{\dagger}=[S(G)]^{\dagger}=G \cup L(G) .
$$

Assume that for $k \geq 2$,

$$
\left[H_{k-2}\right]^{\dagger}=G \cup\left\{\bigcup_{i=1}^{k-1}\binom{k-1}{i} L^{i}(G)\right\} .
$$

Then,

$$
\begin{aligned}
{\left[H_{k-1}\right]^{\dagger} } & =\left[S\left(\left[H_{k-2}\right]^{\dagger}\right)\right]^{\dagger}=\left[H_{k-2}\right]^{\dagger} \cup L\left(\left[H_{k-2}\right]^{\dagger}\right) \\
& =\left\{G \cup\left\{\bigcup_{i=1}^{k-1}\binom{k-1}{i} L^{i}(G)\right\}\right\} \cup\left\{L\left\{G \cup\left\{\bigcup_{i=1}^{k-1}\binom{k-1}{i} L^{i}(G)\right\}\right\}\right\} \\
& =\left\{G \cup\left\{\bigcup_{i=1}^{k-1}\binom{k-1}{i} L^{i}(G)\right\}\right\} \cup\left\{L(G) \cup\left\{\bigcup_{i=1}^{k-1}\binom{k-1}{i} L^{i+1}(G)\right\}\right\} \\
& =G \cup\left\{\bigcup_{i=1}^{k-1}\left(\binom{k-1}{i}+\binom{k-1}{i-1}\right) L^{i}(G)\right\} \cup L^{k}(G) \\
& =G \cup\left\{\bigcup_{i=1}^{k-1}\binom{k}{i} L^{i}(G)\right\} \cup L^{k}(G)=G \cup\left\{\bigcup_{i=1}^{k}\binom{k}{i} L^{i}(G)\right\} .
\end{aligned}
$$

Theorem 2.3. Let G be any simple graph. Then $\left[S_{2 k+1}(G)\right]^{\dagger} \cong S_{k}(G) \cup L\left(S_{k}(G)\right)$ holds for all $k \geq 0$.

Proof. Let G be a graph with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$. For each edge $e_{i}=u v$ of G, there are $2 k+1$ newly added vertices in $S_{2 k+1}(G)$. For the edge $e_{i}=u v$ of G, let $u_{i}^{1}, u_{i}^{2}, \ldots, u_{i}^{2 k+1}$ be the subdivision vertices on this edge in $S_{2 k+1}(G)$, where u is adjacent to u_{i}^{1}, u_{i}^{ℓ} is adjacent to $u_{i}^{\ell+1}, \ell=1,2, \ldots, 2 k$, and $u_{i}^{2 k+1}$ is adjacent to v.

Therefore $d_{S_{2 k+1}(G)}\left(u, u_{i}^{2}\right)=2, d_{S_{2 k+1}(G)}\left(u_{i}^{\ell}, u_{i}^{\ell+2}\right)=2, d_{S_{2 k+1}(G)}\left(u_{i}^{2 k}, v\right)=2, i=$ $1,2, \ldots, m$ and $\ell=1,2, \ldots, 2 k$. Thus the pair of vertices which are at distance two in $S_{2 k+1}(G)$ form $S_{k}(G)$ in $\left[S_{2 k+1}(G)\right]^{\dagger}$.

Consider any two edges $e_{i}=u v$ and $e_{j}=x y$ of G. Let the vertices on e_{i} in $S_{2 k+1}(G)$ be $u_{i}^{1}, u_{i}^{2}, \ldots, u_{i}^{2 k+1}$ in that order, and let the vertices on e_{j} in $S_{2 k+1}(G)$ be $u_{j}^{1}, u_{j}^{2}, \ldots, u_{j}^{2 k+1}$. If the edges e_{i} and e_{j} are adjacent in G, say $u=x$, then $d_{S_{2 k+1}(G)}\left(u_{i}^{1}, u_{j}^{1}\right)=2$, and $d_{S_{2 k+1}(G)}\left(u_{i}^{\ell}, u_{i}^{\ell+2}\right)=2, \ell=1,2, \ldots, 2 k-1, i, j=1,2, \ldots, m$. Hence these pairs of vertices form $L\left(S_{k}(G)\right)$ in $\left[S_{2 k+1}(G)\right]^{\dagger}$. No vertex of $S_{k}(G)$ is adjacent to the vertex of $L\left(S_{k}(G)\right)$ in $\left[S_{2 k+1}(G)\right]^{\dagger}$. Therefore $\left[S_{2 k+1}(G)\right]^{\dagger} \cong S_{k}(G) \cup$ $L\left(S_{k}(G)\right)$.

The degree $\operatorname{deg}_{G}(v)$ of a vertex v of the graph G is the number of edges incident to it.

Theorem 2.4. Let G be a graph of order n, with m edges, and with degree sequence $d_{1}, d_{2}, \ldots, d_{n}$. Then for $k \geq 1$, the degree sequence of $\left[S_{2 k}(G)\right]^{\dagger}$ is d_{i} ($d_{i}+1$ times $)$, $i=1,2, \ldots, n$ and $2(2 m(k-1)$ times $)$.
Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of G and let $\operatorname{deg}_{G}\left(v_{i}\right)=d_{i}, i=1,2, \ldots, n$. For each v_{i} there are d_{i} edges incident to it. Let $e_{1}, e_{2}, \ldots, e_{d_{i}}$ be the edges incident to a vertex v_{i} in G. For the edge $e_{i}=u v$, let $u_{i}^{1}, u_{i}^{2}, \ldots, u_{i}^{2 k}$ be the subdivision vertices on this edge in $S_{2 k}(G)$, where u_{i}^{1} is adjacent to u, u_{i}^{ℓ} is adjacent to $u_{i}^{\ell+1}$, $\ell=1,2, \ldots, 2 k-1$ and $u_{i}^{2 k}$ is adjacent to v.

In $\left[S_{2 k}(G)\right]^{\dagger}$, the vertices u_{i}^{1} and u_{j}^{1} are adjacent to each other, $i, j=1,2, \ldots, d_{i}$ and u_{i}^{1} is adjacent to $u_{i}^{3}, i=1,2, \ldots, d_{i}$.

Hence the degree of u_{i}^{1} in $\left[S_{2 k}(G)\right]^{\dagger}$ is d_{i}. Also, v_{i} is adjacent to $u_{i}^{2}, i=1,2, \ldots, d_{i}$. Hence the degree of v_{i} in $\left[S_{2 k}(G)\right]^{\dagger}$ is d_{i}.

Therefore, in $\left[S_{2 k}(G)\right]^{\dagger}$ there are $d_{i}+1$ vertices of degree $d_{i}, i=1,2, \ldots, n$.
The number of vertices of $\left[S_{2 k}(G)\right]^{\dagger}$ is $n+2 m k$. The remaining

$$
n+2 m k-\sum_{i=1}^{n}\left(d_{i}+1\right)=n+2 m k-(2 m+n)=2 m(k-1)
$$

vertices are of degree 2 .

3. Energy of derived graphs

Results stated in this section are straightforward consequences of the Eqs. (1.1) and (1.2) and the Theorems 2.1-2.3.
Theorem 3.1. Using the same notation as in Theorem 2.1,

$$
\begin{aligned}
\phi\left([S(G)]^{\dagger}, \lambda\right) & =\phi(G, \lambda) \phi(L(G), \lambda) \\
E\left([S(G)]^{\dagger}\right) & =E(G)+E(L(G)) .
\end{aligned}
$$

Theorem 3.2. Using the same notation as in Theorem 2.2, for $k \geq 1$,

$$
\phi\left(\left[H_{k-1}\right]^{\dagger}, \lambda\right)=\phi(G, \lambda) \prod_{i=1}^{k}\left(\phi\left(L^{i}(G), \lambda\right)\right)^{\binom{k}{i}}
$$

$$
E\left(\left[H_{k-1}\right]^{\dagger}\right)=E(G)+\sum_{i=1}^{k}\binom{k}{i} E\left(L^{i}(G)\right) .
$$

Theorem 3.3. Using the same notation as in Theorem 2.3,

$$
\begin{aligned}
\phi\left(\left[S_{2 k+1}(G)\right]^{\dagger}, \lambda\right) & =\phi\left(S_{k}(G), \lambda\right) \phi\left(L\left(S_{k}(G)\right), \lambda\right) \\
E\left(\left[S_{2 k+1}(G)\right]^{\dagger}\right) & =E\left(S_{k}(G)\right)+E\left(L\left(S_{k}(G)\right)\right)
\end{aligned}
$$

References

[1] S. K. Ayyaswamy, S. Balachandran and I. Gutman, On second stage spectrum and energy of a graph, Kragujevac J. Sci. 34 (2010), 139-146.
[2] S. K. Ayyaswamy, S. Balachandran and K. Kannan, Bounds on the second stage spectral radius of graphs, Int. J. Math. Sci. 1 (2009), 223-226.
[3] D. M. Cvetković, M. Doob and H. Sachs, Spectra of Graphs - Theory and Application, Academic Press, New York, 1980.
[4] I. Gutman, The energy of a graph, Ber. Math. Stat. Sekt. Forschungsz. Graz 103 (1978), 1-22.
[5] S. R. Jog, S. P. Hande, I. Gutman and Ş. B. Bozkurt, Derived graphs of some graphs, Kragujevac J. Math. 36 (2012), 309-314.
[6] X. Li, Y. Shi and I. Gutman, Graph Energy, Springer, New York, 2012.

[^0]
[^0]: ${ }^{1}$ Department of Mathematics,
 KLE Dr. Sheshgiri College of Engineering and Technology, Udyambag, Belgaum - 590008,
 India
 E-mail address: satish_hande1313@yahoo.co.in, durgibs@yahoo.com
 ${ }^{2}$ Department of Mathematics,
 Gogte Institute of Technology,
 Udyambag, Belgaum - 590008,
 India
 E-mail address: sudhirrjog@yahoo.co.in, hsramane@yahoo.com
 ${ }^{3}$ Department of Master of Computer Applications, Gogte Institute of Technology,
 Udyambag, Belgaum - 590008,
 India
 E-mail address: prhampi@yahoo.in
 ${ }^{4}$ Faculty of Science,
 University of Kragujevac,
 P. O. Box 60, 34000 Kragujevac

 SERBia
 E-mail address: gutman@kg.ac.rs

