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A NOTE ON THE ISOTROPICAL GEOMETRY OF PRODUCTION
SURFACES

SIMONA DECU1 AND LEOPOLD VERSTRAELEN2

In a series of recent articles [1–4] Bang–Yen Chen a. o. obtained several nice charac-
terisations of economical properties of homogeneous production functions f : Rn ! R,
(n � 2), in terms of Euclidean geometrical properties of the corresponding produc-
tion hypersurfaces Mn = graph f in Rn+1; (for the definitions of the basic Eu-
clidean and Riemannian geometrical notions as well as for the basic economical ones
mentioned in the present text we refer to these articles and the references therein
for their precise meanings and backgrounds). In particular, and, for the sake of
simplicity of formulation, hereafter restricting to the case of production functions
f depending on n = 2 variables only and to their corresponding production surfaces
M2 = graph f in R3, as such we recall the following general new result of the following
kind.

Theorem A. [1] A homogeneous production function f : R2 ! R has constant
return to scale if and only if the corresponding production surface has vanishing Gauss
curvature, i.e. is a flat surface in the 3–dimensional Euclidean space E3.

This result contains as special cases the also recently obtained following results of
G. E. Vilcu and A. D. Vilcu.

Corollary B. [5, 6] The two–factor Cobb–Douglas production function and the two–
factor ACMS production function have constant returns to scale if and only if their
corresponding production surfaces are flat surfaces in E3.

For functions f : R2 ! R of two variables, say x and y, the corresponding graphs are
the surfacesM2 in R3 given by the equation, say z = f(x, y), in Cartesian co–ordinates
(x, y, z) in R3. The Gauss curvature K of the Riemannian surfaces (M2, g), whereby
g are the Riemannian metrics induced on such surfaces M2 : z = f(x, y) in R3 from
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the metric ds2 = dx2 + dy2 + dz2 of the ambient Euclidean space E3 = (R3, ds2)
is given by K = (f

xx

f
yy

� f 2
xy

)/(1 + f 2
x

+ f 2
y

)2. Thus, the vanishing of this Gauss
curvature K is equivalent to the vanishing of the determinant detH

f

of the Hessian
matrix H

f

of the function f : R2 ! R : (x, y) 7! z = f(x, y) concerned.
The point that we would like to make in the present paper essentially is the follow-

ing; (cfr. [7]). In the modeling of several problems, like here describing a production,
say f , in terms of some variables, say x and y, (or x1, . . . , xn

for that matter), quali-
tatively the values of the variables x and y, (or the values of the variables x1, . . . , xn

),
and the corresponding values of f , say z = f(x, y), (or z = f(x1, . . . , xn

)), are basically
of di↵erent natures. Therefore, it might not be considered to be altogether so unwise
to assign di↵erent measures to the variables x and y, (or to the variables x1, . . . , xn

),
on the one hand, and to the function values z = f(x, y), (or z = f(x1, . . . , xn

)), on the
other hand. And, amongst the possibilities of doing so in a more or less reasonable
way, here we will consider the surfaces M2 : z = f(x, y) in R3, (or the hypersurfaces
Mn : z = f(x1, . . . , xn

) in Rn+1), as being situated in the one–fold isotropical space(s)
I(3) = (R3, ds2⇤ = dx2 + dy2), (or I(n+1) = (Rn+1, ds2⇤ = dx2

1 + · · · + dx2
n

)). In a kind
of flexible analogy, this is similar to the standard geometrical description of the lu-
minosity surfaces in the theory of vision [8, 9], whereby -though less outspoken than
in the present case- the arguments x and y themselves too already are not exactly
of the same quality either, but it does not harm so much to overlook these latter
di↵erences, at least in a first approach to a formal description of the realities under
study. Also, this approach is well in accordance with such isotropical spaces after
all naturally occurring as subspaces in the pseudo–Euclidean spaces which essentially
base on our kind’s visual–physical experiences in “our” space–time worlds; (cfr. [10]).
The classical textbook reference for the geometry of surfaces M2 : z = f(x, y) in
isotropical spaces I(3) is H. Sachs’ “Isotrope Geometrie des Raumes” [11].

The metrics g⇤ induced on such surfaces M2 : z = f(x, y) in R3 from the metric
ds2⇤ = dx2 + dy2 of the one–fold isotropical space I(3) = (R3, ds2⇤) are always positive
definite, i.e. all surfaces (M2, g⇤) are properly Riemannian, and all these Riemannian
surfaces (M2, g⇤) are flat, i.e. the Gauss curvature K, or still, the intrinsic or absolute
curvature of all these surfaces (M2, g⇤) vanishes identically. Next, we will briefly
comment on each of the main extrinsic curvatures of such surfaces M2 : z = f(x, y)
in I(3) = (R3, ds2⇤). Firstly, the relative curvature K̃ of M2 in I(3), which inspired by
Euclidean surface theory is defined as K̃ = k̃1.k̃2 whereby k̃1 and k̃2 are the isotropical
principal curvatures of M2 in I(3), is given by the determinant of the Hessian of
f : K̃ = detH

f

= f
xx

f
yy

� f 2
xy

. Hence, in terms of the extrinsic geometry of surfaces
in isotropical spaces, the previous results could be reformulated as follows.

Theorem 1.1. A homogeneous production function f of two variables, (i.p. the two–
factor Cobb–Douglas function and also the two–factor ACMS function), has constant
return to scale if and only if the relative curvature of the corresponding production
surface M2 in I(3) vanishes identically.
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Secondly, the isotropical mean curvature H̃ = (k̃1+ k̃2)/2 is determined by the Lapla-
cian � = @2/@x2+@2/@y2 of f : H̃ = (�f)/2 = (f

xx

+f
yy

)/2 = (trH
f

)/2, the isotrop-
ical minimal surfaces M2 in I(3) thus being the graphs of the harmonic functions
f : R2 ! R. Finally, the isotropical Casorati curvature C̃ = (k̃2

1 + k̃2
2)/2 = 2H̃ � K̃ of

M2 : z = f(x, y) in I(3) is given by C̃ = (f 2
xx

+f 2
xy

+f 2
yx

+f 2
yy

)/2 = 1
2kHf

k2, i.e. basically
is given by the standard norm of the Hessian of f . Hence, any such graph surface M2

in I(3) has identically vanishing curvature C̃ if and only if f
xx

= f
xy

= f
yx

= f
yy

= 0,
i.e. if M2 is a plane in R3. So, in particular the next proposition follows.

Proposition 1.1. A production function f : R2 ! R is a perfect substitute if and
only if the isotropical Casorati curvature of the corresponding production surface M2

vanishes identically.
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