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A NOTE ON SIGNED CYCLE DOMINATION IN GRAPHS

HOSSEIN KARAMI1, RANA KHOEILAR2, AND SEYED MAHMOUD SHEIKHOLESLAMI3

Abstract. Let G = (V,E) be a simple graph. A function f : E → {−1, 1} is said
to be a signed cycle dominating function (SCDF) of G if

∑

e∈E(C) f(e) ≥ 1 holds
for every induced cycle C of G. The signed cycle domination number of G is defined
as γ′

sc(G) = min{
∑

e∈E(G) f(e) | f is an SCDF of G}. B. Xu [4] conjectured that
for any maximal planar graph G of order n ≥ 3, γ′

sc(G) = n− 2. In this paper, we
first prove that the conjecture is true and then we show that if G is a connected
cubic claw-free graph of order n, then γ′

sc(G) ≤ n.

1. Introduction

Let G be a simple graph with vertex set V (G) and edge set E(G). We use [3] for
terminology and notation which are not defined here. For a vertex v ∈ V (G), NG(v)
will denote the open neighborhood of v in G and NG[v] = NG(v) ∪ {v} will denote its
closed neighborhood. For every nonempty subset V ′ of V (G) the subgraph of G whose
vertex set is V ′ and whose edge set is the set of edges of G with both ends in V ′ is
called the induced subgraph of G by V ′ and denoted by G[V ′]. A cycle C of G is said
to be an induced cycle if G[V (C)] = C.

In 2009, Xu [4] introduced a new kind of the edge domination as follows. A function
f : E → {−1, 1} is said to be a signed cycle dominating function (SCDF) of G if
∑

e∈E(C) f(e) ≥ 1 holds for any induced cycle C of G. The signed cycle domination

number of G is defined as γ′

sc(G) = min{
∑

e∈E(G) f(e) | f is an SCDF of G}. If f is
an SCDF of G, then for anyH ⊆ G we write f(H) =

∑

e∈E(H) f(e). A γ′

sc(G)-function
is a signed cycle dominating function with f(G) = γ′

sc(G).
A planar graph G is said to be maximal if G+ e is not a planar graph for any new

edge e. Clearly, every face of a maximal planar graph is a triangle. Xu in [4] posed
the following conjecture.
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Conjecture 1. For every maximal planar graph G of order n ≥ 3, γ′

sc(G) = n− 2.

In this paper, we first prove that Conjecture 1 is true and then we prove that if G
is a connected cubic claw-free graph of order n, then γ′

sc(G) ≤ n.
We make use of the following results (see [3]) in this paper.

Theorem A. Every maximal planar graph G of order n ≥ 4, is 3-connected.

Theorem B. The dual graph of a simple 3-connected plane graph is both simple and
3-connected.

Theorem C. Let G be a maximal planar graph of order n ≥ 3, then |E(G)| = 3n−6.

Theorem D. Every 3-regular graph with no cut-edge has a 1-factor.

Theorem E. (Xu [4]) For any maximal planar graphG of order n ≥ 3, γ′

sc(G) ≥ n−2.

2. Main results

Theorem 2.1. For every maximal planar graph G of order n ≥ 3, γ′

sc(G) = n− 2.

Proof. The statement is obviously true for n = 3, 4. Let n ≥ 5. Then clearly G (= Kn.
Let M1, . . . ,Mr be the faces of G. Obviously, every edge is in exactly two faces of G
and

(2.1) 3r = 2|E(G)|.

Since faces of G are triangles, each face can be represented by a unique 3-subset of
V (G). Let G′ be the graph with vertex set {M1, . . . ,Mr} and MiMj ∈ E(G′) if and
only if Mi and Mj share an edge. By Theorems A and B, G′ has no cut-edges.

Since G′ is 3-regular with no cut-edges, G′ has a perfect matching by Theorem
D. Let {ei = MiM

′

i | 1 ≤ i ≤ r
2} be a perfect matching of G′. Then obviously

|Mi ∩M ′

i | = 2, that is, Mi and M ′

i share an edge. Assume that Mi ∩M ′

i = {xi, x
′

i},
which forces xix

′

i ∈ E(G). Define f : E(G) → {−1,+1} by

f(e) =

{

−1 if e ∈ {x1x
′

1, . . . , x r

2
x′

r

2

}

1 otherwise.

Obviously, f is an SCDF for G and by (2.1) and Theorem C,

γ′

sc(G) ≤ f(G) = |E(G)|− r = |E(G)|−
2

3
|E(G)| =

|E(G)|

3
=

3n− 6

3
= n− 2.

Using Theorem E, the proof is complete. !

A claw-free graph is a graph with no induced subgraph isomorphic to K1,3. In
this section we present an upper bound for the signed cycle domination number of
connected 3-regular claw-free graphs. A subset S of V (G) is said to be a 2-packing
set of G if for every pair of distinct vertices s and s′ in S, the distance d(s, s′) between
s and s′ is at least 3. Let ρ(G) = max{|S| : S is a 2-packing set of G} and call it
the 2-packing number of G. A ρ(G)-set is a 2-packing set of G with cardinality ρ(G).
Moo Young Sohn et al. in [2] proved the following theorem.
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Theorem F. Every connected cubic graph G of order n whose each vertex is contained

in at least one triangle satisfies ρ(G) ≥
n

6
.

Theorem 2.2. For every connected cubic claw-free graph G of order n, γ′

sc(G) ≤ n.

Proof. Let S = {x1, . . . , xρ(G)} be a ρ(G)-set. Suppose that N(xi) = {yi1, y
i
2, y

i
3} for

each 1 ≤ i ≤ ρ(G). Since G is a claw-free graph, we may assume yi1y
i
2 ∈ E(G) for

each 1 ≤ i ≤ ρ(G). Let M = {yi1y
i
2 | 1 ≤ i ≤ ρ(G)} and let G1 be the subgraph

induced by {yi1, y
i
2 | 1 ≤ i ≤ ρ(G)}. Obviously, ∆(G1) ≤ 2 and so G1 is the union of

disjoint paths and cycles. Let C1, . . . , Cr be the even cycles of G1. Obviously, each

Ci contains at least two edges in M , hence r ≤
ρ(G)

2
. Without loss of generality, we

may assume yi1y
i
2 ∈ E(Ci) for i = 1, . . . , r. Define f : E(G) → {−1,+1} by

f(e) =

{

−1 if e ∈ (M \ {yi1y
i
2 | 1 ≤ i ≤ r}) ∪ {xiy

i
3 | 1 ≤ i ≤ ρ(G)}

1 otherwise.

We claim that f is a signed cycle dominating function of G. Let, to the contrary, C
be an induced cycle of G such that f(E(C)) ≤ 0. Since {e ∈ E(G) | f(e) = −1}
is a matching of G, we have f(E(C)) = 0. Therefore, C is an even cycle of G and
f assigns alternatively −1,+1 to the edges of C. If xiy

i
3 ∈ E(C) for some i, then

obviously yi1y
i
2 (∈ E(C) because C is an induced cycle. This forces f assigns +1 to

two consecutive edges of C, which is a contradiction. Hence, C is an induced cycle in
G1. Now by the definition of f and the fact that yi1y

i
2 ∈ E(Ci) for i = 1, . . . , r we see

that f assigns +1 to three consecutive edges of C, a contradiction. Thus f is a signed
cycle dominating function of G. Let T = {e ∈ E(G) | f(e) = −1}. By Theorem F

and the fact that r ≤
ρ(G)

2
we have

γ′

sc(G) ≤ f(E(G)) = |E(G)|− 2|T |

=
3n

2
− 2(2ρ(G)− r) ≤

3n

2
− 3ρ(G) ≤ n,

as desired. !
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