KRAGUJEVAC JOURNAL OF MATHEMATICS VOLUME 37(2) (2013), PAGES 319–323.

DERIVED GRAPHS OF SUBDIVISION GRAPHS

S. P. HANDE¹, S. R. JOG², H. S. RAMANE², P. R. HAMPIHOLI³, I. GUTMAN⁴, AND B. S. DURGI¹

ABSTRACT. The derived graph $[G]^{\dagger}$ of a graph G is the graph having the same vertex set as G, two vertices of $[G]^{\dagger}$ being adjacent if and only if their distance in G is two. In this paper the derived graphs of the subdivision graphs, their spectra and energies are determined.

1. INTRODUCTION

Let G be an undirected, simple graph with n vertices and m edges. Let the vertices of G be labeled as v_1, v_2, \ldots, v_n . The distance $d_G(v_i, v_j)$ between the vertices v_i and v_j is the length of a shortest path between them. If there is no path between v_i and v_j then we formally assume that $d_G(v_i, v_j) = \infty$.

The adjacency matrix $A(G) = [a_{ij}]$ of the graph G is the square matrix of order n in which $a_{ij} = 1$ if v_i is adjacent to v_j , and $a_{ij} = 0$ otherwise. The characteristic polynomial $\phi(G, \lambda) = \det(\lambda I - A(G))$ is the characteristic polynomial of G. The eigenvalues of A(G), denoted by $\lambda_1, \lambda_2, \ldots, \lambda_n$, are said to be the eigenvalues of the graph G and to form its spectrum [3].

The energy E(G) of a graph G is defined as [4]

$$E(G) = \sum_{i=1}^{n} |\lambda_i| \; .$$

Details on graphs energy are found in the recent monograph [6].

If G_1 and G_2 are two graphs with disjoint vertex sets, then their union, denoted by $G_1 \cup G_2$, is the graph whose vertex set is the union of the vertex sets of G_1 and G_2 ,

Key words and phrases. Derived graph, Subdivision graph, Spectrum (of graph), Energy (of graph).

²⁰¹⁰ Mathematics Subject Classification. Primary: 05C12. Secondary: 05C50, 05C75. Received: September 2, 2013.

and whose edge set is the union of the edge sets of G_1 and G_2 . Evidently,

(1.1)
$$\phi(G_1 \cup G_2, \lambda) = \phi(G_1, \lambda)\phi(G_2, \lambda)$$

and therefore

320

(1.2)
$$E(G_1 \cup G_2) = E(G_1) + E(G_2) .$$

If $G = H_1 \cup H_2 \cup \cdots \cup H_p$ and $H_1 \cong H_2 \cong \cdots \cong H_p \cong H$, then we write G = p H.

Definition 1.1. Let G be a simple graph. Its derived graph $[G]^{\dagger}$ is the graph whose vertices are same as the vertices of G and two vertices in $[G]^{\dagger}$ are adjacent if and only if the distance between them in G is two.

Directly from this definition follows that $[G_1 \cup G_2]^{\dagger} = [G_1]^{\dagger} \cup [G_2]^{\dagger}$.

Spectra and energy of derived graphs of some graphs were earlier established in [1, 2, 5]. We now continue these studies by obtaining expressions for the derived graphs of subdivision graphs, their spectra, and energies.

2. Derived graphs of subdivision graphs

The ordinary subdivision graph S(G) of the graph G is obtained from G by inserting a new vertex of degree 2 on each edge of G. For $k \ge 1$, the k-th subdivision graph $S_k(G)$ is obtained from G by inserting k new vertices of degree 2 on each edge of G. Thus $S_0(G) \cong G$ and $S_1(G) \cong S(G)$.

For $k \ge 1$, $S_k(G_1 \cup G_2) = S_k(G_1) \cup S_k(G_2)$.

The line graph L(G) of G is the graph whose vertices are in one-to-one correspondence with the edges of G and two vertices of L(G) are adjacent if and only if the corresponding edges in G share a common vertex. For $k \ge 1$, the k-th iterated line graph of G is $L^k(G) = L(L^{k-1}(G))$, where $L^0(G) = G$ and $L^1(G) = L(G)$. For $k \ge 1$, $L^k(G_1 \cup G_2) = L^k(G_1) \cup L^k(G_2)$.

Theorem 2.1. Let G be any simple graph. Then $[S(G)]^{\dagger} \cong G \cup L(G)$.

Proof. Let v_1, v_2, \ldots, v_n be the vertices of the graph G, and let u_1, u_2, \ldots, u_m be the vertices of S(G) inserted on the edges of G.

Two vertices v_i and v_j of S(G) are at distance two if and only if v_i and v_j are adjacent in G. Therefore, the vertices v_1, v_2, \ldots, v_n induce a subgraph of $[S(G)]^{\dagger}$ isomorphic to G.

Two vertices u_i and u_j of S(G) are at distance two if and only if they are inserted on incident edges of G. Therefore, the vertices u_1, u_2, \ldots, u_m induce a subgraph of $[S(G)]^{\dagger}$ isomorphic to L(G).

Theorem 2.1 follows now from the fact that no two vertices v_i and u_j of S(G) are at distance two.

Theorem 2.2. Let G be any simple graph. Let H_0 be its ordinary subdivision graph, and let $H_{k+1} = S([H_k]^{\dagger})$ for k = 0, 1, 2, ... Then for k = 1, 2, ...,

$$[H_{k-1}]^{\dagger} = G \cup \left\{ \bigcup_{i=1}^{k} \binom{k}{i} L^{i}(G) \right\}.$$

Proof. We prove Theorem 2.2 by induction on k. For k = 1, from Theorem 2.1,

$$[H_0]^{\dagger} = [S(G)]^{\dagger} = G \cup L(G) .$$

Assume that for $k \geq 2$,

$$[H_{k-2}]^{\dagger} = G \cup \left\{ \bigcup_{i=1}^{k-1} \binom{k-1}{i} L^i(G) \right\}.$$

Then,

$$\begin{aligned} [H_{k-1}]^{\dagger} &= [S([H_{k-2}]^{\dagger})]^{\dagger} = [H_{k-2}]^{\dagger} \cup L([H_{k-2}]^{\dagger}) \\ &= \left\{ G \cup \left\{ \bigcup_{i=1}^{k-1} \binom{k-1}{i} L^{i}(G) \right\} \right\} \cup \left\{ L \left\{ G \cup \left\{ \bigcup_{i=1}^{k-1} \binom{k-1}{i} L^{i}(G) \right\} \right\} \right\} \\ &= \left\{ G \cup \left\{ \bigcup_{i=1}^{k-1} \binom{k-1}{i} L^{i}(G) \right\} \right\} \cup \left\{ L(G) \cup \left\{ \bigcup_{i=1}^{k-1} \binom{k-1}{i} L^{i+1}(G) \right\} \right\} \\ &= G \cup \left\{ \bigcup_{i=1}^{k-1} \left(\binom{k-1}{i} + \binom{k-1}{i-1} \right) L^{i}(G) \right\} \cup L^{k}(G) \\ &= G \cup \left\{ \bigcup_{i=1}^{k-1} \binom{k}{i} L^{i}(G) \right\} \cup L^{k}(G) = G \cup \left\{ \bigcup_{i=1}^{k} \binom{k}{i} L^{i}(G) \right\}. \end{aligned}$$

Theorem 2.3. Let G be any simple graph. Then $[S_{2k+1}(G)]^{\dagger} \cong S_k(G) \cup L(S_k(G))$ holds for all $k \ge 0$.

Proof. Let G be a graph with vertex set $\{v_1, v_2, \ldots, v_n\}$ and edge set $\{e_1, e_2, \ldots, e_m\}$. For each edge $e_i = uv$ of G, there are 2k + 1 newly added vertices in $S_{2k+1}(G)$. For the edge $e_i = uv$ of G, let $u_i^1, u_i^2, \ldots, u_i^{2k+1}$ be the subdivision vertices on this edge in $S_{2k+1}(G)$, where u is adjacent to u_i^1, u_i^ℓ is adjacent to $u_i^{\ell+1}, \ell = 1, 2, \ldots, 2k$, and u_i^{2k+1} is adjacent to v.

Therefore $d_{S_{2k+1}(G)}(u, u_i^2) = 2$, $d_{S_{2k+1}(G)}(u_i^{\ell}, u_i^{\ell+2}) = 2$, $d_{S_{2k+1}(G)}(u_i^{2k}, v) = 2$, $i = 1, 2, \ldots, m$ and $\ell = 1, 2, \ldots, 2k$. Thus the pair of vertices which are at distance two in $S_{2k+1}(G)$ form $S_k(G)$ in $[S_{2k+1}(G)]^{\dagger}$.

Consider any two edges $e_i = uv$ and $e_j = xy$ of G. Let the vertices on e_i in $S_{2k+1}(G)$ be $u_i^1, u_i^2, \ldots, u_i^{2k+1}$ in that order, and let the vertices on e_j in $S_{2k+1}(G)$ be $u_j^1, u_j^2, \ldots, u_j^{2k+1}$. If the edges e_i and e_j are adjacent in G, say u = x, then $d_{S_{2k+1}(G)}(u_i^1, u_j^1) = 2$, and $d_{S_{2k+1}(G)}(u_i^\ell, u_i^{\ell+2}) = 2$, $\ell = 1, 2, \ldots, 2k-1$, $i, j = 1, 2, \ldots, m$. Hence these pairs of vertices form $L(S_k(G))$ in $[S_{2k+1}(G)]^{\dagger}$. No vertex of $S_k(G)$ is adjacent to the vertex of $L(S_k(G))$ in $[S_{2k+1}(G)]^{\dagger}$. Therefore $[S_{2k+1}(G)]^{\dagger} \cong S_k(G) \cup L(S_k(G))$.

The degree $\deg_G(v)$ of a vertex v of the graph G is the number of edges incident to it.

Theorem 2.4. Let G be a graph of order n, with m edges, and with degree sequence d_1, d_2, \ldots, d_n . Then for $k \ge 1$, the degree sequence of $[S_{2k}(G)]^{\dagger}$ is d_i $(d_i + 1 \text{ times})$, $i = 1, 2, \ldots, n$ and 2 (2m(k-1) times).

Proof. Let v_1, v_2, \ldots, v_n be the vertices of G and let $\deg_G(v_i) = d_i$, $i = 1, 2, \ldots, n$. For each v_i there are d_i edges incident to it. Let $e_1, e_2, \ldots, e_{d_i}$ be the edges incident to a vertex v_i in G. For the edge $e_i = uv$, let $u_i^1, u_i^2, \ldots, u_i^{2k}$ be the subdivision vertices on this edge in $S_{2k}(G)$, where u_i^1 is adjacent to u, u_i^ℓ is adjacent to $u_i^{\ell+1}$, $\ell = 1, 2, \ldots, 2k - 1$ and u_i^{2k} is adjacent to v.

In $[S_{2k}(G)]^{\dagger}$, the vertices u_i^1 and u_j^1 are adjacent to each other, $i, j = 1, 2, \ldots, d_i$ and u_i^1 is adjacent to u_i^3 , $i = 1, 2, \ldots, d_i$.

Hence the degree of u_i^1 in $[S_{2k}(G)]^{\dagger}$ is d_i . Also, v_i is adjacent to u_i^2 , $i = 1, 2, \ldots, d_i$. Hence the degree of v_i in $[S_{2k}(G)]^{\dagger}$ is d_i .

Therefore, in $[S_{2k}(G)]^{\dagger}$ there are $d_i + 1$ vertices of degree d_i , i = 1, 2, ..., n. The number of vertices of $[S_{2k}(G)]^{\dagger}$ is n + 2mk. The remaining

$$n + 2mk - \sum_{i=1}^{n} (d_i + 1) = n + 2mk - (2m + n) = 2m(k - 1)$$

vertices are of degree 2.

3. Energy of derived graphs

Results stated in this section are straightforward consequences of the Eqs. (1.1) and (1.2) and the Theorems 2.1-2.3.

Theorem 3.1. Using the same notation as in Theorem 2.1,

$$\phi([S(G)]^{\dagger}, \lambda) = \phi(G, \lambda) \phi(L(G), \lambda)$$

$$E([S(G)]^{\dagger}) = E(G) + E(L(G)).$$

Theorem 3.2. Using the same notation as in Theorem 2.2, for $k \ge 1$,

$$\phi([H_{k-1}]^{\dagger},\lambda) = \phi(G,\lambda) \prod_{i=1}^{k} \left(\phi(L^{i}(G),\lambda)\right)^{\binom{k}{i}}$$

$$E([H_{k-1}]^{\dagger}) = E(G) + \sum_{i=1}^{k} \binom{k}{i} E(L^{i}(G)).$$

Theorem 3.3. Using the same notation as in Theorem 2.3,

$$\phi([S_{2k+1}(G)]^{\dagger},\lambda) = \phi(S_k(G),\lambda)\,\phi(L(S_k(G)),\lambda)$$

$$E([S_{2k+1}(G)]^{\dagger}) = E(S_k(G)) + E(L(S_k(G))).$$

References

- S. K. Ayyaswamy, S. Balachandran and I. Gutman, On second stage spectrum and energy of a graph, Kragujevac J. Sci. 34 (2010), 139–146.
- [2] S. K. Ayyaswamy, S. Balachandran and K. Kannan, Bounds on the second stage spectral radius of graphs, Int. J. Math. Sci. 1 (2009), 223–226.
- [3] D. M. Cvetković, M. Doob and H. Sachs, Spectra of Graphs Theory and Application, Academic Press, New York, 1980.
- [4] I. Gutman, The energy of a graph, Ber. Math. Stat. Sekt. Forschungsz. Graz 103 (1978), 1–22.
- [5] S. R. Jog, S. P. Hande, I. Gutman and Ş. B. Bozkurt, *Derived graphs of some graphs*, Kragujevac J. Math. **36** (2012), 309–314.
- [6] X. Li, Y. Shi and I. Gutman, *Graph Energy*, Springer, New York, 2012.

¹DEPARTMENT OF MATHEMATICS, KLE DR. SHESHGIRI COLLEGE OF ENGINEERING AND TECHNOLOGY, UDYAMBAG, BELGAUM - 590008, INDIA *E-mail address*: satish_hande1313@yahoo.co.in, durgibs@yahoo.com ²DEPARTMENT OF MATHEMATICS, GOGTE INSTITUTE OF TECHNOLOGY, UDYAMBAG, BELGAUM - 590008, INDIA *E-mail address*: sudhirrjog@yahoo.co.in, hsramane@yahoo.com

³DEPARTMENT OF MASTER OF COMPUTER APPLICATIONS, GOGTE INSTITUTE OF TECHNOLOGY, UDYAMBAG, BELGAUM - 590008, INDIA *E-mail address*: prhampi@yahoo.in

⁴FACULTY OF SCIENCE, UNIVERSITY OF KRAGUJEVAC, P. O. BOX 60, 34000 KRAGUJEVAC SERBIA *E-mail address*: gutman@kg.ac.rs