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A NEW OSTROWSKI-GRÜSS TYPE INEQUALITY

YU MIAO1, FEI HAN2,3, AND JIANYONG MU1

Abstract. In the present note, we establish a similar inequality of Ostrowski-
Grüss type for functions whose first derivative is absolutely continuous and second
derivative is bounded both above and below almost everywhere.

1. Introduction

The following integral inequality which establishes a connection between the in-
tegral of the product of two functions and the product of the integrals of the two
functions is well known in the literature as Grüss’ inequality (see [15, p. 296]).

Theorem 1.1. Let f, g : [a, b] ! R be two integrable functions such that �  f(x)  �
and �  g(x)  � for all x 2 [a, b], �,�, � and � are constants. Then we have

����
1

b� a

Z
b

a

f(x)g(x)dx� 1

b� a

Z
b

a

f(x)dx
1

b� a

Z
b

a

g(x)dx

���� 
1

4
(�� �)(�� �),

where the constant 1
4 is sharp.

Another celebrated integral inequality which provides an approximation of the in-
tegral mean 1

b�a

R
b

a

f(t)dt in terms of the values of f at a certain point x 2 [a, b], is
Ostrowski’s inequality [16, p. 468].

Theorem 1.2. Let f : [a, b] ! R be continuous on [a, b] and di↵erentiable on (a, b),
whose derivative f

0
: [a, b] ! R is bounded on (a, b), i.e.

kf 0k1 = sup
t2(a,b)

|f 0
(t)| < 1.
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Then we have the inequality

����f(x)�
1

b� a

Z
b

a

f(t)dt

���� 
"
1

4
+

�
x� a+b

2

�2

(b� a)2

#
(b� a)kf 0k1

for all x 2 [a, b]. The constant 1
4 is sharp.

In the years thereafter, numerous generalizations, extensions and variants of Grüss
inequality have appeared in the literature (see [4–12]). Dragomir and Wang [8] proved
the following Ostrowski type inequality in terms of the lower and upper bounds of
the first derivative.

Theorem 1.3. Let f : [a, b] ! R be continuous on [a, b] and di↵erentiable on (a, b),
whose derivative satisfies the condition: �  f

0
(x)  � for all x 2 (a, b). Then we

have the inequality
����f(x)�

1

b� a

Z
b

a

f(t)dt� f(b)� f(a)

b� a

✓
x� a+ b

2

◆���� 
1

4
(b� a)(�� �)

for all x 2 [a, b].

In Theorem 1.3, if we take x = a, then it follows that

(1.1)

����
1

b� a

Z
b

a

f(t)dt� f(b) + f(a)

2

���� 
1

4
(b� a)(�� �).

Cerone et al. [2] obtained the following result for twice di↵erentiable mappings in
terms of the upper and lower bounds of the second derivative.

Theorem 1.4. Let f : [a, b] ! R be continuous on [a, b] and twice di↵erentiable on
(a, b), and assume that the second derivative f

00
: (a, b) ! R satisfies the condition

�  f

00
(x)  � for all x 2 (a, b). If we denote t = a+b

2 then we have the inequality

����f(x)� (x� t) f
0
(x)� 1

b� a

Z
b

a

f(t)dt+


(b� a)2

24
+

1

2
(x� t)2

�
f

0
(b)� f

0
(a)

b� a

����

 1

8
(�� �)


1

2
(b� a) + |x� t|

�2

for all x 2 [a, b].

Motivated by the works of Cerone et al. [2], the purpose of the present note is to
establish a similar inequality of Ostrowski-Grüss type to the inequality in Theorem
1.4 for functions whose first derivative is absolutely continuous and second derivative
is bounded both above and below almost everywhere. From our inequality, we can
obtain an analogue (see Remark 2.1) to (1.1).
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2. Main results

Theorem 2.1. Let f : [a, b] ! (�1,1) be a function such that the derivative f

0

is absolutely continuous on [a, b]. Assume that there exist constants �,� 2 (�1,1)
such that �  f

00
(x)  � a.e. on [a, b]. Then we have

���[f
0
(b) + f

0
(a)]

h1
6
(b+ a) +

1

4

i
+

bf

0
(b) + af

0
(a)

6
+

f(a)(1 + 2a)� f(b)(1 + 2b)

2(b� a)

+
1

b� a

Z
b

a

f(x)dx
��� 

8
>>>>>><

>>>>>>:

���

2(b�a)

�
1
6 +

2
3C

�p
1 + 4C, �3

2 � 2b  a  �3
4 �

b

2 ;

� ���

2(b�a)

R
x2

a

(x2 + x� C)dx, �3
4 �

b

2  a  b;

� ���

2(b�a)

R
b

x1
(x2 + x� C)dx, a  �3

2 � 2b,

where

C :=
1

b� a

Z
b

a

(x+ x

2)dx =
1

2
(b+ a) +

1

3
(b2 + ab+ a

2),

and

x1 =
�1�

p
1 + 4C

2
, x2 =

�1 +
p
1 + 4C

2
.

Proof. It is not di�cult to check that

[f
0
(b) + f

0
(a)]

h1
6
(b+ a) +

1

4

i
+

bf

0
(b) + af

0
(a)

6
+

1

b� a

Z
b

a

f(x)dx

+
f(a)(1 + 2a)� f(b)(1 + 2b)

2(b� a)

=
1

2

⇢
1

b� a

Z
b

a

(x+ x

2)f
00
(x)dx� 1

(b� a)2

Z
b

a

(x+ x

2)dx

Z
b

a

f

00
(x)dx

�

=
1

2(b� a)

Z
b

a

⇢
(x+ x

2)� 1

b� a

Z
b

a

(x+ x

2)dx

�
f

00
(x)dx.(2.1)

Let

A =

⇢
x 2 [a, b] : x+ x

2 � 1

b� a

Z
b

a

(x+ x

2)dx

�
;

A

c =

⇢
x 2 [a, b] : x+ x

2
<

1

b� a

Z
b

a

(x+ x

2)dx

�
.
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Then we have
Z

b

a

⇢
(x+ x

2)� 1

b� a

Z
b

a

(x+ x

2)dx

�
f

00
(x)dx

 �

Z

A

⇢
(x+ x

2)� 1

b� a

Z
b

a

(x+ x

2)dx

�
dx

+ �

Z

A

c

⇢
(x+ x

2)� 1

b� a

Z
b

a

(x+ x

2)dx

�
dx

and
Z

b

a

⇢
(x+ x

2)� 1

b� a

Z
b

a

(x+ x

2)dx

�
f

00
(x)dx

� �

Z

A

⇢
(x+ x

2)� 1

b� a

Z
b

a

(x+ x

2)dx

�
dx

+ �

Z

A

c

⇢
(x+ x

2)� 1

b� a

Z
b

a

(x+ x

2)dx

�
dx.

Since
Z

A

⇢
(x+ x

2)� 1

b� a

Z
b

a

(x+ x

2)dx

�
dx

= �
Z

A

c

⇢
(x+ x

2)� 1

b� a

Z
b

a

(x+ x

2)dx

�
dx,

it follows that

1

b� a

����
Z

b

a

⇢
(x+ x

2)� 1

b� a

Z
b

a

(x+ x

2)dx

�
f

00
(x)dx

����

 �� �

b� a

Z

A

⇢
(x+ x

2)� 1

b� a

Z
b

a

(x+ x

2)dx

�
dx

= ��� �

b� a

Z

A

c

⇢
(x+ x

2)� 1

b� a

Z
b

a

(x+ x

2)dx

�
dx.(2.2)

Putting

C :=
1

b� a

Z
b

a

(x+ x

2)dx =
1

2
(b+ a) +

1

3
(b2 + ab+ a

2).

Therefore, from (2.2), it is enough to discuss the following integral,

(2.3)

Z

A

c

(x2 + x� C)dx.

It is easy to see that 1+ 4C < 0 dose not hold in x 2 [a, b], thus we only consider the
case 1 + 4C � 0. Denote the solutions of the equation x

2 + x� C = 0 by x1 and x2,
then

x1 =
�1�

p
1 + 4C

2
, x2 =

�1 +
p
1 + 4C

2
.
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Case 1. �3
2 � 2b  a  �3

4 �
b

2 .

This case implies b � �1
2 and the claim

(2.4) a  x1  x2  b.

Since �3
2 � 2b  a  �3

4 �
b

2 , we have

b � �1

2
, (b+ 2a)(b� a)  3

2
(b� a), (a+ 2b)(a� b)  3

2
(b� a),

which yield p
1 + 4C  �2a� 1,

p
1 + 4C  2b+ 1.

The claim (2.4) can be obtained. Then we have
Z

A

c

(x2 + x� C)dx =

Z
x2

x1

(x2 + x� C)dx = �
✓
1

6
+

2

3
C

◆p
1 + 4C.

Case 2. �3
4 �

b

2  a  b.

With the same proof of Case 1, it is easy to check

x1  a  x2  b.

Then we have
Z

A

c

(x2 + x� C)dx =

Z
x2

a

(x2 + x� C)dx

=� 1

6

⇥
x2(4C + 1) + 2a3 + 3a2 � 2aC + C

⇤
.

Case 3. a  �3
2 � 2b.

With the same proof of Case 1, it is easy to check

a  x1  b  x2.

Then we have
Z

A

c

(x2 + x� C)dx =

Z
b

x1

(x2 + x� C)dx

=
1

6

⇥
x1(4C + 1) + 2b3 + 3b2 � 6bC � C

⇤
.

From (2.1), (2.2) and above discussion, the desired result can be obtained. ⇤

Next we shall show the following similar Ostrowski-Grüss type inequality.

Theorem 2.2. Let f : [a, b] ! (�1,1) be a function such that the derivative f

0

is absolutely continuous on [a, b]. Assume that there exist constants �,� 2 (�1,1)
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such that �  f

00
(x)  � a.e. on [a, b]. Then for t 2 [a, b], we have

���f(t) +
[f

0
(b)� f

0
(a)](t� a)(b� t)

2(b� a)
+

(b+ a)(f
0
(b) + f

0
(a))

2

+
(t+ a)f(a)� (b+ t)f(b)

b� a

��� 
�� �

b� a

G(t, a, b)(2.5)

where if t+ a > 0, then

G(t, a, b) =
(t+ a)

2
(t2 �C

2
1)� (at+C)(t�C1) +

(b+ t)

2
(b2 �C

2
2)� (bt+C)(b�C2);

if t+ a < 0, t+ b < 0, then

G(t, a, b) =
(t+ a)

2
(C2

3 � a

2)� (at+C)(C3 � a) +
(b+ t)

2
(C2

4 � t

2)� (bt+C)(C4 � t);

if t+ a < 0, t+ b > 0, then

G(t, a, b) =
(t+ a)

2
(C2

3 � a

2)� (at+C)(C3� a)+
(b+ t)

2
(b2�C

2
2)� (bt+C)(b�C2);

if t+ a = 0, t 6= b, then

G(t, a, b) =
(b+ t)

2
(b2 � C

2
2)� (bt+ C)(b� C2);

if t+ b = 0, t 6= a, then

G(t, a, b) =
(t+ a)

2
(C2

3 � a

2)� (at+ C)(C3 � a);

if t+ a = 0, t = b or t+ b = 0, t = a, then

G(t, a, b) = 0,

and where

C :=
1

2
[t2 � (b+ a)t+ (b2 + ab+ a

2)],

C1 =

✓
at+ C

t+ a

_ a

◆
^ t, C2 =

✓
bt+ C

t+ b

_ t

◆
^ b,

C3 = a _
✓
at+ C

t+ a

^ t

◆
, C4 = t _

✓
bt+ C

t+ b

^ b

◆
.

Proof. Let

(2.6) K(t, x) =

(
(t� x)(x� a), a  x  t;

(x� t)(b� x), t  x  b.

Then it is easy to see that

(2.7)
1

b� a

Z
b

a

(K(t, x) + x

2)dx =
1

2
[t2 � (b+ a)t+ (b2 + ab+ a

2)],
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and

1

b� a

Z
b

a

(K(t, x) + x

2)f
00
(x)dx

= f(t) +
f

0
(b)b2 � f

0
(a)a2

b� a

+
(t+ a)f(a)� (b+ t)f(b)

b� a

.(2.8)

Therefore, from (2.7) and (2.8), we get

f(t) +
[f

0
(b)� f

0
(a)](t� a)(b� t)

2(b� a)
+

(b+ a)(f
0
(b) + f

0
(a))

2

+
(t+ a)f(a)� (b+ t)f(b)

b� a

=
1

b� a

Z
b

a


(K(t, x) + x

2)� 1

b� a

Z
b

a

(K(t, x) + x

2)dx

�
f

00
(x)dx.(2.9)

Let

B =

⇢
x 2 [a, b], (K(t, x) + x

2) � 1

b� a

Z
b

a

(K(t, x) + x

2)dx

�
;

B

c =

⇢
x 2 [a, b], (K(t, x) + x

2) <
1

b� a

Z
b

a

(K(t, x) + x

2)dx

�
.

As the proof of Theorem 2.1, we only need to estimate the bound of the following
inequality

1

b� a

����
Z

b

a


(K(t, x) + x

2)� 1

b� a

Z
b

a

(K(t, x) + x

2)dx

�
f

00
(x)dx

����

 �� �

b� a

Z

B


(K(t, x) + x

2)� 1

b� a

Z
b

a

(K(t, x) + x

2)dx

�
dx.(2.10)

Next we shall divide our proof into five cases.
Case 1: t+ a > 0. Under this case, it follows that b+ t > 0. Then if a  x  t, we
have

K(t, x) + x

2 � C () x � at+ C

t+ a

,

and if t  x  b, we obtain

K(t, x) + x

2 � C () x � bt+ C

t+ b

.

Therefore
Z

B


(K(t, x) + x

2)� 1

b� a

Z
b

a

(K(t, x) + x

2)dx

�
dx

=
(t+ a)

2
(t2 � C

2
1)� (at+ C)(t� C1) +

(b+ t)

2
(b2 � C

2
2)� (bt+ C)(b� C2),
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where

C1 =

✓
at+ C

t+ a

_ a

◆
^ t, C2 =

✓
bt+ C

t+ b

_ t

◆
^ b.

Case 2: t+ a < 0, t+ b < 0. Then if a  x  t, we have

K(t, x) + x

2 � C () x  at+ C

t+ a

,

and if t  x  b, we obtain

K(t, x) + x

2 � C () x  bt+ C

t+ b

,

Therefore
Z

B


(K(t, x) + x

2)� 1

b� a

Z
b

a

(K(t, x) + x

2)dx

�
dx

=
(t+ a)

2
(C2

3 � a

2)� (at+ C)(C3 � a) +
(b+ t)

2
(C2

4 � t

2)� (bt+ C)(C4 � t),

where

C3 = a _
✓
at+ C

t+ a

^ t

◆
, C4 = t _

✓
bt+ C

t+ b

^ b

◆
.

Case 3: t+ a < 0, t+ b > 0. Then if a  x  t, we have

K(t, x) + x

2 � C () x  at+ C

t+ a

,

and if t  x  b, we obtain

K(t, x) + x

2 � C () x � bt+ C

t+ b

.

Therefore
Z

B


(K(t, x) + x

2)� 1

b� a

Z
b

a

(K(t, x) + x

2)dx

�
dx

=
(t+ a)

2
(C2

3 � a

2)� (at+ C)(C3 � a) +
(b+ t)

2
(b2 � C

2
2)� (bt+ C)(b� C2).

Case 4: t+ a = 0. This case implies a  0 and t = �a � 0. Furthermore, it is easy
to see that

at+ C =
1

2
[t2 � (b� a)t+ (b2 + ab+ a

2)] � 0, 8 t 2 [a, b].

Then if a  x  t, we have

{x : K(t, x) + x

2 � C} = ;, for t 6= b

{x : K(t, x) + x

2 = C} = [a, t], for t = b

and if t  x  b, we obtain

K(t, x) + x

2 � C () x � bt+ C

t+ b

for t 6= b.
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Therefore,
Z

B


(K(t, x) + x

2)� 1

b� a

Z
b

a

(K(t, x) + x

2)dx

�
dx

=

(
(b+t)
2 (b2 � C

2
2)� (bt+ C)(b� C2), for t 6= b;

0, for t = b.

Case 5: t + b = 0. This case implies b � 0 and t = �b  0. Furthermore, it is easy
to see that

bt+ C =
1

2
[t2 � (a� b)t+ (b2 + ab+ a

2)] � 0, 8 t 2 [a, b].

Then if a  x  t, we have

K(t, x) + x

2 � C () x  at+ C

t+ a

for t 6= a,

and if t  x  b, we obtain

{x : K(t, x) + x

2 � C} = ; for t 6= a,

{x : K(t, x) + x

2 = C} = [a, b] for t = a.

Therefore,
Z

B


(K(t, x) + x

2)� 1

b� a

Z
b

a

(K(t, x) + x

2)dx

�
dx

=

(
(t+a)

2 (C2
3 � a

2)� (at+ C)(C3 � a), for t 6= a;

0 for t = a.

⇤

Remark 2.1. We give an example for the case t = a to show a perturbed two points
inequality. Let a � 0, then b > 0. It is easy to get

C =
1

2
(a2 + b

2), C1 = a, C2 =
1

2
(a+ b), G(t, a, b) =

1

8
(b� a)2(b+ a).

Similarly, if a < 0 and a+ b > 0, then

C =
1

2
(a2 + b

2), C3 = a, C2 =
1

2
(a+ b), G(t, a, b) =

1

8
(b� a)2(b+ a);

if a < 0 and a+ b < 0, then

C =
1

2
(a2 + b

2), C3 = a, C4 =
1

2
(a+ b), G(t, a, b) =

1

8
(b� a)2(b+ a);

Hence, we have
����

1

b� a

(f(b)� f(a))� 1

2
(f

0
(b) + f

0
(a))

���� 
1

8
(�� �)(b� a).
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If we rewrite the above inequality as follows
����

1

b� a

Z
b

a

f

0
(x)dx� 1

2
(f

0
(b) + f

0
(a))

���� 
1

8
(�� �)(b� a),

then, the bound is formally better than the inequality (1.1).

Remark 2.2. If we take b > 0, a = �b and t = 0, then we have

C =
1

2
b

2
, C3 = �1

2
b, C2 =

1

2
b, G(t, a, b) =

1

4
b

3
,

which implies
����f(0) +

b

4
(f

0
(b)� f

0
(a))� 1

2
(f(b) + f(a))

���� 
b

2(�� �)

8
.
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[16] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Inequalities for Functions and
Their Integrals and Derivatives. Kluwer Academic Publishers, Dordrecht, 1994.

[17] G. H. Peng and Y. Miao, A note on Gruss type inequality. Appl. Math. Sci.
(Ruse) 3 (2009), no. 8, 399-402.

1College of Mathematics and Information Science,
Henan Normal University,
Henan Province, 453007, China.
E-mail address: yumiao728@gmail.com
E-mail address: jianyongmu@163.com

2School of Management,
University of Shanghai for Science and Technology,
Shanghai, 200093, China.

3Department of Mathematics and Information Science,
Xinxiang University,
Henan Province, 453000, China.
E-mail address: tomcumt@126.com


