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ON A CLASS OF SELF-IMPROVING INEQUALITIES

SLAVKO SIMIĆ

Abstract. We establish new lower and upper bounds for Jensen’s discrete inequal-
ity. Applying those results we improve some classical inequalities and obtain new
and more precise bounds for Shannon’s entropy.

1. Introduction

In this article we shall consider a class of inequalities with remarkable property that
they can be improved by themselves. To make this idea clear we give an example.

Example 1.1. Take for instance the well-known arithmetic-geometric inequality, writ-
ten in the form
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the following way:
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Hence,
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which is a considerable improvement of the target inequality, especially in the case
b � a.

Moreover, taking x1 = x2 = · · · = x
n�2 = a, x

n�1 = a(1 � ✏), x
n

= a(1 + ✏);
a > 0, 0 < ✏ < 1; it can be seen that the constant 1/4 is the best possible.

We shall consider now a class of well-known inequalities involving convex functions.
For a positive weight sequence p = {p

i

}n1 ,
P

n

1 pi = 1 and a sequence x = {x
i

}n1 , a =
x1  x2  · · ·  x

n

= b, the classical Jensen’s inequality states that if f is convex on
I := [a, b], then
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with the equality sign only if all members of x are equal to a or b or if f is linear on
I (cf [1], p. 70).

Jensen’s inequality is one of the most known and extensively used inequalities in
various fields of Mathematics. Some important inequalities are just particular cases
of this inequality such as the weighted A�G�H inequality, the Cauchy’s inequality,
the Ky Fan and Hölder inequalities, etc.

2. Results

One can see that the lower bound zero in (1.1) is of global nature; it depends only
on f and I but does not depend on sequences p and x.

This bound can be improved by no other means than the inequality (1.1) itself to
the following

Theorem 2.1. If f is convex on I, then
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For fixed µ, ⌫, equality sign holds for n = 2 or x
i

= pµxµ+p⌫x⌫

pµ+p⌫
, i 6= µ, ⌫.
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By (1.1), we get
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Since x
r

, x
s

2 x are arbitrary, the desired result follows.
It is obvious that the equality sign holds in (2.1) for n = 2. The same is valid for

n > 2 and x
i

= pµxµ+p⌫x⌫

pµ+p⌫
, i 6= µ, ⌫. Indeed, in this case we get
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In the case of uniform weights we obtain

(2.2)
1

n

⇣
f(a) + f(b)� 2f

⇣a+ b

2

⌘⌘
 1

n

nX

1

f(x
i

)� f
⇣ 1
n

nX

1

x
i

⌘
.

⇤

An interesting fact is that the expression T
f

(a, b) := f(a)+f(b)�2f(a+b

2 ) represents
also a global upper bound for Jensen’s functional (cf [4, Theorem 1]) i.e. for any p
and x 2 [a, b], the inequality
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holds for any f which is convex over [a, b].
Hence, merging the assertions (2.2) and (2.3) into one we obtain the following

important conclusion.
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Corollary 2.1. For any sequence x = {x
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The left-hand side of (8) is saturated for n = 2 or

x1 = a, x2 = x3 = . . . = x
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2
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3. Applications

The above results can be useful in di↵erent parts of Analysis, Probability Theory,
etc. As an illustration we give the following examples.

Example 3.1. For a sequence x of positive numbers, defined as above, denote by
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It is well known that
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We can improve this classical inequality to the following one.

Theorem 3.1. We have
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Proof. Applying Corollary 2.1 with f(t) = et, we get

1

n
(ea + eb � 2e

a+b
2 )  1

n

nX

1

eti � e(
Pn

1 ti)/n  ea + eb � 2e
a+b
2 .

Changing variables t
i

= log x
i

, i = 1, 2, · · · , n, we obtain the desired result. ⇤
Example 3.2. In the next example we shall give new bounds for Shannon’s entropy
H(X) [2, 3], which is of utmost importance in Information Theory. Those bounds
will be expressed as a combination of some classical means and are more precise than
already existing ones.

Definition 3.1. If the probability distribution F is given by P (X = i) = p
i
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> 0,
i = 1, 2, · · · , r;
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Theorem 3.2. Let a := min(p
i

) < max(p
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) := b, i = 1, 2, · · · , r. We have the
following estimation
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Proof. Indeed, applying inequalities (2.4) and (3.1) with f(x) = � log x, x
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which is equivalent to (3.1). ⇤
Remark 3.1. It is interesting to compare (3.1) with [5], where the following result is
stated

(3.2) 0 < log r �H(X)  (b� a)2

4ab
.

Since log(1+x) < x, x > 0, putting x = (b�a)2/4ab, it follows that the estimation
(3.1) is much better than (3.2).
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