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STRONG CONVERGENCE THEOREM FOR SEMIGROUP OF
ASYMPTOTICALLY NONEXPANSIVE MAPPINGS USING

VISCOSITY APPROXIMATION

BALWANT SINGH THAKUR

Abstract. Viscosity method also called elliptic regularization, provide an efficient
approach to a large number of problems coming from different branches of mathe-
matical and physical sciences. One of the recent trend in the iterative construction
of fixed point of nonlinear mappings is to use viscosity approximation method. In
this paper we propose implicit and explicit viscosity method (VAM) for strongly
continuous semigroup of asymptotically nonexpansive mappings and prove strong
convergence of proposed VAM which converges strongly to a solution of a variational
inequality.

1. Introduction

Viscosity method provide an efficient approach to a large number of problems com-
ing from different branches of mathematical analysis: Mathematical programming,
variational problem, partial differential equations, control theory, ill-posed problems...
A major feature of these methods is to provide as a limit of the solution of the approx-
imate problems, a particular (possibly relaxed or generalized) solution of the original
problem, called a viscosity solution, which has remarkable properties. The viscosity
method is also called elliptic regularization, it has been successfully applied to vari-
ous problems coming from calculus of variations, minimal surface problems, plasticity
theory and phase transition. It plays a central role too in the study of degenerated
elliptic and parabolic second order equations [15][16][17]. Various applications of the
viscosity methods can be found in optimal control theory, singular perturbations,
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minimal cost problem [1][18][19] and in stochastic control theory [12].

First abstract formulation of the properties of the viscosity approximation have
been given by Tykhonov [26] in 1963 when studying ill-posed problems (see [10] for
details). The concept of viscosity solution for Hamilton-Jacobi equations, which plays
a crucial role in control theory, game theory and partial differential equations has been
introduced by Crandall and Lions [9].

Let us now make precise the mathematical abstract setting. Given f : X → R ∪
{+∞} an extended real valued function, its definition may include some constraints,
let us consider the minimization problem

min{f(x) : x ∈ X} (P)

which is assumed to be ill-posed (lack of existence, or uniqueness, or stability of a
solution). Let g : X → R+ ∪ {+∞}, be a nonnegative real-valued function (the
viscosity function), and, for any ε > 0 a small parameter intended to go to zero, let
us consider the approximate minimization problem

min{f(x) + εg(x) : x ∈ X} (Pε).

The viscosity function g usually enjoys nice properties, which make the approximate
minimization problem (Pε) well posed (existence, uniqueness and stability). So, it is
assumed that, for all ε > 0, there exists a solution uε of (Pε). The central question is
to study the convergence of the sequence {uε}, ε → 0 and the characterization of its
limit.

On the otherhand numerous problems in mathematics and physical sciences can be
recast in terms of a fixed point problem for nonexpansive mappings. Due to practical
importance of these problems, algorithms for finding fixed points of nonexpansive
mappings continue to be a flourishing topic of interest in fixed point theory.

Let K be a closed convex subset of Hilbert space E and let T : K → K be a non-
expansive mapping (‖Tx− Ty‖ ≤ ‖x− y‖ , ∀x, y ∈ K). The most straightforward
attempt to solve the fixed point problem for nonexpansive mappings is by Picard
iteration :

K ) x0 *→ x1 = Tx0 *→ x2 = Tx1 *→ · · · *→ xn = Txn−1 *→ xn+1 = Txn *→ · · ·

or more compactly,

(1.1) xn+1 = Txn , ∀ n ≥ 0 (x0 ∈ K) .

Unfortunately, algorithm (1.1) may fail to produce a norm convergence sequence {xn}.

In view of celebrated Banach contraction principle, the attempt to approximate
fixed point of nonexpansive self mappings seems very promising.
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For given u ∈ K and each t ∈ (0, 1) define a contraction Tt : K → K by

Ttx = tu+ (1− t)Tx , ∀x ∈ K .

Clearly Tt is (1− t) contraction, so by Banach contraction principle, it has a unique
fixed point zt ∈ K, i.e. zt is the unique solution of equation

(1.2) zt = tu+ (1− t)Tzt ,

here zt is defined implicitly.

In 1967, Browder [2] proved that zt defined by (1.2) converges strongly to a fixed
point of T as t → 0.

In the same year, Halpern [13] device an explicit iteration method which converges
in norm to a fixed point of T , the iteration process is known as Halpern iterative
method and defined as below.
For a sequence {αn} in (0, 1), obtain the modified version of (1.1)

K ) x0 *→ x1 = α0u+ (1− α0)Tx0 *→ x2 = α1u+ (1− α1)Tx1 *→ · · ·

*→ xn = αn−1u+ (1− αn−1)Txn−1 *→ xn+1 = αnu+ (1− αn)Txn *→ · · ·

or more compactly

(1.3) xn+1 = αnu+ (1− αn)Txn , n ≥ 0 .

Further, it is proved that the sequence {xn} defined by (1.3) converges strongly to a
fixed point of T if {αn} satisfies certain conditions.

Another iteration process which is widely used to approximate fixed point of nonex-
pansive mappings is defined as

(1.4) xn+1 = αnxn + (1− αn)Txn , ∀n ≥ 0 (x0 ∈ K arbitrary)

and the sequence {αn} is in the interval [0, 1]. Iteration (1.4) is known as Mann
iteration process [20].

The advantage that process (1.4) over the process (1.3) (though the former has only
weak convergence in general) is the use of average mapping αI + (1 − α)T in each
iteration step. This averaged mapping behaves more regularly than the nonexpansive
mapping T itself (see Bruck [4]). The weakness of process (1.4) is however, its weak
convergence.

Given a real number t ∈ (0, 1) and a contraction mapping f : K → K with contraction
constant α ∈ [0, 1). Define a mapping Tt : K → K by

Ttx = tf(x) + (1− t)Tx, x ∈ K .
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Clearly Tt is a (1 − t(1 − α)) contraction, and so has a unique fixed point xt ∈ K.
Thus xt is the unique solution of the fixed point equation

(1.5) xt = tf(xt) + (1− t)Txt .

In 2000, Moudafi [21] proposed viscosity approximation method for nonexpansive
mapping and proved following theorems.
Theorem M1. Let K be a nonempty closed convex subset of a Hilbert space H and
let T be a nonexpansive mapping of K into itself such that F (T ) ,= ∅. Let f be a
contraction of K into itself and define a sequence {xn} in implicit way by

xn =
1

1 + εn
Txn +

εn
1 + εn

f(xn) ,

for all n ∈ N, where {εn} ⊂ (0, 1) tending to zero. Then {xn} converges strongly to
the unique solution x̄ ∈ K of the variational inequality

〈(I − f)x̄, x̄− x〉 ≤ 0 .

In other words, x̄ is the unique fixed point of PF (T )f .
Here I is identity mapping and F (T ) the set of fixed points of T .

Theorem M2. Let K be a nonempty closed convex subset of a Hilbert space H and
let T be a nonexpansive mapping of K into itself such that F (T ) ,= ∅. Let f be a
contraction of K into itself and let {xn} be a sequence defined by x0 ∈ K arbitrary,
and

xn+1 =
1

1 + εn
Txn +

εn
1 + εn

f(xn) ,

for all n ∈ N, where {εn} ⊂ (0, 1) satisfies

lim
n→∞

εn = 0 ,
∞
∑

n=1

εn = ∞ and lim
n→∞

∣

∣

∣

∣

1

εn+1
−

1

εn

∣

∣

∣

∣

= 0 .

Then {xn} converges strongly to the unique solution x̄ ∈ K of the variational in-
equality

〈(I − f)x̄, x̄− x〉 ≤ 0 .

Xu [28] studied the strong convergence of xt defined by (1.5) as t → 0 in either
a Hilbert space or a uniformly smooth Banach space and showed that the strong
limt→0 xt is the unique solution of certain variational inequality.
He also introduced the following iterative algorithm

x0 ∈ K

xn+1 = (1− αn)Txn + αnf(xn) , ∀n ≥ 0 ,(1.6)
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further, he extended Theorem M2 for iterative algorithm (1.6) to a Banach space
setting where {αn} ⊂ (0, 1) satisfying

αn → 0;
∞
∑

n=0

αn = ∞; either
∞
∑

n=0

|αn+1 − αn| < ∞ or lim
n→∞

(αn+1/αn) = 1 .

Before proceeding further, let us recall some definitions.
Let K be a closed convex subset of a Banach space E. A mapping T : K → K is
said to be asymptotically nonexpansive if there exists a sequence {kn} with kn ≥ 1
and lim kn = 1 such that ‖T nx− T ny‖ ≤ kn ‖x− y‖ for all x, y ∈ K. T := {T (t) :
t ∈ R+}, where R+ denotes the set of nonnegative real numbers, is said to be strongly
continuous semigroup of asymptotically nonexpansive mappings from K in to K if the
following conditions are satisfied [7][25]

(1) T (0)x = x for all x ∈ K;
(2) T (s+ t) = T (s) ◦ T (t) for all s, t ∈ R+;
(3) for each t ∈ R+, T (t) be an asymptotically nonexpansive mapping on K,i.e.

‖(T (t))nx− (T (t))ny‖ ≤ k(t)
n ‖x− y‖

where {k(t)
n } is a sequence with k(t)

n ≥ 1 and limn→∞ k(t)
n = 1.

(4) for each x ∈ K, the mapping T (·)x from R+ into K is continuous.

If in the above definition, condition (3) is replaced by the following condition

(3)* for each t ∈ R+, T (t) be an nonexpansive mapping on K,

then T is called strongly continuous semi-group of nonexpansive mapping on K.

Shioji and Takahashi [24] proved following theorem for continuous semigroup of
nonexpansive mappings.
Theorem ST. Let K be a closed convex subset of a Hilbert space H . Let {T (t) : t ∈
R+} be a strongly continuous semigroup of nonexpansive mappings on K such that
F = ∩t∈R+

F (T (t)) ,= ∅. Let {αn} and {tn} be sequences of real numbers satisfying
0 < αn < 1, limn αn = 0, tn > 0 and limn tn = ∞. Fix u ∈ K and define a sequence
{un} in K by

un = (1− αn)
1

tn

∫ tn

0

T (s)unds+ αnu

for n ∈ N. Then {un} converges strongly to the element of F nearest to u.

Suzuki [25] proved the following result.
Theorem S. Let K be a closed convex subset of a Hilbert space H . Let {T (t) : t ∈
R+} be a strongly continuous semigroup of nonexpansive mappings on K such that
F = ∩t∈R+

F (T (t)) ,= ∅. Let {αn} and {tn} be sequences of real numbers satisfying
0 < αn < 1, tn > 0 and limn tn = limn αn/tn = 0. Fix u ∈ K and define a sequence
{un} in K by

un = (1− αn)T (tn)un + αnu
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for n ∈ N. Then {un} converges strongly to the element of F nearest to u.

Xu [27] established a Banach space version of the Theorem S.

Recently Chen and He [6] studied in Banach space, following implicit and explicit
viscosity approximation process for a nonexpansive semigroup

xn = αnf(xn) + (1− αn)T (tn)xn, ∀n ∈ N ;

yn+1 = βnf(yn) + (1− βn)T (tn)yn, ∀n ∈ N ;

and proved that these sequences convergence strongly to q ∈ F = ∩t≥0F (T (t)), which
is the unique solution in F to some variational inequality, where {αn}, {βn},{tn} sat-
isfy some appropriate conditions, and f : K → K is a contraction.

It is important to note that, when we study approximation schemes for asymp-
totically nonexpansive mappings, it looks more complicated than the schemes for
nonexpansive mappings. Because T is not always nonexpansive (mapping which do
not increase distance), i.e. T may increase distances. In order to overcome difficul-
ties caused by increasingness of T , one need to adjust, the defining mapping at each
iteration step in the iteration schemes, i.e., one has to use T n (instead of T ) at step n
as the defining mapping. Though T n may still increase distance (as kn ≥ 1), however
since kn → 1 as n → ∞, eventually T n would increase distance marginally. Schu [23]
was first to use the above idea and defined iteration scheme for asymptotically non-
expansive mapping which is known as modified Mann iteration.

Motivated by the above results and a recent work of Ceng et al. [5], in this paper
we propose implicit and explicit viscosity approximation method (VAM) for strongly
continuous semigroup of asymptotically nonexpansive mappings and prove strong
convergence theorem for proposed VAM.

2. Preliminaries

Let E be a real Banach space and E∗ be its dual space. Let K be a nonempty
subset of E and let T : K → K be a self mapping of K. The fixed point set of T is
denoted by F (T ) := {x ∈ K : Tx = x}. The notation ⇀ denotes weak convergence
and the notation → denotes strong convergence. Also, I : K → K denotes the iden-
tity mapping of K.

A Banach space E is said to satisfy Opial’s condition [22], if for any sequence
{xn} ∈ E, xn ⇀ x as n → ∞ implies

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖ , ∀ y ∈ E with x ,= y .

By a gauge function we mean a continuous strictly increasing function ϕ defined
on R+ such that ϕ(0) = 0 and limr→∞ ϕ(r) = ∞. The mapping Jϕ : E → 2E

∗

defined
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by

Jϕ(x) = {x∗ ∈ E∗, 〈x, x∗〉 = ‖x‖ ‖x∗‖ , ‖x∗‖ = ϕ(‖x‖)}, ∀x ∈ E ,

is called the duality mapping with gauge function ϕ, where 〈·, ·〉 denotes the general-
ized duality pair.

In particular, the duality mapping with gauge function ϕ(t) = t denoted by J is
referred to as the normalized duality mapping. Browder [3] initiated the study of
certain class of nonlinear operators by means of the duality mapping Jϕ. Set

Φ(t) =

∫ t

0

ϕ(r)dr , for every t ∈ R+ .

Then it is known that Jϕ(x) is the subdifferential of the convex function Φ(‖.‖) at
x. Now recall that E is said to have a weakly continuous duality map if there ex-
ists a gauge ϕ such that the duality map Jϕ is single valued and continuous from
E with the weak topology to E∗ with the weak∗ topology. A space with a weakly
continuous duality map is easily seen to satisfy Opial’s condition (cf. [3][11]). Every
lp(1 < p < ∞) space has a weakly continuous duality map with the gauge ϕ(t) = tp−1.

We will use the following properties of duality mappings.

Lemma 2.1 ([5][29]). Let E be a real Banach space. Let Jϕ be the duality map asso-
ciated with the gauge ϕ.

(i) For all x, y ∈ E and j ∈ Jϕ(x+ y),

Φ(‖x+ y‖) ≤ Φ(‖x‖) + 〈y, j〉 .

In particular, for x, y ∈ E and j ∈ J(x+ y)

‖x+ y‖2 ≤ ‖x‖2 + 2 〈y, j〉 .

(ii) For λ ∈ R and for nonzero x ∈ E,

Jϕ(λx) = sgn(λ)
ϕ (|λ| · ‖x‖)

‖x‖
J(x) .

(iii) Assume Jϕ is weakly continuous. Then for any sequence {xn} in E which
converges weakly to a point x∗, we have for all y ∈ E,

lim sup
n→∞

Φ(‖xn − y‖) = lim sup
n→∞

Φ(‖xn − x∗‖) + Φ(‖y − x∗‖) .

In particular, E satisfies Opial’s condition.
(iv) J is surjective if and only if E is reflexive.

The following lemma will be needed in the sequel.
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Lemma 2.2. [8][28] Let {an} be a sequence of nonnegative real numbers such that

an+1 ≤ (1− λn)an + λnµn , n = 0, 1, 2, · · · ,

where {λn} is a sequence in (0, 1) and {µn} is a sequence in R such that

(i)
∑∞

n=1 λn = ∞ ;
(ii) lim supn→∞ µn ≤ 0 or

∑∞

n=1 |λnµn| < ∞.

Then limn→∞ an = 0 .

3. Main Results

Through out this section, E be a reflexive Banach space which admits a weakly con-
tinuous duality mapping Jϕ associated with a gauge ϕ, K is a nonempty closed convex
subset of E, f : K → K is an α-contraction, i.e. ‖fx− fy‖ ≤ α ‖x− y‖ , for some
α ∈ [0, 1) and for all x, y ∈ K. {T (t) : t ∈ R+} is a strongly continuous semigroup
of asymptotically nonexpansive mappings on K such that F = ∩t>0F (T (t)) ,= ∅.

For a fixed n ≥ 1, let kn = max{k(t)
n : t ∈ R+}, then kn ≥ 1 and limn→∞ kn = 1.

We now propose an implicit VAM for strongly continuous semigroup of asymptot-
ically nonexpansive mappings, which generates a sequence {xn} implicitly by.

(3.1) xn =

(

1−
1

kn

)

xn +
1− αn

kn
fxn +

αn

kn
(T (tn))

n xn

and the explicit VAM, which generates a sequence {zn} explicitly (x0 ∈ K arbitrary)
given by

(3.2) zn+1 =

(

1−
1

kn

)

zn +
1− αn

kn
fzn +

αn

kn
(T (tn))

n zn

where {αn} and {tn} be sequence of real numbers satisfying satisfying

(3.3)















0 < αn <
1− α

kn − α
and lim

n→∞

kn − 1

1− αn
= 0 ,

tn > 0 (∀n) and lim
n→∞

tn = 0 = lim
n→∞

1− αn

tn
.

For each n, consider a mapping H : K → K defined by

Hx =

(

1−
1

kn

)

x+
1− αn

kn
fx+

αn

kn
(T (tn))

n x , x ∈ K .

For each x, y ∈ K, we have

‖Hx−Hy‖ ≤

(

1−
1

kn

)

‖x− y‖+
1− αn

kn
‖fx− fy‖+

αn

kn
‖(T (tn))

n x− (T (tn))
n y‖

≤

(

1−
1

kn
+

α(1− αn)

kn
+ αn

)

‖x− y‖ ,
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as a consequence of (3.3)

1−
1

kn
+

α(1− αn)

kn
+ αn < 1 ,

hence H is a contraction, and the iteration is well defined.

Theorem 3.1. Let {xn} be the sequence generated by the implicit scheme (3.1).
If (3.3) holds, then {xn} converges strongly to x∗ ∈ F as n → ∞ such that x∗ is the
unique solution in F to variational inequality

(3.4) 〈(f − I)x∗, J(x− x∗)〉 ≤ 0 , ∀ x ∈ F .

Proof. First we show that {xn} is bounded. Notice that Φ is convex with Φ(0) = 0, so
that Φ(λµ) ≤ Φ(µ) for all λ ∈ [0, 1]. For any fixed p ∈ F , from (3.1) and Lemma 2.1
(i), we have

Φ (‖xn − p‖) = Φ

∥

∥

∥

∥

(

1−
1

kn

)

(xn − p) +
1− αn

kn
(fxn − fp)

+
1− αn

kn
(fp− p) +

αn

kn
((T (tn))

n xn − p)

∥

∥

∥

∥

)

≤ Φ

∥

∥

∥

∥

(

1−
1

kn

)

(xn − p) +
1− αn

kn
(fxn − fp) +

αn

kn
((T (tn))

n xn − p)

∥

∥

∥

∥

+
1− αn

kn
〈fp− p, Jϕ(xn − p)〉

≤

[

1−
1

kn
+

(1− αn)α

kn
+ αn

]

Φ (‖xn − p‖)

+
1− αn

kn
〈fp− p, Jϕ(xn − p)〉

=

[

1−
1− α(1− αn)− αnkn

kn

]

Φ (‖xn − p‖)

+
1− αn

kn
〈fp− p, Jϕ(xn − p)〉

= (1− ηn)Φ (‖xn − p‖) +
1− αn

kn
〈fp− p, Jϕ(xn − p)〉 ,

where ηn = 1−α(1−αn)−αnkn
kn

.

Therefore,

(3.5) Φ (‖xn − p‖) ≤
1− αn

knηn
〈fp− p, Jϕ(xn − p)〉 ,
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inequality (3.5) hods for all duality mapping Jϕ; in particular, if we take normalized
duality mapping J , then we get

‖xn − p‖2 ≤
2(1− αn)

knηn
〈fp− p, J(xn − p)〉 ,

which implies that

(3.6) ‖xn − p‖ ≤
2(1− αn)

knηn
‖fp− p‖ .

Using (3.3), we have

(3.7)
1− αn

knηn
=

(

1−
kn − 1

1− αn
αn − α

)−1

→
1

1− α
.

In view of (3.6) and (3.7), we get that {xn} is bounded and so {f(xn)} and {(T (tn))
n xn}

are bounded. Since E is reflexive and {xn} is bounded, {xn} has a weakly convergent
subsequence {xnj

}. Suppose xnj
⇀ x∗ ∈ K as j → ∞.

Put uj = xnj
, βj = αnj

, sj = tnj
for j ∈ N and fix t > 0.

Now,

∥

∥

∥
uj − (T (t))j x∗

∥

∥

∥
≤

[t/sj ]−1
∑

k=0

∥

∥

∥
(T ((k + 1)sj))

j uj − (T (ksj))
j uj

∥

∥

∥

+
∥

∥

∥
(T ([t/sj ] sj))

j uj − (T ([t/sj ] sj))
j x∗

∥

∥

∥

+
∥

∥

∥
(T ([t/sj ] sj))

j x∗ − (T (t))j x∗
∥

∥

∥

≤ [t/sj ] kj
∥

∥

∥
(T (sj))

j uj − uj

∥

∥

∥
+ kj ‖uj − x∗‖

+ kj
∥

∥

∥
(T (t− [t/sj ] sj))

j x∗ − x∗
∥

∥

∥

= tkj

(

1− βj

sj

)

∥

∥

∥
(T (sj))

j uj − f(uj)
∥

∥

∥
+ kj ‖uj − x∗‖

+ kj max
{
∥

∥

∥
(T (s))j x∗ − x∗

∥

∥

∥
: 0 ≤ s ≤ sj

}

,

for all j ∈ N, we have

lim sup
j→∞

∥

∥

∥
uj − (T (t))j x∗

∥

∥

∥
≤ lim sup

j→∞

‖uj − x∗‖ .

By Lemma 2.1 (iii), E satisfies Opial’s condition, above inequality implies that
(T (t))j x∗ → x∗ as j → ∞. This gives

x∗ = lim
j→∞

(T (t))j x∗ = lim
j→∞

(T (t))j+1 x∗ = T (t)

(

lim
j→∞

(T (t))j x∗

)

= T (t)x∗ .
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Therefore x∗ ∈ F .

Now in (3.5), replacing xn with xnj
, we have

Φ
(
∥

∥xnj
− p

∥

∥

)

≤
1− αnj

knj
ηnj

〈

f(x∗)− x∗, Jϕ(xnj
− x∗)

〉

.

Since the duality mapping Jϕ is weak continuous and xnj
⇀ x∗, taking the limit as

j → ∞, we obtain

lim
j→∞

Φ
(
∥

∥xnj
− p

∥

∥

)

≤ 0 .

that is xnj
→ x∗ as j → ∞.

We further show that x∗ solve the variational inequality (3.4).
For any p ∈ F , we have

〈(T (tn))
n xn − p , J(xn − p)〉 ≤ ‖(T (tn))

n xn − p‖ ‖xn − p‖

≤ kn ‖xn − p‖2 .

So by (3.1), we have

Φ (‖xn − p‖) = Φ

(
∥

∥

∥

∥

(

1−
1

kn

)

(xn − p) +
1− αn

kn
[(f(xn)− xn) + (xn − p)]

+
αn

kn
((T (tn))

n xn − p)

∥

∥

∥

∥

)

≤ Φ

(
∥

∥

∥

∥

(

1−
αn

kn

)

(xn − p) +
αn

kn
((T (tn))

n xn − p)

∥

∥

∥

∥

)

+
1− αn

kn
〈f(xn)− xn, Jϕ(xn − p)〉

≤

(

1−
αn

kn
+ αn

)

Φ (‖xn − p‖) +
1− αn

kn
〈f(xn)− xn , Jϕ(xn − p)〉

=

(

1 + αn

(

kn − 1

kn

))

Φ (‖xn − p‖) +
1− αn

kn
〈f(xn)− xn , Jϕ(xn − p)〉 ,

after simplification, we have

1− αn

kn
〈f(xn)− xn , Jϕ(p− xn)〉 ≤ αn

(

kn − 1

kn

)

Φ (‖xn − p‖) .

This implies that

(3.8) 〈f(xn)− xn , Jϕ(p− xn)〉 ≤

(

kn − 1

1− αn

)

Φ (‖xn − p‖) .
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Replacing xn with xnj
in (3.8), passing through the limit j → ∞, by using (3.3), we

get

〈f(x∗)− x∗ , Jϕ(p− x∗)〉 = lim
j→∞

〈

f(xnj
)− xnj

, Jϕ(p− xnj
)
〉

≤ lim sup
j→∞

(

knj
− 1

1− αnj

)

Φ
(
∥

∥xnj
− p

∥

∥

)

= 0 .

By Lemma 2.1(ii), J(x∗ − p) is a positive scalar multiple of Jϕ(x∗ − p), hence, x∗ is
a solution to (3.4).

In summary, we have proved that every weak limit point of {xn} is a strong limit
point of {xn} and this limit point solves the variational inequality ( 3.4). So, to see
that the full sequence {xn} actually converges strongly to p, it is suffices to prove that
the variational inequality (3.4) can have only one solution this is an easy consequence
of the contractivity of f .
Uniqueness of the solution

Assume that both u ∈ F and v ∈ F are solutions of (3.4), then we have

〈(f − I)u, J(v − u)〉 ≤ 0 and 〈(f − I)v, J(u− v)〉 ≤ 0 .

Adding them yields,

(3.9) 〈(f − I)u− (f − I)v, J(u− u)〉 ≤ 0 .

However, the α-contractivity of f and (3.9), gives

(1− α) ‖u− v‖2 ≤ 〈(I − f)u− (I − f)v, J(u− v)〉 ≤ 0 ,

so, we must have u = v. Hence (3.4) can have at most one solution.
This completes the proof. !

In the next theorem, we study strong convergence of explicit scheme (3.2)

Theorem 3.2. Let {zn} be the sequence generated by the explicit scheme (3.2).
If (3.3) holds and

∑∞

n=1(1 − αn) = ∞. Then {zn} converges strongly to x∗ ∈ F
as n → ∞ such that x∗ is the unique solution in F to variational inequality

(3.10) 〈(f − I)x∗, J(x− x∗)〉 ≤ 0 , ∀ x ∈ F .
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Proof. For any fixed p ∈ F ,

‖zn+1 − p‖ ≤

(

1−
1

kn

)

‖zn − p‖+
1− αn

kn
‖f(zn)− p‖+

αn

kn
‖(T (tn))

n zn − p‖

≤

(

1−
1

kn
+ αn

)

‖zn − p‖+
1− αn

kn
(‖f(zn)− f(p)‖+ ‖f(p)− p‖)

≤

(

1−
1

kn
+

(1− αn)α

kn
+ αn

)

‖zn − p‖+
1− αn

kn
‖f(p)− p‖

≤ (1− ηn) ‖zn − p‖+ ηn(γ ‖f(p)− p‖)

≤ max {‖zn − p‖ , γ ‖f(p)− p‖} ,

where

ηn =
1− (α + (kn − α)αn)

kn
, γ ≥

1− αn

knηn
.

By induction

‖zn − p‖ ≤ max {‖z0 − p‖ , γ ‖f(p)− p‖} .

Hence {zn} is bounded and so are {f(zn)} and {(T (tn))nzn}. It follows from the
proof of Theorem 3.1(Uniqueness of solution), that there is a unique solution q ∈ F
of variational inequality

(3.11) 〈(f − I)q, J(u− q)〉 ≤ 0 , ∀ u ∈ F .

Next, we show that

(3.12) lim sup
n→∞

〈(f − I)q, J(zn+1 − q)〉 ≤ 0 .

Since {zn} is bounded and E is reflexive, we can take a subsequence {znj
} of {zn}

such that {znj
} ⇀ x∗ ∈ K. Weak continuity of Jϕ imply that,

J(znj
− q) =

∥

∥znj
− q

∥

∥

ϕ(
∥

∥znj
− q

∥

∥)
Jϕ(znj

− q) ⇀
‖x∗ − q‖

ϕ(‖x∗ − q‖)
Jϕ(x

∗ − q) = J(x∗ − q) .

Hence,

(3.13)
lim sup
n→∞

〈(f − I)q, J(zn+1 − q)〉 = lim sup
j→∞

〈

(f − I)q, J(znj+1 − q)
〉

= 〈(f − I)q, J(x∗ − q)〉 .
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Now we show that x∗ ∈ F .
Put uj = znj

, βj = αnj
and sj = tnj

, kj = knj
for j ∈ N, fix t > 0, we have

∥

∥

∥
uj+1 − (T (t))j x∗

∥

∥

∥
≤

[t/sj ]−1
∑

k=0

∥

∥

∥
(T ((k + 1)sj))

j uj − (T (ksj))
j uj+1

∥

∥

∥

+
∥

∥

∥
(T ([t/sj ] sj))

j uj+1 − (T ([t/sj ] sj))
j x∗

∥

∥

∥

+
∥

∥

∥
(T ([t/sj ] sj))

j x∗ − (T (t))j x∗
∥

∥

∥

≤ [t/sj ]
∥

∥

∥
(T (sj))

j uj − uj+1

∥

∥

∥
+ kj ‖uj+1 − x∗‖ .(3.14)

From (3.2), we have

(3.15)

uj+1 − (T (sj))
j uj =

(

1−
1

kj

)

[

uj − (T (sj))
j uj

]

+
1− αj

kj

[

fuj − (T (sj))
j uj

]

.

Using (3.14) and (3.15), we get

∥

∥

∥
uj+1 − (T (t))j x∗

∥

∥

∥
≤ [t/sj ] ·

1− βj

kj

∥

∥

∥
(T (sj))

j uj − f(uj)
∥

∥

∥
+ kj ‖uj+1 − x∗‖

+ [t/sj]

(

1−
1

kj

)

∥

∥

∥
(T (sj))

j uj − uj

∥

∥

∥

+ kj max
{
∥

∥

∥
(T (s))j x∗ − x∗

∥

∥

∥
: 0 ≤ s ≤ sj

}

.

So, for all j ∈ N, we have

lim sup
j→∞

∥

∥

∥
uj+1 − (T (t))j x∗

∥

∥

∥
≤ lim sup

j→∞

‖uj+1 − x∗‖ .

By Lemma 2.1(iii), E satisfies Opial condition, this implies that (T (t))j x∗ → x∗ as
j → ∞. This gives

x∗ = lim
j→∞

(T (t))j x∗ = lim
j→∞

(T (t))j+1 x∗ = T (t)

(

lim
j→∞

(T (t))j x∗

)

= T (t)x∗ ,

therefore x∗ ∈ F . Hence, from (3.13) and (3.11), we have

lim sup
n→∞

〈(f − I)q, J(zn+1 − q)〉 = 〈(f − I)q, J(x∗ − q)〉 ≤ 0 ,

and (3.12) is proved.
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Finally, we show that zn → q. Now
∥

∥

∥

∥

(

1−
1

kn

)

(zn − q) +
1− αn

kn
(f(zn)− f(q)) +

αn

kn
(T (t))n zn − q

∥

∥

∥

∥

≤

(

1−
1

kn

)

‖zn − q‖+
1− αn

kn
‖f(zn)− f(q)‖+

αn

kn
‖(T (t))n zn − q‖

≤

(

1−
1

kn

)

‖zn − q‖+
(1− αn)α

kn
‖zn − q‖+ αn ‖zn − q‖

=

[

1−
1

kn
+

(1− αn)α

kn
+ αn

]

‖zn − q‖

=

[

1−

(

1− (α + (kn − α)αn)

kn

)]

‖zn − q‖ .(3.16)

Using Lemma 2.1(i) and (3.16), we have

‖zn+1 − q‖2 =

∥

∥

∥

∥

(

1−
1

kn

)

(zn − q) +
1− αn

kn
(f(zn)− f(q))

+
αn

kn
((T (t))n zn − q) +

1− αn

kn
(f(q)− q)

∥

∥

∥

∥

2

≤

∥

∥

∥

∥

(

1−
1

kn

)

(zn − q) +
1− αn

kn
(f(zn)− f(q)) +

αn

kn
((T (t))n zn − q)

∥

∥

∥

∥

2

+
2(1− αn)

kn
〈f(q)− q, J(zn+1 − q)〉

≤

[

1−

(

1− (α+ (kn − α)αn)

kn

)]2

‖zn − q‖2

+
2(1− αn)

kn
〈f(q)− q, J(zn+1 − q)〉

≤

[

1−

(

1− (α+ (kn − α)αn)

kn

)]

‖zn − q‖2

+
2(1− αn)

kn
〈f(q)− q, J(zn+1 − q)〉

= (1− λn) ‖zn − q‖2 + λnµn ,(3.17)

where

λn =
1− (α + (kn − α)αn)

kn
and µn =

2(1− αn)

knλn
〈f(q)− q, J(zn+1 − q)〉 ,

after simplification

λn =
(1− αn)

kn

[

(kn − α)−
kn − 1

1− αn

]

,
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hence

lim
n→∞

λn

1− αn
= 1− α > 0 .

In other words λn = ◦(1−αn), since
∑∞

n=1(1−αn) = ∞, we also have
∑∞

n=1 λn = ∞
and using (3.7), by (3.12), we obtain

(3.18) lim sup
n→∞

µn =
2

1− α
lim sup
n→∞

〈f(q)− q, J(zn+1 − q)〉 ≤ 0 ,

applying Lemma 2.2 to ( 3.17) and noticing ( 3.18), we conclude that ‖zn − q‖ → 0,
that is, zn → q, as required.
This completes the proof.

!

If we take contraction f to be constant, then we have the following corollaries from
Theorem 3.1 and Theorem 3.2.

Corollary 3.1. Let u ∈ K and {xn} be the sequence generated by the implicit scheme

xn =

(

1−
1

kn

)

xn +
1− αn

kn
u+

αn

kn
(T (tn))

n xn .

If (3.3) holds, then {xn} converges strongly to x∗ ∈ F as n → ∞ such that x∗ is the
unique solution in F to variational inequality

〈x∗ − u, J(x− x∗)〉 ≤ 0 ∀ x ∈ F .

Corollary 3.2. Let u ∈ K and {xn} be the sequence generated by the explicit scheme

zn+1 =

(

1−
1

kn

)

zn +
1− αn

kn
u+

αn

kn
(T (tn))

n zn .

If (3.3) holds and
∑∞

n=1(1 − αn) = ∞. Then {xn} converges strongly to x∗ ∈ F as
n → ∞ such that x∗ is the unique solution in F to variational inequality

〈x∗ − u, J(x− x∗)〉 ≤ 0 ∀ x ∈ F .

If K is a compact subset of a real smooth Banach space E, then weak sequential
continuity of duality mapping may not be need. In this case we have the following
corollaries from Theorem 3.1 and Theorem 3.2.

Corollary 3.3. Let K be a nonempty convex, compact subset of a real smooth Banach
space E and let {xn} be the sequence generated by the implicit scheme (3.1). If (3.3)
holds, then {xn} converges strongly to x∗ ∈ F as n → ∞ such that x∗ is the unique
solution in F to variational inequality (3.4).

Corollary 3.4. Let K be a nonempty convex, compact subset of a real smooth Banach
space E and let {xn} be the sequence generated by the explicit scheme (3.2). If (3.3)
holds and

∑∞

n=1(1 − αn) = ∞, then {xn} converges strongly to x∗ ∈ F as n → ∞
such that x∗ is the unique solution in F to variational inequality (3.10).
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Since every Hilbert space is reflexive and satisfies Opial’s condition, we have fol-
lowing corollaries.

Corollary 3.5. Let K be a nonempty closed,convex subset of a Hilbert space E and
let {xn} be the sequence generated by the implicit scheme (3.1). If (3.3) holds, then
{xn} converges strongly to x∗ ∈ F as n → ∞ such that x∗ is the unique solution in
F to variational inequality (3.4).

Corollary 3.6. Let K be a nonempty closed,convex subset of a Hilbert space E and
let {xn} be the sequence generated by the explicit scheme (3.2). If (3.3) holds and
∑∞

n=1(1 − αn) = ∞, then {xn} converges strongly to x∗ ∈ F as n → ∞ such that x∗

is the unique solution in F to variational inequality (3.10).
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