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F -GEOMETRIC MEAN LABELING OF SOME CHAIN GRAPHS
AND THORN GRAPHS

A. DURAI BASKAR, S. AROCKIARAJ AND B. RAJENDRAN

Abstract. A function f is called a F -Geometric mean labeling of a graph G(V,E)
if f : V (G) → {1, 2, 3, . . . , q + 1} is injective and the induced function f∗ : E(G) →
{1, 2, 3, . . . , q} defined as f∗(uv) =

⌊√
f(u)f(v)

⌋
, for all uv ∈ E(G), is bijective.

A graph that admits a F -Geometric mean labelling is called a F -Geometric mean
graph. In this paper, we have discussed the F -Geometric mean labeling of some
chain graphs and thorn graphs.

1. Introduction

Throughout this paper, by a graph we mean a finite, undirected and simple graph.
Let G(V,E) be a graph with p vertices and q edges. For notations and terminology,
we follow [3]. For a detailed survey on graph labeling, we refer [2].

Path on n vertices is denoted by Pn and a cycle on n vertices is denoted by Cn.
G # K1 is the graph obtained from G by attaching a new pendant vertex to each
vertex of G. A star graph Sm is the complete bipartite graph K1,m. G # S2 is the
graph obtained from G by attaching two pendant vertices at each vertex of G. If
v(i)1 , v(i)2 , v(i)3 , . . . , v(i)m+1 and u1, u2, u3 . . . , un be the vertex of the star graph Sm and the
path Pn, then the graph (Pn;Sm) is obtained from n copies of Sm and the path Pn by

joining ui with the central vertex v(i)1 of the ith copy of Sm by means of an edge, for
1 ≤ i ≤ n. The H− graph is obtained from two paths u1, u2, . . . , un and v1, v2, . . . , vn
of equal length by joining an edge un+1

2
vn+1

2
when n is odd and un+2

2
vn

2
when n is

even. Let G1 and G2 be any two graphs with p1 and p2 vertices, respectively. Then
the cartesian product G1 × G2 has p1p2 vertices which are {(u, v)/u ∈ G1, v ∈ G2}.
The edges are defined as follows: (u1, v1) and (u2, v2) are adjacent in G1×G2 if either
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u1 = u2 and v1 and v2 are adjacent in G2 or u1 and u2 are adjacent in G1 and v1 = v2.
The Ladder graph Ln is obtained from Pn × P2.

The study of graceful graphs and graceful labeling methods first introduced by Rosa
[5]. The concept of mean labeling was first introduced by S. Somasundaram and R.
Ponraj [6] and it was developed in [4] and [7]. In [10], R. Vasuki et al. discussed
the mean labeling of cyclic snake and armed crown. In [8], S. Somasundaram et al.
defined the geometric mean labeling as follows.

A graphG = (V,E) with p vertices and q edges is said to be a geometric mean graph
if it is possible to label the vertices x ∈ V with distinct labels f(x) from 1, 2, . . . , q+1

in such way that when each edge e = uv is labeled with f(uv) =
⌊√

f(u)f(v)
⌋
or

⌈√
f(u)f(v)

⌋
then the edge labels are distinct.

In the above definition, the readers will get some confusion in finding the edge
labels which edge is assigned by flooring function and which edge is assigned by
ceiling function.

In [9], they have given the geometric mean labeling of the graph C5 ∪C7 as in the
Figure 1.
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Figure 1. A Geometric mean labeling of C5 ∪ C7.

From the above figure, for the edge uv, they have used flooring function
⌊√

f(u)f(v)
⌋

and for the edge vw, they have used ceiling function
⌈√

f(u)f(v)
⌉
for fulfilling their

requirement. To avoid the confusion of assigning the edge labels in their definition,

we just consider the flooring function
⌊√

f(u)f(v)
⌋
for our discussion. Based on

our definition, the F -Geometric mean labeling of the same graph C5 ∪ C7 is given in
Figure 2.
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Figure 2. A F -Geometric mean labeling of C5 ∪ C7

In [1], A. Durai Baskar et al. introduced Geometric mean graph.
A function f is called a F -Geometric mean labeling of a graph G(V,E) if

f : V (G) → {1, 2, 3, . . . , q + 1} is injective and the induced function f ∗ : E(G) →
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{1, 2, 3, . . . , q} defined as

f ∗(uv) =
⌊√

f(u)f(v)
⌋
, for all uv ∈ E(G),

is bijective. A graph that admits a F -Geometric mean labeling is called a F -Geometric
mean graph.

The graph shown in Figure 3 is a F -Geometric mean graph.
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Figure 3. A F -Geometric mean graph

In this paper, we have discussed the F -Geometric mean labeling of some chain
graphs and thorn graphs.

2. Main Results

The graph G∗(p1, p2, . . . , pn) is obtained from n cycles of length p1, p2, . . . , pn by
identifying consecutive cycles at a vertex as follows. If the jth cycle is of odd length,

then its
(

pj+3
2

)th

vertex is identified with the first vertex of (j + 1)th cycle and if the

jth cycle is of even length, then its
(

pj+2
2

)th

vertex is identified with the first vertex

of (j + 1)th cycle.

Theorem 2.1. G∗(p1, p2, . . . , pn) is a F -Geometric mean graph for any pj, for
1 ≤ j ≤ n.

Proof. Let {v(j)i ; 1 ≤ j ≤ n, 1 ≤ i ≤ pj} be the vertices of the n number of cycles.

For 1 ≤ j ≤ n− 1, the jth and (j + 1)th cycles are identified by a vertex v(j)pj+3

2

and

v(j+1)
1 while pj is odd and v(j)pj+2

2

and v(j+1)
1 while pj is even.

We define f : V [G∗(p1, p2, . . . , pn] →

{

1, 2, 3, . . . ,
n∑

j=1
pj + 1

}

as follows:

f(v(1)i ) =

{
2i− 1 1 ≤ i ≤

⌊
p1
2

⌋
+ 1

2p1 − 2(i− 2)
⌊
p1
2

⌋
+ 2 ≤ i ≤ p1

and
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for 2 ≤ j ≤ n,

f(v(j)i ) =






j−1∑
k=1

pk + 2i− 1 2 ≤ i ≤
⌊pj

2

⌋
+ 1

j−1∑
k=1

pk + 2(i− 1) i =
⌊pj

2

⌋
+ 2 and pj is odd

j−1∑
k=1

pk + 2(i− 2) i =
⌊pj

2

⌋
+ 2 and pj is even

j−1∑
k=1

pk + 2pj − 2(i− 2) i =
⌊pj

2

⌋
+ 3 ≤ i ≤ pj

The induced edge labeling is as follows:

f ∗(v(1)i v(1)i+1) =






2i− 1 1 ≤ i ≤
⌊
p1
2

⌋

2i− 1 i =
⌊
p1
2

⌋
+ 1 and p1 is odd

2p1 − 2(i− 1) i =
⌊
p1
2

⌋
+ 1 and p1 is even

2p1 − 2(i− 1)
⌊
p1
2

⌋
+ 2 ≤ i ≤ p1 − 1,

f ∗(v(1)p1
v(1)1 ) = 2,

for 2 ≤ j ≤ n,

f ∗(v(j)i v(j)i+1) =






j−1∑
k=1

pk + 2i− 1 1 ≤ i ≤
⌊pj

2

⌋

j−1∑
k=1

pk + 2i− 1 i =
⌊pj

2

⌋
+ 1 and pj is odd

j−1∑
k=1

pk + 2pj − 2(i− 1) i =
⌊pj

2

⌋
+ 1 and pj is even

j−1∑
k=1

pk + 2pj − 2(i− 1)
⌊pj

2

⌋
+ 2 ≤ i ≤ pj − 1

and

f ∗(v(j)pj
v(j)1 ) =

j−1∑

k=1

pk + 2.

Hence, f is a F -Geometric mean labeling of G∗(p1, p2, . . . , pn). Thus the graph
G∗(p1, p2, . . . , pn) is a F -Geometric mean graph. !

A F -Geometric mean labeling of G∗(10, 9, 12, 4, 5) is as shown in Figure 4.
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Figure 4. A F -Geometric mean labeling of G∗(10, 9, 12, 4, 5)

The graph G′(p1, p2, . . . , pn) is obtained from n cycles of length p1, p2, . . . , pn by iden-

tifying consecutive cycles at an edge as follows: The
(

pj+3
2

)th

edge of jth cycle is

identified with the first edge of (j + 1)th cycle when j is odd and the
(

pj+1
2

)th

edge

of jth cycle is identified with the first edge of (j + 1)th cycle when j is even.

Theorem 2.2. G′(p1, p2, . . . , pn) is a F -Geometric mean graph if all pj’s are odd or
all pj’s are even, for 1 ≤ j ≤ n.

Proof. Let {v(j)i ; 1 ≤ j ≤ n, 1 ≤ i ≤ pj} be the vertices of the n number of cycles.

Case (i) pj is odd, for 1 ≤ j ≤ n.
For 1 ≤ j ≤ n − 1, the jth and (j + 1)th cycles are identified by the edges

v(j)pj+1

2

v(j)pj+3

2

and v(j+1)
1 v(j+1)

pj+1 while j is odd and v(j)pj−1

2

v(j)pj+1

2

and v(j+1)
1 v(j+1)

pj+1 while j is
even.

We define f : V [G′(p1, p2, . . . , pn)] →

{

1, 2, 3, . . . ,
n∑

j=1
pj − n + 2

}

as follows:

f(v(1)i ) =






1 i = 1
2i 2 ≤ i ≤

⌊
p1
2

⌋
+ 1

2p1 + 3− 2i
⌊
p1
2

⌋
+ 2 ≤ i ≤ p1

and for 2 ≤ j ≤ n,

f(v(j)i ) =






j−1∑
k=1

pk − j + 2i+ 2 2 ≤ i ≤
⌊pj

2

⌋
and j is even

j−1∑
k=1

pk + 2pj + 3− j − 2i
⌊pj

2

⌋
+ 1 ≤ i ≤ pj − 1 and j even

j−1∑
k=1

pk − j + 2i+ 1 2 ≤ i ≤
⌊pj

2

⌋
+ 1 and j is odd

j−1∑
k=1

pk + 2pj + 4− j − 2i
⌊pj

2

⌋
+ 2 ≤ i ≤ pj − 1 and j odd.
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The induced edge labeling is as follows:

f ∗(v(1)i v(1)i+1) =

{
2i 1 ≤ i ≤

⌊
p1
2

⌋

2p1 + 1− 2i
⌊
p1
2

⌋
+ 1 ≤ i ≤ p1 − 1,

f ∗(v(1)p1
v(1)1 ) = 1

and for 2 ≤ j ≤ n,

f ∗(v(j)i v(j)i+1) =






j−1∑
k=1

pk − j + 2i+ 2 1 ≤ i ≤
⌊ pj

2

⌋
and j is even

j−1∑
k=1

pk + 2pj + 1− j − 2i
⌊pj

2

⌋
+ 1 ≤ i ≤ pj − 1 and j even

j−1∑
k=1

pk − j + 2i+ 1 1 ≤ i ≤
⌊ pj

2

⌋
and j is odd

j−1∑
k=1

pk + 2pj + 2− j − 2i
⌊pj

2

⌋
+ 1 ≤ i ≤ pj − 1 and j odd.

Case (ii) pj is even, for 1 ≤ j ≤ n.
For 1 ≤ j ≤ n − 1, the jth and (j + 1)th cycles are identified by the edges

v(j)pj
2

v(j)pj+2

2

and v(j+1)
1 v(j+1)

pj+1 .

We define f : V [G′(p1, p2, . . . , pn)] →

{

1, 2, 3, . . . ,
n∑

j=1
pj − n+ 2

}

as follows:

f(v(1)i ) =






1 i = 1
2i 2 ≤ i ≤

⌊
p1
2

⌋

2p1 + 3− 2i
⌊
p1
2

⌋
+ 1 ≤ i ≤ p1

and for 2 ≤ j ≤ n,

f(v(j)i ) =






j−1∑
k=1

pk − j + 2i+ 1 2 ≤ i ≤
⌊pj

2

⌋

j−1∑
k=1

pk + 2pj + 4− j − 2i
⌊pj

2

⌋
+ 1 ≤ i ≤ pj − 1.

The induced edge labeling is as follows:

f ∗(v(1)i v(1)i+1) =

{
2i 1 ≤ i ≤

⌊
p1
2

⌋

2p1 + 1− 2i
⌊
p1
2

⌋
+ 1 ≤ i ≤ p1 − 1,

f ∗(v(1)p1
v(1)1 ) = 1
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and for 2 ≤ j ≤ n,

f ∗(v(j)i v(j)i+1) =






j−1∑
k=1

pj − j + 2i+ 1 1 ≤ i ≤
⌊pj

2

⌋

j−1∑
k=1

pk + 2pj + 2− j − 2i
⌊pj

2

⌋
+ 1 ≤ i ≤ pj − 1.

Hence, f is a F -Geometric mean labeling of G′(p1, p2, . . . , pn). Thus the graph
G′(p1, p2, . . . , pn) is a F -Geometric mean graph. !

A F -Geometric mean labeling of G′(7, 5, 9, 13) and G′(4, 8, 10, 6) is as shown in
Figure 5.
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Figure 5. F -Geometric mean labeling of G′(7, 5, 9, 13) and G′(4, 8, 10, 6)

The graph Ĝ(p1, m1, p2, m2, . . . , mn−1, pn) is obtained from n cycles of length
p1, p2, . . . , pn and (n − 1) paths on m1, m2, . . . , mn−1 vertices respectively by iden-
tifying a cycle and a path at a vertex alternatively as follows: If the jth cycles is of

odd length, then its
(

pj+3
2

)th

vertex is identified with a pendant vertex of jth path

and if the jth cycle is of even length, then its
(

pj+2
2

)th

vertex is identified with a

pendant vertex of jth path while the other pendant vertex of the jth path is identified
with the first vertex of the (j + 1)th cycle.

Theorem 2.3. Ĝ(p1, m1, p2, m2, . . . , mn−1pn) is a F -Geometric mean graph for any
pj’s and mj’s.

Proof. Let {v(j)i ; 1 ≤ j ≤ n, 1 ≤ i ≤ pj} and {u(j)
i ; 1 ≤ j ≤ n− 1, 1 ≤ i ≤ mj} be the

n number of cycles and (n− 1) number of paths respectively.
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For 1 ≤ j ≤ n − 1, the jth cycle and jth path are identified by a vertex v(j)pj+2

2

and

u(j)
1 while pj is even and v(j)pj+3

2

and u(j)
1 while pj is odd. And the jth path and (j+1)th

cycle are identified by a vertex u(j)
mj and v(j+1)

1 .

We define f : V [Ĝ(p1, m1, p2, m2, . . . , mn−1, pn)] →
{
1, 2, 3, . . . ,

n−1∑
j=1

(pj +mj)+ pn −

n+ 2
}
as follows:

f(v(1)i ) =

{
2i− 1 1 ≤ i ≤

⌊
p1
2

⌋
+ 1

2p1 + 4− 2i
⌊
p1
2

⌋
+ 2 ≤ i ≤ p1,

f(u(1)
i ) = p1 + i, for 2 ≤ i ≤ m1,

for 2 ≤ j ≤ n,

f(v(j)i ) =






j−1∑
k=1

(pk +mk) + 2i− j 2 ≤ i ≤
⌊pj

2

⌋
+ 1

j−1∑
k=1

(pk +mk) + 2i− j − 1 i =
⌊pj

2

⌋
+ 2

and pj is odd

j−1∑
k=1

(pk +mk) + 2i− j − 3 i =
⌊pj

2

⌋
+ 2 and

pj is even

j−1∑
k=1

(pk +mk) + 2pj − 2i− j + 5
⌊pj

2

⌋
+ 3 ≤ i ≤ pj

and for 3 ≤ j ≤ n,

f(u(j−1)
i ) =

j−2∑

k=1

(pk +mk) + pj−1 + i+ 2− j, for 2 ≤ i ≤ mj−1

The induced edge labeling is as follows:

f ∗(v(1)i v(1)i+1) =






2i− 1 1 ≤ i ≤
⌊
p1
2

⌋

2i− 1 i =
⌊
p1
2

⌋
+ 1 and

p1 is odd
2p1 − 2i+ 2 i =

⌊
p1
2

⌋
+ 1 and

p1 is even
2p1 − 2i+ 2

⌊
p1
2

⌋
+ 2 ≤ i ≤ p1 − 1,

f ∗(v(1)p1
v(1)1 ) = 2,

f ∗(u(1)
i u(1)

i+1) = p1 + i, for 1 ≤ i ≤ m1 − 1,
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for 2 ≤ j ≤ n,

f ∗(v(j)i v(j)i+1) =






j−1∑
k=1

(pk +mk) + 2i− j 1 ≤ i ≤
⌊pj

2

⌋

j−1∑
k=1

(pk +mk) + 2i− j i =
⌊pj

2

⌋
+ 1 and

pj is odd

j−1∑
k=1

(pk +mk) + 2pj − 2i− j + 3 i =
⌊pj

2

⌋
+ 1 and

pj is even

j−1∑
k=1

(pk +mk) + 2pj − 2i− j + 3
⌊pj

2

⌋
+ 2 ≤ i ≤ pj − 1,

f ∗(v(j)pj
v(j)1 ) =

j−1∑

k=1

(pk +mk)− j + 3

and for 3 ≤ j ≤ n,

f ∗(u(j−1)
i u(j−1)

i+1 ) =
j−2∑

k=1

(pk +mk) + pj−1 + i+ 2− j, for 1 ≤ i ≤ mj−1 − 1.

Hence, f is a F -Geometric mean labeling of Ĝ(p1, m1, p2, m2 . . . , mn−1, pn). Thus the
graph Ĝ(p1, m1, p2, m2 . . . , mn−1, pn) is a F -Geometric mean graph. !

A F -Geometric mean labeling of Ĝ(8, 4, 5, 6, 10) is as shown in Figure 6.

""

"

"

"

""

"

"" " "

"

"

"

"" " " " "

"

"

"

""

"

"

"

1

1

3 3

5

5 7

7

9

8

86

6

44

2

9
10
10

11
11

12

12

14 14

16

16

17

15

15

13

17
18
18
19
19
20

20
21
21 22

22
24 24

26 26

28

28
30

30

32
31

3129

2927

27

2525

23

Figure 6. A F -Geometric mean labeling of Ĝ(8, 4, 5, 6, 10)

Theorem 2.4. Cn #K1 is a F -Geometric mean graph, for n ≥ 3.

Proof. Let v1, v2, . . . , vn be the vertices of the cycle Cn and let ui be the pendant
vertices attached at each vi, for 1 ≤ i ≤ n. Consider the graph Cn #K1, for n ≥ 4.
Case (i)

⌊√
2n+ 1

⌋
is odd.
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We define f : V [Cn #K1] → {1, 2, 3, . . . , 2n+ 1} as follows:

f(vi) =






1 i = 1

2i 2 ≤ i ≤
⌊√

2n+1
2

⌋
+ 1

2i+ 1
⌊√

2n+1
2

⌋
+ 2 ≤ i ≤ n

and

f(ui) =






2 i = 1

2i− 1 2 ≤ i ≤
⌊√

2n+1
2

⌋

2i+ 1 i =
⌊√

2n+1
2

⌋
+ 1

2i
⌊√

2n+1
2

⌋
+ 2 ≤ i ≤ n.

The induced edge labeling is as follows:

f ∗(vivi+1) =





2i 1 ≤ i ≤

⌊√
2n+1
2

⌋

2i+ 1
⌊√

2n+1
2

⌋
+ 1 ≤ i ≤ n− 1,

f ∗(v1vn) =
⌊√

2n+ 1
⌋

and

f ∗(uivi) =





2i− 1 1 ≤ i ≤

⌊√
2n+1
2

⌋

2i
⌊√

2n+1
2

⌋
+ 1 ≤ i ≤ n.

Case (ii)
⌊√

2n+ 1
⌋
is even.

We define f : V [Cn #K1] → {1, 2, 3, . . . , 2n+ 1} as follows:

f(vi) =






1 i = 1

2i 2 ≤ i ≤
⌊√

2n+1
2

⌋

2i+ 1
⌊√

2n+1
2

⌋
+ 1 ≤ i ≤ i ≤ n

and

f(ui) =






2 i = 1

2i− 1 2 ≤ i ≤
⌊√

2n+1
2

⌋

2i
⌊√

2n+1
2

⌋
+ 1 ≤ i ≤ n.

The induced edge labeling is as follows:

f ∗(vivi+1) =





2i 1 ≤ i ≤

⌊√
2n+1
2

⌋
− 1

2i+ 1
⌊√

2n+1
2

⌋
≤ i ≤ n− 1,

f ∗(v1vn) =
⌊√

2n+ 1
⌋

and

f ∗(uivi) =





2i− 1 1 ≤ i ≤

⌊√
2n+1
2

⌋

2i
⌊√

2n+1
2

⌋
+ 1 ≤ i ≤ n.
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Hence, the graph Cn #K1, for n ≥ 4 admits F -Geometric mean labeling. !

For n = 3, a F -Geometric mean labeling of C3 #K1 is as shown in Figure 7.
"

"

" " ""
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2

3

7
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65445

2

Figure 7. A F - Geometric mean labeling of C3 #K1

A F -Geometric mean labeling of C12 #K1 is as shown in Figure 8.
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"
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Figure 8. A F -Geometric mean labeling of C12 #K1

Theorem 2.5. Cn # S2 is a F -Geometric mean graph for n ≥ 3.

Proof. Let u1, u2, . . . , un be the vertices of the cycle Cn. Let v(i)1 be the pendant
vertices at each vertex ui, for 1 ≤ i ≤ n. Therefore,

V [Cn # S2] = V (Cn) ∪ {v(i)1 , v(i)2 ; 1 ≤ i ≤ n}
and

E[Cn # S2] = E(Cn) ∪ {uiv
(i)
1 , uiv

(i)
2 ; 1 ≤ i ≤ n}.
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Case (i)
⌊√

6n
⌋
is a multiple of 3.

We define f : V [Cn # S2] → {1, 2, 3, . . . , 3n+ 1} as follows:

f(ui) =






3i− 1 1 ≤ i ≤
⌊√

6n
3

⌋

3i+ 1 i =
⌊√

6n
3

⌋
+ 1

3i
⌊√

6n
3

⌋
+ 2 ≤ i ≤ n,

f(v(i)1 ) =






3i− 2 1 ≤ i ≤
⌊√

6n
3

⌋

3i− 1
⌊√

6n
3

⌋
+ 1 ≤ i ≤ n

and

f(v(i)2 ) =





3i 1 ≤ i ≤

⌊√
6n
3

⌋
+ 1

3i+ 1
⌊√

6n
3

⌋
+ 2 ≤ i ≤ n.

The induced edge labeling is as follows

f ∗(uiui+1) =





3i 1 ≤ i ≤

⌊√
6n
3

⌋
− 1

3i+ 1
⌊√

6n
3

⌋
≤ i ≤ n− 1,

f ∗(unu1) =
⌊√

6n
⌋
,

f ∗(uiv
(i)
1 ) =





3i− 2 1 ≤ i ≤

⌊√
6n
3

⌋

3i− 1
⌊√

6n
3

⌋
+ 1 ≤ i ≤ n

and

f ∗(uiv
(i)
2 ) =





3i− 1 1 ≤ i ≤

⌊√
6n
3

⌋

3i
⌊√

6n
3

⌋
+ 1 ≤ i ≤ n.

Case (ii)
⌊√

6n
⌋
is not a multiple of 3.

We define f : V [Cn # S2] → {1, 2, 3, . . . , 3n+ 1} as follows:

f(ui) =





3i− 1 1 ≤ i ≤

⌊√
6n
3

⌋

3i
⌊√

6n
3

⌋
+ 1 ≤ i ≤ n,

f(v(i)1 ) =





3i− 2 1 ≤ i ≤

⌊√
6n+1
3

⌋

3i− 1
⌊√

6n+1
3

⌋
+ 1 ≤ i ≤ n



F -GEOMETRIC MEAN LABELING OF SOME CHAIN GRAPHS AND THORN GRAPHS 175

and

f(v(i)2 ) =





3i 1 ≤ i ≤

⌊√
6n
3

⌋

3i+ 1
⌊√

6n
3

⌋
+ 1 ≤ i ≤ n.

The induced edge labeling is as follows

f ∗(uiui+1) =





3i 1 ≤ i ≤

⌊√
6n
3

⌋

3i+ 1
⌊√

6n
3

⌋
+ 1 ≤ i ≤ n− 1,

f ∗(unu1) =
⌊√

6n
⌋
,

f ∗(uiv
(i)
1 ) =





3i− 2 1 ≤ i ≤

⌊√
6n+1
3

⌋

3i− 1
⌊√

6n+1
3

⌋
+ 1 ≤ i ≤ n

and

f ∗(uiv
(i)
2 ) =





3i− 1 1 ≤ i ≤

⌊√
6n
3

⌋

3i
⌊√

6n
3

⌋
+ 1 ≤ i ≤ n.

Hence, f is a F -Geometric mean labeling of Cn # S2. Thus the graph Cn # S2 is a
F -Geometric mean graph, for n ≥ 3. !

A F -Geometric mean labeling of C6 # S2 is as shown in Figure 9.
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Figure 9. A F -Geometric mean labeling of C6 # S2

Theorem 2.6. (Pn;Sm) is a F -Geometric mean graph, for m ≤ 2 and n ≥ 1.

Proof. Let u1, u2, . . . , un be the vertices of the path Pn and Let v(i)1 , v(i)2 , . . . , v(i)m+1

be the vertices of the star graph Sm such that v(i)1 is the central vertex of Sm, for
1 ≤ i ≤ n.
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Case (i) m = 1
We define f : V [(Pn;Sm)] → {1, 2, 3, . . . , 3n} as follows:

f(ui) =

{
3i 1 ≤ i ≤ n and i is odd
3i− 2 1 ≤ i ≤ n and i is even,

f(v(i)1 ) = 3i− 1, for 1 ≤ i ≤ n

and

f(v(i)2 ) =

{
3i− 2 1 ≤ i ≤ n and i is odd
3i 1 ≤ i ≤ n and i is even.

The induced edge labeling is as follows

f ∗(uiui+1) = 3i, for 1 ≤ i ≤ n− 1,

f ∗(uiv
(i)
1 ) =

{
3i− 1 1 ≤ i ≤ n and i is odd
3i− 2 1 ≤ i ≤ n and i is even

and

f ∗(v(i)1 v(i)2 ) =

{
3i− 2 1 ≤ i ≤ n and i is odd
3i− 1 1 ≤ i ≤ n and i is even.

Case (ii) m = 2
We define f : V [(Pn;Sm)] → {1, 2, 3, . . . , 4n} as follows:

f(ui) =

{
4i 1 ≤ i ≤ n and i is odd
4i− 2 1 ≤ i ≤ n and i is even,

f(v(i)1 ) = 4i− 1, for 1 ≤ i ≤ n,

f(v(i)2 ) = 4i− 3, for 1 ≤ i ≤ n

and

f(v(i)3 ) =

{
4i− 2 1 ≤ i ≤ n and i is odd
4i 1 ≤ i ≤ n and i is even.

The induced edge labeling is as follows:

f ∗(uiui+1) = 4i, for 1 ≤ i ≤ n− 1,

f ∗(uiv
(i)
1 ) =

{
4i− 1 1 ≤ i ≤ n and i is odd
4i− 2 1 ≤ i ≤ n and i is even

f ∗(v(i)1 v(i)2 ) = 4i− 3, for 1 ≤ i ≤ n

and

f ∗(v(i)1 v(i)3 ) =

{
4i− 2 1 ≤ i ≤ n and i is odd
4i− 1 1 ≤ i ≤ n and i is even.

Hence, f is a F -Geometric mean labeling of (Pn;Sm.) Thus the graph (Pn;Sm) is
a F -Geometric mean graph, for m ≤ 2 and n ≥ 1. !

A F -Geometric mean labeling of (P7;S1) and (P8;S2) is as shown in Figure 10.
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Figure 10. A F -Geometric mean labeling of (P7;S1) and (P8;S2)

Theorem 2.7. For a H−graph G, G#K1 is a F -Geometric mean graph.

Proof. Let u1, u2, . . . , un and v1, v2, . . . , vn be the vertices of G. Therefore

V (G#K1) = V (G) ∪ {u′
i, v

′
i; 1 ≤ i ≤ n}

and

E(G#K1) = E(G) ∪ {uiu
′
i, viv

′
i; 1 ≤ i ≤ n}.

Case (i) n ≡ 0(mod 4).
We define f : V (G#K1) → {1, 2, 3, . . . , 4n} as follows:

f(ui) =

{
2i− 1 1 ≤ i ≤ n and i is odd
2i 1 ≤ i ≤ n and i is even,

f(u′
i) =

{
2i 1 ≤ i ≤ n and i is odd
2i− 1 1 ≤ i ≤ n and i is even,

f(vi) =

{
2n− 3 + 4i 1 ≤ i ≤

⌊
n
2

⌋
− 1 and i is odd

2n− 1 + 4i 1 ≤ i ≤
⌊
n
2

⌋
and i is even,

f(vn+1−i) =

{
2n− 2 + 4i 1 ≤ i ≤

⌊
n
2

⌋
− 1 and i is odd

2n+ 4i 1 ≤ i ≤
⌊
n
2

⌋
and i is even,
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and

f(v′i) =






f(vi) + 2 1 ≤ i ≤
⌊
n
2

⌋
− 1 and i is odd

f(vi)− 2
⌊
n
2

⌋
+ 1 ≤ i ≤ n and i is odd

f(vi)− 2 1 ≤ i ≤
⌊
n
2

⌋
and i is even

f(vi) + 2
⌊
n
2

⌋
+ 2 ≤ i ≤ n and i is even.

The induced edge labeling is as follows:

f ∗(uiui+1) = 2i, for 1 ≤ i ≤ n− 1,

f ∗(uiu
′
i) = 2i− 1, for 1 ≤ i ≤ n,

f ∗(vivi+1) = 2n− 1 + 4i, for 1 ≤ i ≤
⌊n
2

⌋
,

f ∗(vn+1−ivn−i) = 2n+ 4i, for 1 ≤ i ≤
⌊n
2

⌋
− 1,

f ∗(viv
′
i) =






f(vi) 1 ≤ i ≤
⌊
n
2

⌋
− 1 and i is odd

f(vi)− 2
⌊
n
2

⌋
+ 1 ≤ i ≤ n and i is odd

f(vi)− 2 1 ≤ i ≤
⌊
n
2

⌋
and i is even

f(vi)
⌊
n
2

⌋
+ 2 ≤ i ≤ n and i is even

and

f ∗(ui+1vi) = 2n, for i =
⌊n
2

⌋
.

Case (ii) n ≡ 1(mod 4).
We define f : V (G#K1) → {1, 2, 3, . . . , 4n} as follows:

f(ui) = 2i, for 1 ≤ i ≤ n, f(u′
i) = 2i− 1, for 1 ≤ i ≤ n,

f(vi) =

{
2n− 3 + 4i 1 ≤ i ≤

⌊
n
2

⌋
+ 1 and i is odd

2n− 1 + 4i 1 ≤ i ≤
⌊
n
2

⌋
and i is even,

f(vn+1 − i) =

{
2n− 2 + 4i 1 ≤ i ≤

⌊
n
2

⌋
and i is odd

2n + 4i 1 ≤ i ≤
⌊
n
2

⌋
and i is even

and

f(v′i) =






f(vi) + 2 1 ≤ i ≤
⌊
n
2

⌋
and i is odd

f(vi) + 1 i =
⌊
n
2

⌋
+ 1 and i is odd

f(vi) + 2
⌊
n
2

⌋
+ 3 ≤ i ≤ n and i is odd

f(vi)− 2 1 ≤ i ≤ n and i is even.

The induced edge labeling is as follows:

f ∗(uiui+1) = 2i, for 1 ≤ i ≤ n− 1,

f ∗(uiu
′
i) = 2i− 1, for 1 ≤ i ≤ n,

f ∗(vivi+1) = 2n− 1 + 4i, for 1 ≤ i ≤
⌊n
2

⌋
,

f ∗(vn+1−ivn−i) = 2n+ 4i, for 1 ≤ i ≤
⌊n
2

⌋
,
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f ∗(viv
′
i) =

{
f(vi) 1 ≤ i ≤ n and i is odd
f(vi)− 2 1 ≤ i ≤ n and i is even

and

f ∗(uivi) = 2n, for i =
⌊n
2

⌋
+ 1.

Case (iii) n ≡ 2(mod 4).
We define f : V (G#K1) → {1, 2, 3, . . . , 4n} as follows:

f(ui) =

{
2i 1 ≤ i ≤ n and i is odd
2i− 1 1 ≤ i ≤ n and i is even,

f(u′
i) =

{
2i− 1 1 ≤ i ≤ n and i is odd
2i 1 ≤ i ≤ n and i is even,

f(vi) =

{
2n− 1 + 4i 1 ≤ i ≤

⌊
n
2

⌋
and i is odd

2n− 3 + 4i 1 ≤ i ≤
⌊
n
2

⌋
− 1 and i is even,

f(vn+1−i) =

{
2n+ 4i 1 ≤ i ≤

⌊
n
2

⌋
and i is odd

2n− 2 + 4i 1 ≤ i ≤
⌊
n
2

⌋
− 1 and i is even,

and

f(v′i) =






f(vi)− 2 1 ≤ i ≤
⌊
n
2

⌋
and i is odd

f(vi) + 2
⌊
n
2

⌋
+ 2 ≤ i ≤ n and i is odd

f(vi) + 2 1 ≤ i ≤
⌊
n
2

⌋
− 1 and i is even

f(vi)− 2
⌊
n
2

⌋
+ 1 ≤ i ≤ n and i is even

The induced edge labeling is as follows:

f ∗(uiui+1) = 2i, for 1 ≤ i ≤ n− 1,

f ∗(uiu
′
i) = 2i− 1, for 1 ≤ i ≤ n,

f ∗(vivi+1) = 2n− 1 + 4i, for 1 ≤ i ≤
⌊n
2

⌋
,

f ∗(vn+1−ivn−i) = 2n+ 4i, for 1 ≤ i ≤
⌊n
2

⌋
− 1,

f ∗(viv
′
i) =






f(vi)− 2 1 ≤ i ≤
⌊
n
2

⌋
and i is odd

f(vi)
⌊
n
2

⌋
+ 2 ≤ i ≤ n and i is odd

f(vi) 1 ≤ i ≤
⌊
n
2

⌋
− 1 and i is even

f(vi)− 2
⌊
n
2

⌋
+ 1 ≤ i ≤ n and i is even

and

f ∗(ui+1vi) = 2n, for i =
⌊n
2

⌋
+ 1.
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Case (iv) n ≡ 3(mod 4).
We define f : V (G#K1) → {1, 2, 3, . . . , 4n} as follows:

f(ui) = 2i, for 1 ≤ i ≤ n, f(u′
i) = 2i− 1, for 1 ≤ i ≤ n,

f(vi) =

{
2n− 1 + 4i 1 ≤ i ≤

⌊
n
2

⌋
and i is odd

2n− 3 + 4i 1 ≤ i ≤
⌊
n
2

⌋
+ 1 and i is even,

f(vn+1−i) =

{
2n+ 4i 1 ≤ i ≤

⌊
n
2

⌋
and i is odd

2n− 2 + 4i 1 ≤ i ≤
⌊
n
2

⌋
and i is even,

and

f(v′i) =






f(vi)− 2 1 ≤ i ≤
⌊
n
2

⌋
and i is odd

f(vi) + 1 i =
⌊
n
2

⌋
+ 1 and i is odd

f(vi)− 2
⌊
n
2

⌋
+ 3 ≤ i ≤ n and i is odd

f(vi) + 2 1 ≤ i ≤ n and i is even.

The induced edge labeling is as follows:

f ∗(uiui+1) = 2i, for 1 ≤ i ≤ n− 1,

f ∗(uiu
′
i) = 2i− 1, for 1 ≤ i ≤ n,

f ∗(vivi+1) = 2n− 1 + 4i, for 1 ≤ i ≤
⌊n
2

⌋
,

f ∗(vn+1−ivn−i) = 2n+ 4i, for 1 ≤ i ≤
⌊n
2

⌋
,

f ∗(viv
′
i) =

{
f(vi)− 2 1 ≤ i ≤ n and i is odd
f(vi) + 2 1 ≤ i ≤ n and i is even

and

f ∗(uivi) = 2n, for i =
⌊n
2

⌋
+ 1.

Hence, f is a F -Geometric mean labeling of G # K1. Thus the graph G # K1 is a
F -Geometric mean graph. !

A F -Geometric mean labeling of G#K1 is as shown in Figure 11.

Theorem 2.8. For a H−graph G, G# S2 is a F -Geometric mean graph.

Proof. Let u1, u2, . . . , un and v1, v2, . . . , vn be the vertices of G. Therefore,

V [G# S2] = V (G) ∪ {u′
i, u

′′
i , v

′
i, v

′′
i ; 1 ≤ i ≤ n}

and

E[G# S2] = E(G) ∪ {uiu
′
i, uiu

′′
i , viv

′
i, viv

′′
i ; 1 ≤ i ≤ n}.
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Figure 11. A F -Geometric mean labeling of H graph G#K1

Case (i) n is odd.
We define f : V (G# S2) → {1, 2, 3, . . . , 6n} as follows:

f(ui) = 3i− 1, for 1 ≤ i ≤ n,

f(u′
i) = 3i− 2, for 1 ≤ i ≤ n,

f(u′′
i ) = 3i, for 1 ≤ i ≤ n,

f(vi) = 3n− 2 + 6i, for 1 ≤ i ≤
⌊n
2

⌋
,

f(vn+1−i) = 3n− 3 + 6i, for 1 ≤ i ≤
⌊n
2

⌋
+ 1,

f(v′i) =






f(vi)− 2 1 ≤ i ≤
⌊
n
2

⌋

f(vi)− 1 i =
⌊
n
2

⌋
+ 1

f(vi) + 2
⌊
n
2

⌋
+ 2 ≤ i ≤ n

and

f(v′′i ) =

{
f(vi) + 2 1 ≤ i ≤

⌊
n
2

⌋

f(vi)− 2
⌊
n
2

⌋
+ 1 ≤ i ≤ n.

The induced edge labeling is as follows:

f ∗(uiui+1) = 3i, for 1 ≤ i ≤ n− 1,

f ∗(uiu
′
i) = 3i− 2, for 1 ≤ i ≤ n,

f ∗(uiu
′′
i ) = 3i− 1, for 1 ≤ i ≤ n,

f ∗(uivi) = 3n, for i =
⌊n
2

⌋
+ 1,



182 A. DURAI BASKAR, S. AROCKIARAJ AND B. RAJENDRAN

f ∗(vivi+1) = 3n+ 6i, for 1 ≤ i ≤
⌊n
2

⌋
,

f ∗(vn+1−ivn−i) = 3n− 1 + 6i, for 1 ≤ i ≤
⌊n
2

⌋
,

f ∗(viv
′
i) =






f(vi)− 2 1 ≤ i ≤
⌊
n
2

⌋

f(vi)− 1 i =
⌊
n
2

⌋
+ 1

f(vi)
⌊
n
2

⌋
+ 2 ≤ i ≤ n

and

f ∗(viv
′′
i ) =

{
f(vi) 1 ≤ i ≤

⌊
n
2

⌋

f(vi)− 2
⌊
n
2

⌋
+ 1 ≤ i ≤ n.

Case (ii) n is even.
We define f : V (G# S2) → {1, 2, 3, . . . , 6n} as follows:

f(ui) = 3i− 1, for 1 ≤ i ≤ n,

f(u′
i) = 3i− 2, for 1 ≤ i ≤ n,

f(u′′
i ) = 3i, for 1 ≤ i ≤ n− 1,

f(u′′
n) = 3n+ 1,

f(vi) = 3n+ 1 + 6i, for 1 ≤ i ≤
⌊n
2

⌋
− 1,

f(vn+1−i) = 3n+ 6(i− 1), for 2 ≤ i ≤
⌊n
2

⌋
+ 1,

f(vn) = 3n+ 2,

f(v′i) =

{
f(vi)− 2 1 ≤ i ≤

⌊
n
2

⌋

f(vi) + 2
⌊
n
2

⌋
+ 1 ≤ i ≤ n− 1,

f(v′n) = f(vn) + 1

and

f(v′′i ) =






f(vi) + 2 1 ≤ i ≤
⌊
n
2

⌋
− 1

f(vi)− 1 i =
⌊
n
2

⌋

f(vi)− 2
⌊
n
2

⌋
+ 1 ≤ i ≤ n.

The induced edge labeling is as follows:

f ∗(uiui+1) = 3i, for 1 ≤ i ≤ n− 1,

f ∗(uiu
′
i) = 3i− 2, for 1 ≤ i ≤ n,

f ∗(uiu
′′
i ) = 3i− 1, for 1 ≤ i ≤ n,

f ∗(ui+1vi) = 3n + 1, for i =
⌊n
2

⌋
,

f ∗(vivi+1) = 3n + 3 + 6i, for 1 ≤ i ≤
⌊n
2

⌋
,
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f ∗(vn+1−ivn−i) = 3n− 4 + 6i, for 2 ≤ i ≤
⌊n
2

⌋
,

f ∗(vnvn−1) = 3n+ 3,

f ∗(viv
′
i) =

{
f(vi)− 2 1 ≤ i ≤

⌊
n
2

⌋

f(vi)
⌊
n
2

⌋
+ 1 ≤ i ≤ n

and

f ∗(viv
′′
i ) =






f(vi) 1 ≤ i ≤
⌊
n
2

⌋
− 1

f(vi)− 1 i =
⌊
n
2

⌋

f(vi)− 2
⌊
n
2

⌋
+ 1 ≤ i ≤ n.

Hence, f is a F -Geometric mean labeling of G # S2. Thus the graph G # S2 is a
F -Geometric mean graph. !

A F -Geometric mean labeling of G# S2 is as shown in Figure 12.
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Figure 12. A F -Geometric mean labeling of H graph G# S2

Theorem 2.9. Ln #K1 is a F -Geometric mean graph, for n ≥ 2.

Proof. Let V (Ln) = {ui, vi; 1 ≤ i ≤ n} be the vertex set of the ladder Ln and
E(Ln) = {uivi; 1 ≤ i ≤ n} ∪ {uiui+1, vivi+1; 1 ≤ i ≤ n − 1} be the edge set of the
ladder Ln. Let wi be the pendent vertex adjacent to ui, and xi be the pendent vertex
adjacent to vi, for 1 ≤ i ≤ n.
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We define f : V (Ln #K1) → {1, 2, 3, . . . , 5n− 1} as follows:

f(u1) = 3,

f(v1) = 4,

f(x1) = 2,

f(ui) = 5i− 3, for 2 ≤ i ≤ n,

f(vi) = 5i− 2, for 2 ≤ i ≤ n,

f(wi) = 5i− 4, for 1 ≤ i ≤ n

and

f(xi) = 5i− 1, for 2 ≤ i ≤ n.

The induced edge labeling is as follows

f ∗(u1v1) = 3,

f ∗(v1x1) = 2,

f ∗(uivi) = 5i− 3, for 2 ≤ i ≤ n,

f ∗(wiui) = 5i− 4, for 1 ≤ i ≤ n,

f ∗(vixi) = 5i− 2, for 2 ≤ i ≤ n,

f ∗(uiui+1) = 5i− 1, for 1 ≤ i ≤ n− 1,

f ∗(vivi+1) = 5i, for 1 ≤ i ≤ n− 1.

Hence f is a F -Geometric mean labeling of Ln #K1. Thus the graph Ln # K1 is a
F -Geometric mean graph, for n ≥ 2. !

A F -Geometric mean labeling of L8 #K1 is as shown in Figure 13.
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Figure 13. A F -Geometric mean labeling of L8 #K1

Theorem 2.10. Ln # S2 is a F -Geometric mean graph, for n ≥ 2.

Proof. Let V (Ln) = {ui, vi; 1 ≤ i ≤ n} be the vertex set of the ladder Ln and
E(Ln) = {uivi; 1 ≤ i ≤ n} ∪ {uiui+1, vivi+1; 1 ≤ i ≤ n − 1} be the edge set of the
ladder Ln.
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Let w(i)
1 and w(i)

2 be the pendant vertices at each vertex ui, for 1 ≤ i ≤ n and x(i)
1

and x(i)
2 be the pendant vertices at each vertex vi, for 1 ≤ i ≤ n. Therefore

V (Ln # S2) = V (Ln) ∪ {w(i)
1 , w(i)

2 , x(i)
1 , x(i)

2 ; 1 ≤ i ≤ n}

and

E(Ln # S2) = E(Ln) ∪ {uiw
(i)
1 , uiw

(i)
2 , vix

(i)
1 , vix

(i)
2 ; 1 ≤ i ≤ n}.

We define f : V (Ln # S2) → {1, 2, 3, . . . , 7n− 1} as follows :

f(ui) =






3 i = 1
7i− 2 2 ≤ i ≤ n and i is even
7i− 5 3 ≤ i ≤ n and i is odd,

f(vi) =






5 i = 1
7i− 4 2 ≤ i ≤ n and i is even
7i− 1 3 ≤ i ≤ n and i is odd,

f(w(i)
1 ) =

{
7i− 3 1 ≤ i ≤ n and i is even
7i− 6 1 ≤ i ≤ n and i is odd,

f(w(i)
2 ) =






2 i = 1
7i− 1 2 ≤ i ≤ n and i is even
7i− 4 3 ≤ i ≤ n and i is odd,

f(x(i)
1 ) =

{
7i− 6 1 ≤ i ≤ n and i is even
7i− 3 1 ≤ i ≤ n and i is odd,

f(x(i)
2 ) =






6 i = 1
7i− 5 2 ≤ i ≤ n and i is even
7i− 2 3 ≤ i ≤ n and i is odd.

The induced edge labeling is as follows:

f ∗(uiui+1) = 7i− 1, for 1 ≤ i ≤ n− 1,

f ∗(uivi) = 7i− 4, for 1 ≤ i ≤ n,

f ∗(vivi+1) = 7i, for 1 ≤ i ≤ n− 1,

f ∗(uiw
(i)
1 ) =

{
7i− 3 1 ≤ i ≤ n and i is even
7i− 6 1 ≤ i ≤ n and i is odd,

f ∗(uiw
(i)
2 ) =

{
7i− 2 1 ≤ i ≤ n and i is even
7i− 5 1 ≤ i ≤ n and i is odd,

f ∗(vix
(i)
1 ) =

{
7i− 6 1 ≤ i ≤ n and i is even
7i− 3 1 ≤ i ≤ n and i is odd,

and

f ∗(vix
(i)
2 ) =

{
7i− 5 1 ≤ i ≤ n and i is even
7i− 2 1 ≤ i ≤ n and i is odd.
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Hence, f is a F -Geometric mean labeling of Ln # S2. Thus the graph Ln # S2 is a
F -Geometric mean graph, for n ≥ 2. !

A F -Geometric mean labeling of L7 # S2 is as shown in Figure 14.
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Figure 14. A F -Geometric mean labeling of L7 # S2
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