# ON A CLASS OF SELF-IMPROVING INEQUALITIES 

## SLAVKO SIMIĆ


#### Abstract

We establish new lower and upper bounds for Jensen's discrete inequality. Applying those results we improve some classical inequalities and obtain new and more precise bounds for Shannon's entropy.


## 1. Introduction

In this article we shall consider a class of inequalities with remarkable property that they can be improved by themselves. To make this idea clear we give an example.

Example 1.1. Take for instance the well-known arithmetic-geometric inequality, written in the form

$$
\frac{\left(\frac{\sum_{1}^{n} x_{i}}{n}\right)^{n}}{\prod_{1}^{n} x_{i}} \geq 1
$$

where $0<a=x_{1} \leq x_{2} \leq \cdots \leq x_{n}=b$. This inequality can be improved by itself in the following way:

$$
\begin{aligned}
\left(\frac{1}{n} \sum_{1}^{n} x_{i}\right)^{n} & =\left(\frac{1}{n}\left(\sum_{2}^{n-1} x_{i}+\frac{a+b}{2}+\frac{a+b}{2}\right)\right)^{n} \\
& \geq\left(\frac{a+b}{2}\right)^{2} \prod_{2}^{n-1} x_{i} \\
& =\frac{(a+b)^{2}}{4 a b} \prod_{1}^{n} x_{i} .
\end{aligned}
$$

Key words and phrases. Jensen's inequality, Global bounds, Entropy.
2010 Mathematics Subject Classification. Primary: 05C69. Secondary: 05C20.
Received: February 1, 2013.
Revised: October 21, 2013.

Hence,

$$
\frac{\left(\frac{\sum_{1}^{n} x_{i}}{n}\right)^{n}}{\prod_{1}^{n} x_{i}} \geq 1+\frac{1}{4}\left(\sqrt{\frac{b}{a}}-\sqrt{\frac{a}{b}}\right)^{2}
$$

which is a considerable improvement of the target inequality, especially in the case $b \gg a$.

Moreover, taking $x_{1}=x_{2}=\cdots=x_{n-2}=a, x_{n-1}=a(1-\epsilon), x_{n}=a(1+\epsilon)$; $a>0,0<\epsilon<1$; it can be seen that the constant $1 / 4$ is the best possible.

We shall consider now a class of well-known inequalities involving convex functions.
For a positive weight sequence $\mathbf{p}=\left\{p_{i}\right\}_{1}^{n}, \sum_{1}^{n} p_{i}=1$ and a sequence $\mathbf{x}=\left\{x_{i}\right\}_{1}^{n}, a=$ $x_{1} \leq x_{2} \leq \cdots \leq x_{n}=b$, the classical Jensen's inequality states that if $f$ is convex on $I:=[a, b]$, then

$$
\begin{equation*}
0 \leq \sum_{1}^{n} p_{i} f\left(x_{i}\right)-f\left(\sum_{1}^{n} p_{i} x_{i}\right), \tag{1.1}
\end{equation*}
$$

with the equality sign only if all members of $x$ are equal to $a$ or $b$ or if $f$ is linear on $I$ (cf [1], p. 70).

Jensen's inequality is one of the most known and extensively used inequalities in various fields of Mathematics. Some important inequalities are just particular cases of this inequality such as the weighted $A-G-H$ inequality, the Cauchy's inequality, the Ky Fan and Hölder inequalities, etc.

## 2. Results

One can see that the lower bound zero in (1.1) is of global nature; it depends only on $f$ and $I$ but does not depend on sequences $\mathbf{p}$ and $\mathbf{x}$.

This bound can be improved by no other means than the inequality (1.1) itself to the following

Theorem 2.1. If $f$ is convex on $I$, then

$$
\begin{align*}
& \max _{1 \leq \mu<\nu \leq n}\left[\left(p_{\mu}+p_{\nu}\right)\left(\frac{p_{\mu} f\left(x_{\mu}\right)+p_{\nu} f\left(x_{\nu}\right)}{p_{\mu}+p_{\nu}}-f\left(\frac{p_{\mu} x_{\mu}+p_{\nu} x_{\nu}}{p_{\mu}+p_{\nu}}\right)\right)\right] \\
& \leq \sum_{1}^{n} p_{i} f\left(x_{i}\right)-f\left(\sum_{1}^{n} p_{i} x_{i}\right) . \tag{2.1}
\end{align*}
$$

For fixed $\mu, \nu$, equality sign holds for $n=2$ or $x_{i}=\frac{p_{\mu} x_{\mu}+p_{\nu} x_{\nu}}{p_{\mu}+p_{\nu}}, i \neq \mu, \nu$.
Proof. Choose arbitrary $x_{r}, x_{s} \in \mathbf{x}, 1 \leq r<s \leq n$ with corresponding weights $p_{r}, p_{s} \in \mathbf{p}$. Note that, if $x_{r}, x_{s} \in I$, then also $\frac{p_{r} x_{r}+p_{s} x_{s}}{p_{r}+p_{s}} \in I$.

By (1.1), we get

$$
\begin{aligned}
f\left(\sum_{1}^{n} p_{i} x_{i}\right) & =f\left(\sum_{i \neq r, s} p_{i} x_{i}+\left(p_{r}+p_{s}\right)\left(\frac{p_{r} x_{r}+p_{s} x_{s}}{p_{r}+p_{s}}\right)\right) \\
& \leq \sum_{i \neq r, s} p_{i} f\left(x_{i}\right)+\left(p_{r}+p_{s}\right) f\left(\frac{p_{r} x_{r}+p_{s} x_{s}}{p_{r}+p_{s}}\right)
\end{aligned}
$$

Hence

$$
\sum_{1}^{n} p_{i} f\left(x_{i}\right)-f\left(\sum_{1}^{n} p_{i} x_{i}\right) \geq p_{r} f\left(x_{r}\right)+p_{s} f\left(x_{s}\right)-\left(p_{r}+p_{s}\right) f\left(\frac{p_{r} x_{r}+p_{s} x_{s}}{p_{r}+p_{s}}\right)
$$

Since $x_{r}, x_{s} \in \mathbf{x}$ are arbitrary, the desired result follows.
It is obvious that the equality sign holds in (2.1) for $n=2$. The same is valid for $n>2$ and $x_{i}=\frac{p_{\mu} x_{\mu}+p_{\nu} x_{\nu}}{p_{\mu}+p_{\nu}}, i \neq \mu, \nu$. Indeed, in this case we get

$$
\begin{aligned}
\sum_{1}^{n} p_{i} f\left(x_{i}\right)-f\left(\sum_{1}^{n} p_{i} x_{i}\right)= & p_{\mu} f\left(x_{\mu}\right)+p_{\nu} f\left(x_{\nu}\right)+f\left(\frac{p_{\mu} x_{\mu}+p_{\nu} x_{\nu}}{p_{\mu}+p_{\nu}}\right) \times \\
& \times \sum_{i \neq \mu, \nu} p_{i}-f\left(p_{\mu} x_{\mu}+p_{\nu} x_{\nu}+\left(\frac{p_{\mu} x_{\mu}+p_{\nu} x_{\nu}}{p_{\mu}+p_{\nu}}\right) \sum_{i \neq \mu, \nu} p_{i}\right) \\
= & p_{\mu} f\left(x_{\mu}\right)+p_{\nu} f\left(x_{\nu}\right)+f\left(\frac{p_{\mu} x_{\mu}+p_{\nu} x_{\nu}}{p_{\mu}+p_{\nu}}\right)\left(1-p_{\mu}-p_{\nu}\right) \\
& -f\left(p_{\mu} x_{\mu}+p_{\nu} x_{\nu}+\left(\frac{p_{\mu} x_{\mu}+p_{\nu} x_{\nu}}{p_{\mu}+p_{\nu}}\right)\left(1-p_{\mu}-p_{\nu}\right)\right) \\
= & p_{\mu} f\left(x_{\mu}\right)+p_{\nu} f\left(x_{\nu}\right)-\left(p_{\mu}+p_{\nu}\right) f\left(\frac{p_{\mu} x_{\mu}+p_{\nu} x_{\nu}}{p_{\mu}+p_{\nu}}\right) .
\end{aligned}
$$

In the case of uniform weights we obtain

$$
\begin{equation*}
\frac{1}{n}\left(f(a)+f(b)-2 f\left(\frac{a+b}{2}\right)\right) \leq \frac{1}{n} \sum_{1}^{n} f\left(x_{i}\right)-f\left(\frac{1}{n} \sum_{1}^{n} x_{i}\right) \tag{2.2}
\end{equation*}
$$

An interesting fact is that the expression $T_{f}(a, b):=f(a)+f(b)-2 f\left(\frac{a+b}{2}\right)$ represents also a global upper bound for Jensen's functional (cf [4, Theorem 1]) i.e. for any $\mathbf{p}$ and $\mathbf{x} \in[a, b]$, the inequality

$$
\begin{equation*}
\sum_{1}^{n} p_{i} f\left(x_{i}\right)-f\left(\sum_{1}^{n} p_{i} x_{i}\right) \leq T_{f}(a, b) \tag{2.3}
\end{equation*}
$$

holds for any $f$ which is convex over $[a, b]$.
Hence, merging the assertions (2.2) and (2.3) into one we obtain the following important conclusion.

Corollary 2.1. For any sequence $\mathbf{x}=\left\{x_{i}\right\}_{1}^{n}, a=x_{1} \leq x_{2} \leq \cdots \leq x_{n}=b$ and any $f$ which is convex on $[a, b]$, we have

$$
\begin{align*}
\frac{1}{n}\left[f(a)+f(b)-2 f\left(\frac{a+b}{2}\right)\right] & \leq \frac{1}{n} \sum_{1}^{n} f\left(x_{i}\right)-f\left(\frac{1}{n} \sum_{1}^{n} x_{i}\right) \\
& \leq f(a)+f(b)-2 f\left(\frac{a+b}{2}\right) \tag{2.4}
\end{align*}
$$

The left-hand side of (8) is saturated for $n=2$ or

$$
x_{1}=a, x_{2}=x_{3}=\ldots=x_{n-1}=\frac{a+b}{2}, x_{n}=b .
$$

## 3. Applications

The above results can be useful in different parts of Analysis, Probability Theory, etc. As an illustration we give the following examples.

Example 3.1. For a sequence $\mathbf{x}$ of positive numbers, defined as above, denote by

$$
A_{n}(\mathbf{x}):=\frac{1}{n} \sum_{1}^{n} x_{i} ; \quad G_{n}(x):=\left(\prod_{1}^{n} x_{i}\right)^{\frac{1}{n}}
$$

its arithmetic and geometric mean, respectively.
It is well known that

$$
0 \leq A_{n}(\mathbf{x})-G_{n}(\mathbf{x})
$$

We can improve this classical inequality to the following one.
Theorem 3.1. We have

$$
\frac{1}{n}(\sqrt{b}-\sqrt{a})^{2} \leq A_{n}(\mathbf{x})-G_{n}(\mathbf{x}) \leq(\sqrt{b}-\sqrt{a})^{2}
$$

where $a:=\min _{1 \leq i \leq n} x_{i} ; \quad b:=\max _{1 \leq i \leq n} x_{i}$.
Proof. Applying Corollary 2.1 with $f(t)=e^{t}$, we get

$$
\frac{1}{n}\left(e^{a}+e^{b}-2 e^{\frac{a+b}{2}}\right) \leq \frac{1}{n} \sum_{1}^{n} e^{t_{i}}-e^{\left(\sum_{1}^{n} t_{i}\right) / n} \leq e^{a}+e^{b}-2 e^{\frac{a+b}{2}}
$$

Changing variables $t_{i}=\log x_{i}, i=1,2, \cdots, n$, we obtain the desired result.
Example 3.2. In the next example we shall give new bounds for Shannon's entropy $H(X)[2,3]$, which is of utmost importance in Information Theory. Those bounds will be expressed as a combination of some classical means and are more precise than already existing ones.

Definition 3.1. If the probability distribution $F$ is given by $P(X=i)=p_{i}, p_{i}>0$, $i=1,2, \cdots, r ; \sum_{1}^{r} p_{i}=1$, then $H(X):=\sum_{1}^{r} p_{i} \log \frac{1}{p_{i}}$.

Theorem 3.2. Let $a:=\min \left(p_{i}\right)<\max \left(p_{i}\right):=b, i=1,2, \cdots, r$. We have the following estimation

$$
\begin{equation*}
2 A(a, b) \log \left(\frac{S(a, b)}{A(a, b)}\right) \leq \log r-H(X) \leq 2 \log \left(\frac{A(a, b)}{G(a, b)}\right) \tag{3.1}
\end{equation*}
$$

where $A(a, b):=\frac{a+b}{2} ; G(a, b):=\sqrt{a b} ; S(a, b):=a^{\frac{a}{a+b}} b^{\frac{b}{a+b}}$, are the arithmetic, geometric and Gini means, respectively.

Proof. Indeed, applying inequalities (2.4) and (3.1) with $f(x)=-\log x, x_{i}=1 / p_{i}$, $i=1,2, \cdots, r$, we get
$a \log a+b \log b+(a+b) \log \left(\frac{2}{a+b}\right) \leq \log \left(\sum_{1}^{r} p_{i}\left(1 / p_{i}\right)\right)-\sum_{1}^{r} p_{i} \log \left(1 / p_{i}\right)$

$$
\leq-\log (1 / a)-\log (1 / b)+2 \log \left(\frac{1}{2}(1 / a+1 / b)\right)
$$

which is equivalent to (3.1).
Remark 3.1. It is interesting to compare (3.1) with [5], where the following result is stated

$$
\begin{equation*}
0<\log r-H(X) \leq \frac{(b-a)^{2}}{4 a b} \tag{3.2}
\end{equation*}
$$

Since $\log (1+x)<x, x>0$, putting $x=(b-a)^{2} / 4 a b$, it follows that the estimation (3.1) is much better than (3.2).

## References

[1] G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, Cambridge University Press, Cambridge, 1978.
[2] I. Csiszar, J. Korner, Information Theory, Academic Press, New York, 1981.
[3] R. J. McEliece, The Theory of Information and Coding, Addison Wesley Publishing Company, Reading, 1977.
[4] S. Simic, On a global upper bound for Jensen's inequality, J. Math. Anal. and Appl., 313/1 (2008), 414-419 .
[5] S. S. Dragomir, C. J. Goh, Some bounds on entropy measures in Information Theory, Appl. Math. Letters, 10/3 (1997), 23-28.
[6] J. A. Adell, A. Lekuona, Y. Yu, Sharp bounds on the entropy of the Poisson law and related quantities, Information Theory, 56/5 (2010), 2299-2306.
[7] A. Sayyareh, A new upper bound for Kullback-Leibler divergence, Appl. Math. Sci., 5/65-68 (2011), 3303-3317.

Mathematical Institute SANU,
Kneza Mihaila 36,
11000 Belgrade, Serbia
E-mail address: ssimic@turing.mi.sanu.ac.rs

