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A COUPLED COINCIDENCE POINT THEOREM IN PARTIALLY
ORDERED METRIC SPACES

NGUYEN V. CAN1, VASILE BERINDE2, NGUYEN V. LUONG3, AND NGUYEN X. THUAN4

Abstract. We prove a coupled coincidence point theorem in partially ordered
metric spaces for mappings F : X×X → X having the g-mixed monotone property.
The main result of this paper extends and improves the corresponding results in
[6][10][8][4]. Some examples are given to illustrate our work.

1. Introduction and preliminaries

Existence of a fixed point for contraction type mappings in partially ordered metric
spaces has been considered recently in [1]–[19] and reference therein. Some existence
results of solutions for matrix equations, ordinary differential equations or integral
equations by applying fixed point theorems are presented in [2][6][7][10] and [15]–[17].

In [6], Bhaskar and Lakshmikantham introduced the notions of mixed monotone
mapping and of coupled fixed point and proved some coupled fixed point theorems
for the mixed monotone mappings and also discussed the existence and uniqueness
of solution for a periodic boundary value problem. These concepts are defined as
follows.

Let (X,#) be a partially ordered set and F : X ×X → X . The mapping F is said
to have the mixed monotone property if F (x, y) is monotone non-decreasing in x and
is monotone non-increasing in y that is, for any x, y ∈ X ,

x1, x2 ∈ X, x1 # x2 ⇒ F (x1, y) # F (x2, y)

and

y1, y2 ∈ X, y1 # y2 ⇒ F (x, y1) & F (x, y2).

Key words and phrases. Coupled coincidence point, mixed monotone, O-compatible mappings,
partially ordered set.
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An element (x, y) ∈ X ×X is called a coupled fixed point of F if x = F (x, y) and
y = F (y, x).

Let (X,#) be a partially ordered set for which there exists a metric d on X such
that (X, d) is a complete metric space. The main results of Bhaskar and Lakshmikan-
tham in [6] are some coupled fixed point theorems for mixed monotone mappings
F : X ×X → X , satisfying a contractive condition of the form

(1.1) d(F (x, y), F (u, v)) ≤
k

2
[d(x, u) + d(y, v)], for each x & u and y # v,

where k ∈ [0, 1).
Luong and Thuan in [10] and Harjani, Lopez and Sadarangani in [8] proved some

generalizations of the main results in [6] and discussed the existence and uniqueness
of the solution of nonlinear integral equations.

The main result of Luong and Thuan [10] refers to mappings F satisfying the more
general contractive condition

(1.2) φ (d (F (x, y), F (u, v))) ≤
1

2
φ (d(x, u) + d(y, v))− ψ

(

d(x, u) + d(y, v)

2

)

for all x, y, u, v ∈ X with x & u and y # v, with φ ∈ Φ and ψ ∈ Ψ, where Φ denotes
the set of all functions φ : [0,∞) → [0,∞) satisfying

(i) φ is continuous and non-decreasing,
(ii) φ(t) = 0 if and only if t = 0,
(iii) φ(t+ s) ≤ φ(t) + φ(s), for all t, s ∈ [0,∞),

while Ψ denotes the set of all functions ψ : [0,∞) → [0,∞) satisfying limt→rψ (t) > 0
for all r > 0 and limt→0+ψ (t) = 0.

The main result of Harjani, Lopez and Sadarangani [8] is obtained for mappings F
satisfying the contractive condition

(1.3) ϕ (d (F (x, y), F (u, v))) ≤ ϕ (max{d(x, u), d(y, v)})−ψ (max{d(x, u), d(y, v)}) ,

for all x, y, u, v ∈ X with x & u and y # v, where ϕ,ψ are altering distance functions.
An altering distance function is a function ϕ : [0,∞) → [0,∞) which satisfies

(i) ϕ is continuous and non-decreasing;
(ii) ϕ(t) = 0 if and only if t = 0.

On the other hand, Lakshmikantham and Ciric [9] established coupled coincidence
and coupled fixed point theorems for two mappings F : X×X → X and g : X → X ,
where F has the mixed g-monotone property and the functions F and g commute, as
an extension of the fixed point results in [6]. Choudhury and Kundu in [3] introduced
the concept of compatibility and proved the result established in [9] under a different
set of conditions. Precisely, they established their result by assuming that F and g
are compatible mappings.

Definition 1.1. ([9]) Let (X,#) be a partially ordered set and let F : X ×X → X
and g : X → X are two mappings. We say that F has the mixed g-monotone property
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if F (x, y) is g-nondecreasing in its first argument and is g- non increasing in its second
argument, that is, for any x, y ∈ X ,

x1, x2 ∈ X, gx1 # gx2 ⇒ F (x1, y) # F (x2, y)

and

y1, y2 ∈ X, gy1 # gy2 ⇒ F (x, y1) & F (x, y2)

Definition 1.2. ([9]) An element (x, y) ∈ X×X is called a coupled coincidence point
of the mapping F : X ×X → X and g : X → X if

gx = F (x, y) and gy = F (y, x)

Definition 1.3. ([3]) The mappings F and g where F : X ×X → X , g : X → X are
said to be compatible if

lim
n→∞

d(gF (xn, yn), F (gxn, gyn)) = 0

and

lim
n→∞

d(gF (yn, xn), F (gyn, gxn)) = 0

where {xn} and {yn} are sequences in X such that lim
n→∞

F (xn, yn) = lim
n→∞

gxn = x

and lim
n→∞

F (yn, xn) = lim
n→∞

gyn = y for all x, y ∈ X are satisfied.

Afterwards, using the concept of compatible mappings, Choudhury, Metiya and
Kundu [4] proved coupled coincidence point theorem for two compatible mappings
F : X ×X → X and g : X → X satisfying the following inequality

ϕ(d(F (x, y), F (u, v)))

≤ ϕ(max{d(gx, gu), d(gy, gv)})− ψ(max{d(gx, gu), d(gy, gv)}),(1.4)

for all x, y, u, v ∈ X with gx & gu and gy # gv, where ϕ is an altering distance
function and ψ : [0,∞) → [0,∞) is continuous and ψ(t) = 0 if and only if t = 0.

Note that the result of Choudhury, Metiya and Kundu [4] is a generalization of the
result of Harjani, Lopez and Sadarangani [8].

In this paper, we first slightly extend the concept of compatible mappings into
the context of partially ordered metric spaces and then prove a coupled coincidence
theorem for such mappings in partially ordered complete metric spaces. Our result is
a generalization of the results of Bhaskar and Lakshmikantham [6], Luong and Thuan
[10], Harjani, Lopez, Sadarangani [8] and Choudhury, Metiya, Kundu [4].

2. Main result

Definition 2.1. (see, e.g. [13]) Let (X,#, d) be a partially ordered metric space. The
mappings F : X ×X → X and g : X → X are said to be O-compatible if

lim
n→∞

d(gF (xn, yn), F (gxn, gyn)) = 0
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and
lim
n→∞

d(gF (yn, xn), F (gyn, gxn)) = 0

where {xn} and {yn} are sequences in X such that {gxn}, {gyn} are monotone and

lim
n→∞

F (xn, yn) = lim
n→∞

gxn = x

and
lim
n→∞

F (yn, xn) = lim
n→∞

gyn = y

for all x, y ∈ X are satisfied.

Let (X,#, d) be a partially ordered metric space. If F : X×X → X and g : X → X
are compatible then they are O-compatible. However, the converse is not true. The
following example shows that there exist mappings which are O-compatible but not
compatible.

Example 2.1. (see, e.g. [13]) Let X = {0} ∪ [1/2, 2] with the usual metric d(x, y) =
|x− y|, for all x, y ∈ X . We consider the following order relation on X

x, y ∈ X x # y ⇔ x = y or (x, y) ∈ {(0, 0), (0, 1), (1, 1)}.

Let F : X ×X → X be given by

F (x, y) =

{

0 if x, y ∈ {0} ∪ [1/2, 1]
1 otherwise

and g : X → X be defined by

gx =















0 if x = 0
1 if 1/2 ≤ x ≤ 1
2− x if 1 < x ≤ 3/2
1/2 if 3/2 < x ≤ 2

Then F and g are O-compatible. Indeed, let {xn}, {yn} inX such that {gxn}, {gyn}
are monotone and

lim
n→∞

F (xn, yn) = lim
n→∞

gxn = x

and
lim
n→∞

F (yn, xn) = lim
n→∞

gyn = y

for some x, y ∈ X . Since F (xn, yn) = F (yn, xn) ∈ {0, 1} for all n, x = y ∈ {0, 1}.
The case x = y = 1 is impossible. In fact, if x = y = 1, then since {gxn}, {gyn} are
monotone, gxn = gyn = 1, for all n ≥ n1, for some n1. That is, xn, yn ∈ [1/2, 1],
for all n ≥ n1. This implies F (xn, yn) = F (yn, xn) = 0, for all n ≥ n1, which is a
contradiction. Thus x = y = 0. That implies gxn = gyn = 0, for all n ≥ n2, for some
n2, that is, xn = yn = 0, for all n ≥ n2. Thus, for all n ≥ n2,

d (gF (xn, yn), F (gxn, gyn)) = d (gF (yn, xn), F (gyn, gxn)) = 0.
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Hence

lim
n→∞

d(gF (xn, yn), F (gxn, gyn)) = 0

and

lim
n→∞

d(gF (yn, xn), F (gyn, gxn)) = 0

hold. Therefore F and g are O-compatible.
However, F and g are not compatible. Indeed, let {xn}, {yn} in X be defined by

xn = yn = 1 +
1

n+ 1
, n = 1, 2, 3, . . .

We have

F (xn, yn) = F (yn, xn) = F

(

1 +
1

n+ 1
, 1 +

1

n+ 1

)

= 1

and

gxn = gyn = g

(

1 +
1

n+ 1

)

= 1−
1

n+ 1
→ 1 as n → ∞,

but

d(gF (xn, yn), F (gxn, gyn)) = d

(

F

(

1−
1

n+ 1
, 1−

1

n + 1

)

, g1

)

= d(0, 1) = 1 ! 0,

as n → ∞. Thus, F and g are not compatible.
To prove our main results in the next section, we shall need the following Lemma.

Lemma 2.1. Let {xn} and {yn} be two sequences of positive real numbers such that

lim
n→∞

max{xn, yn} = α > 0

Then there exist subsequences {xnkj
} of {xn} and {ynkj

} of {yn} such that

lim
j→∞

xnkj
= α1, lim

j→∞

ynkj
= α2 and max{α1,α2} = α.

Proof. Since the sequence max{xn, yn} is convergent, it is bounded. On other hand,
due to the inequalities 0 ≤ xn, yn ≤ max{xn, yn} , the sequences {xn} and {yn} are
also bounded. Since {xn} is bounded, by Bolzano-Weierstrass theorem, {xn} has a
convergent subsequence, say {xnk

}. Assume that lim
k→∞

xnk
= α1. Also, due to the

fact that {ynk
} is bounded, there exists a subsequence {ynkj

} of {ynk
} such that

lim
j→∞

ynkj
= α2. Since lim

k→∞

xnk
= α1 , we have lim

j→∞

xnkj
= α1. Finally, we have

α = lim
j→∞

max
{

xnkj
, ynkj

}

= max

{

lim
j→∞

xnkj
, lim
j→∞

ynkj

}

= max {α1,α2} .

!
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Let Θ denote the class of all functions θ : [0,∞)2 → [0,∞) satisfying

lim
t1→r1
t2→r2

θ (t1, t2) > 0 for all (r1, r2) ∈ [0,∞)2,

with max{r1, r2} > 0 and θ(t1, t2) = 0 if and only if t1 = t2 = 0. For example,
θ(t1, t2) = kmax{t1, t2}, k > 0; θ(t1, t2) = atp1 + btq2, a, b, p, q > 0 for all (t1, t2) ∈
[0,∞)2 are in Θ.

Now we are going to prove our main result.

Theorem 2.1. Let (X,#, d) be a partially ordered complete metric space. Let
F : X ×X → X and g : X → X be two mappings such F has the mixed g-monotone
property. Assume that

ϕ (d(F (x, y), F (u, v)))

≤ ϕ (max{d(gx, gu), d(gy, gv)})− θ (d(gx, gu), d(gy, gv))(2.1)

for all x, y, u, v ∈ X with gx & gu and gy # gv, where ϕ is an altering distance
function and θ ∈ Θ. Let F (X × X) ⊆ g(X), g is continuous and F and g are
O-compatible mappings. Suppose either

(a) F is continuous or
(b) X has the following property:

(i) if a non-decreasing sequence {xn} → x, then gxn # gx for all n,
(ii) if a non-increasing sequence {yn} → y, then gy # gyn for all n.

If there exist x0, y0 ∈ X such that gx0 # F (x0, y0) and gy0 & F (y0, x0), then there
exist x, y ∈ X such that gx = F (x, y) and gy = F (y, x), that is, F and g have a
coupled coincidence point in X.

Proof. Let x0, y0 ∈ X be such that gx0 # F (x0, y0) and gy0 & F (y0, x0). Since
F (X ×X) ⊆ g(X)), we construct the sequences {xn} and {yn} in X as follows

(2.2) gxn+1 = F (xn, yn) and gyn+1 = F (yn, xn), for all n ≥ 0.

By the mixed g-monotone property of F , using the mathematical induction, it is easy
to show that

(2.3) gxn # gxn+1,

and

(2.4) gyn & gyn+1,

for all n ≥ 0.
If there is n0 ≥ 1 such that d(gxn0

, gxn0−1) = d(gyn0
, gyn0−1) = 0 then gxn0−1 =

gxn0
= F (xn0−1, yn0−1) and gyn0−1 = gyn0

= F (yn0−1, xn0−1), that is, (xn0−1, yn0−1) is
a coupled coincidence point of F and g. Now, we may assume that d (gxn, gxn−1) +
d (gyn, gyn−1) > 0 for all n ≥ 1.
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Since gxn & gxn−1 and gyn # gyn−1, from (2.1) and (2.2), we have

ϕ (d (gxn+1, gxn)) = ϕ (d (F (xn, yn) , F (xn−1, yn−1)))

≤ ϕ (max {d (gxn, gxn−1) , d (gyn, gyn−1)})

− θ (d (gxn, gxn−1) , d (gyn, gyn−1)) .(2.5)

As θ(t1, t2) > 0, for all (t1, t2) ∈ [0,∞)2, t1 + t2 > 0, we have

ϕ (d (gxn+1, gxn)) < ϕ (max {d (gxn, gxn−1) , d (gyn, gyn−1)}) .

Since ϕ is non decreasing, we get

(2.6) d (gxn+1, gxn) ≤ max {d (gxn, gxn−1) , d (gyn, gyn−1)} .

Similarly, since gyn−1 & gyn and gxn−1 # gxn, from (2.1), (2.2) and the properties of
θ, we also have

ϕ (d (gyn, gyn+1)) = ϕ (d (F (yn−1, xn−1) , F (yn, xn)))

≤ ϕ (max {d (gyn, gyn−1) , d (gxn, gxn−1)})

− θ (d (gyn, gyn−1) , d (gxn, gxn−1))(2.7)

and, consequently,

(2.8) d (gyn+1, gyn) ≤ max {d (gxn, gxn−1) , d (gyn, gyn−1)} .

From (2.6) and (2.8), we have

max {d (gxn+1, gxn) , d (gyn+1, gyn)} ≤ max {d (gxn, gxn−1) , d (gyn, gyn−1)} .

If we set δn = max {d (gxn+1, gxn) , d (gyn+1, gyn)}, then the sequence {δn} is decreas-
ing. Therefore, there is some δ ≥ 0 such that

(2.9) lim
n→∞

δn = lim
n→∞

max {d (gxn+1, gxn) , d (gyn+1, gyn)} = δ.

We shall show that δ = 0. Assume, to the contrary, that δ > 0. By Lemma 2.1, the
sequences {d(gn+1, gxn)} and {d(gyn+1, gyn)} have convergent sequences that be still
denoted {d(gn+1, gxn)} and {d(gyn+1, gyn)}, respectively, with lim

n→∞

d (gxn+1, gxn) =

δ1 and lim
n→∞

d (gyn+1, gyn) = δ2 and max{δ1, δ2} = δ > 0. Since ϕ : [0,∞) → [0,∞)

is non decreasing, we have ϕ (max{a, b}) = max{ϕ(a),ϕ(b)} for a, b ∈ [0,∞). Thus,
from (2.5) and (2.7), we have

ϕ (max {d (gxn+1, gxn) , d (gyn+1, gyn)})

= max {ϕ (d (gxn+1, gxn)) ,ϕ (d (gyn+1, gyn))}

≤ ϕ (max {d (gxn, gxn−1) , d (gyn, gyn−1)})

−min {θ (d (gxn, gxn−1) , d (gyn, gyn−1)) , θ (d (gyn, gyn−1) , d (gxn, gxn−1))} .
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Then taking the limit as n → ∞ in both sides of the previous enequality, we have

ϕ(δ) = lim
n→∞

ϕ(δn)

≤ lim
n→∞

[

ϕ (δn−1)−min

{

θ (d (gxn, gxn−1) , d (gyn, gyn−1)) ,
θ (d (gyn, gyn−1) , d (gxn, gxn−1))

}]

= ϕ (δ)− lim
d(xn,xn−1)→δ1
d(yn,yn−1)→δ2

min

{

θ (d (gxn, gxn−1) , d (gyn, gyn−1)) ,
θ (d (gyn, gyn−1) , d (gxn, gxn−1))

}

= ϕ (δ)−min















lim
d(xn,xn−1)→δ1
d(yn,yn−1)→δ2

θ (d (gxn, gxn−1) , d (gyn, gyn−1)) ,

lim
d(xn,xn−1)→δ1
d(yn,yn−1)→δ2

θ (d (gyn, gyn−1) , d (gxn, gxn−1))















< ϕ(δ),

which is a contradiction. Thus, δ = 0, that is

(2.10) lim
n→∞

δn = lim
n→∞

max {d (gxn+1, gxn) , d (gyn+1, gyn)} = 0.

In what follows, we shall show that {gxn} and {gyn} are Cauchy sequences. Suppose,
to the contrary, that at least one of {gxn} or {gyn} is not a Cauchy sequence. This
means that there exists an ε > 0 for wich we can find subsequences

{

gxn(k)

}

,
{

gxm(k)

}

of {gxn} and
{

gyn(k)
}

,
{

gym(k)

}

of {gyn} with n(k) > m(k) ≥ k such that

(2.11) max
{

d
(

gxn(k), gxm(k)

)

, d
(

gyn(k), gym(k)

)}

≥ ε

Further, corresponding to m(k), we can choose n(k) in such a way that it is the
smallest integer with n(k) > m(k) ≥ k and satisfies (2.11). Then

(2.12) max
{

d
(

gxn(k)−1, gxm(k)

)

, d
(

gyn(k)−1, gym(k)

)}

< ε

Using the triangle inequality and (2.12), we have

d
(

gxn(k), gxm(k)

)

≤ d
(

gxn(k), gxn(k)−1

)

+ d
(

gxn(k)−1, gxm(k)

)

< d
(

gxn(k), gxn(k)−1

)

+ ε(2.13)

and

d
(

gyn(k), gym(k)

)

≤ d
(

gyn(k), gyn(k)−1

)

+ d
(

gyn(k)−1, gym(k)

)

< d
(

gyn(k), gyn(k)−1

)

+ ε(2.14)

From (2.11), (2.13) and (2.14), we have

ε ≤ max
{

d
(

gxn(k), gxm(k)

)

, d
(

gyn(k), gym(k)

)}

< max
{

d
(

gxn(k), gxn(k)−1

)

, d
(

gyn(k), gyn(k)−1

)}

+ ε.

Letting k → ∞ in the inequalities above and using (2.10) we get

(2.15) lim
k→∞

max
{

d
(

gxn(k), gxm(k)

)

, d
(

gyn(k), gym(k)

)}

= ε.
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By the triangle inequality we get

d
(

gxn(k), gxm(k)

)

≤ d
(

gxn(k), gxn(k)−1

)

+ d
(

gxn(k)−1, gxm(k)−1

)

+ d
(

gxm(k)−1, gxm(k)

)

and

d
(

gyn(k), gym(k)

)

≤ d
(

gyn(k), gyn(k)−1

)

+ d
(

gyn(k)−1, gym(k)−1

)

+ d
(

gym(k−1, gym(k)

)

.

From the last two inequalities and (2.11), we have

ε ≤ max
{

d
(

gxn(k), gxm(k)

)

, d
(

gyn(k), gym(k)

)}

≤ max
{

d
(

gxn(k), gxn(k)−1

)

, d
(

gyn(k), gyn(k)−1

)}

+max
{

d
(

gxm(k)−1, gxm(k)

)

, d
(

gym(k)−1, gym(k)

)}

+max
{

d
(

gxn(k)−1, gxm(k)−1

)

, d
(

gyn(k)−1, gym(k)−1

)}

.(2.16)

Again, by the triangle inequality,

d
(

gxn(k)−1, gxm(k)−1

)

≤ d
(

gxn(k)−1, gxm(k)

)

+ d
(

gxm(k), gxm(k)−1

)

< d
(

gxm(k), gxm(k)−1

)

+ ε

and

d
(

gyn(k)−1, gym(k)−1

)

≤ d
(

gyn(k)−1, gym(k)

)

+ d
(

gym(k), gym(k)−1

)

< d
(

gym(k), gym(k)−1

)

+ ε.

Therefore,

max
{

d
(

gxn(k)−1, gxm(k)−1

)

, d
(

gyn(k)−1, gym(k)−1

)}

< max
{

d
(

gxm(k), gxm(k)−1

)

, d
(

gym(k), gym(k)−1

)}

+ ε.(2.17)

From (2.16) and (2.17), we have

ε−max
{

d
(

gxn(k), gxn(k)−1

)

, d
(

gyn(k), gyn(k)−1

)}

−max
{

d
(

gxm(k)−1, gxm(k)

)

, d
(

gym(k)−1, gym(k)

)}

≤ max
{

d
(

gxn(k)−1, gxm(k)−1

)

, d
(

gyn(k)−1, gym(k)−1

)}

< max
{

d
(

gxm(k), gxm(k)−1

)

, d
(

gym(k), gym(k)−1

)}

+ ε.

Taking k → ∞ in the inequalities above and using (2.10), we get

(2.18) lim
k→∞

max
{

d
(

gxn(k)−1, gxm(k)−1

)

, d
(

gyn(k)−1, gym(k)−1

)}

= ε.

Therefore,
{

d
(

gxn(k)−1, gxm(k)−1

)}

and
{

d
(

gyn(k)−1, gym(k)−1

)}

have subsequences
converging to ε1 and ε2, respectively. From (2.18), we have max{ε1, ε2} = ε > 0. We
may assume that lim

k→∞

d
(

gxn(k)−1, gxm(k)−1

)

= ε1 and lim
k→∞

d
(

gyn(k)−1, gym(k)−1

)

= ε2.
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Since n(k) > m(k), gxn(k)−1 & gxm(k)−1 and gyn(k)−1 # gym(k)−1, from (2.1) and (2.2),

ϕ
(

d
(

gxn(k), gxm(k)

))

= ϕ
(

d
(

F
(

xn(k)−1, yn(k)−1

)

, F
(

xm(k)−1, ym(k)−1

)))

≤ ϕ
(

max
{

d
(

gxn(k)−1, gxm(k)−1

)

, d
(

gyn(k)−1, gym(k)−1

)})

− θ
(

d
(

gxn(k)−1, gxm(k)−1

)

, d
(

gyn(k)−1, gym(k)−1

))

.(2.19)

Similarly,

ϕ
(

d
(

gym(k), gyn(k)
))

= ϕ
(

d
(

F
(

ym(k)−1, xm(k)−1

)

, F
(

yn(k)−1, xn(k)−1

)))

≤ ϕ
(

max
{

d
(

gyn(k)−1, gym(k)−1

)

, d
(

gxn(k)−1, gxm(k)−1

)})

− θ
(

d
(

gyn(k)−1, gym(k)−1

)

, d
(

gxn(k)−1, gxm(k)−1

))

.(2.20)

From (2.19) and (2.20), we have

ϕ
(

max
{

d
(

gxn(k), gxm(k)

)

, d
(

gyn(k), gym(k)

)})

= max
{

ϕ
(

d
(

gxn(k), gxm(k)

))

,ϕ
(

d
(

gyn(k), gym(k)

))}

≤ ϕ
(

max
{

d
(

gxn(k)−1, gxm(k)−1

)

, d
(

gyn(k)−1, gym(k)−1

)})

−min

{

θ
(

d
(

gxn(k)−1, gxm(k)−1

)

, d
(

gyn(k)−1, gym(k)−1

))

,
θ
(

d
(

gyn(k)−1, gym(k)−1

)

, d
(

gxn(k)−1, gxm(k)−1

))

}

.

By passing to subsequences, we obtain

ϕ (ε) ≤ ϕ (ε)− lim
k→∞

min

{

θ
(

d
(

gxn(k)−1, gxm(k)−1

)

, d
(

gyn(k)−1, gym(k)−1

))

,
θ
(

d
(

gyn(k)−1, gym(k)−1

)

, d
(

gxn(k)−1, gxm(k)−1

))

}

< ϕ (ε) ,

which is a contradiction. This shows that {gxn} and {gyn} are Cauchy sequences.
Since X is complete, there exist x, y ∈ X such that

(2.21) lim
n→∞

gxn = x and lim
n→∞

gyn = y.

Thus

(2.22) lim
n→∞

F (xn, yn) = lim
n→∞

gxn = x and lim
n→∞

F (yn, xn) = lim
n→∞

gyn = y.

Since F and g are O-compatible, from (2.22), we have

(2.23) lim
n→∞

d(gF (xn, yn), F (gxn, gyn)) = 0

and

(2.24) lim
n→∞

d(gF (yn, xn), F (gyn, gxn)) = 0.

Now, suppose that assumption (a) holds. We have

(2.25) d (gx, F (g (xn) , g (yn))) ≤ d (gx, gF (xn, yn)) + d (gF (xn, yn) , F (gxn, gyn)) .

Taking the limit as n → ∞ in (2.25) and by using (2.21), (2.23) and the continuity
of F and g we get d(gx, F (x, y)) = 0. Similarly, we can show that d(gy, F (y, x)) = 0.
Therefore, gx = F (x, y) and gy = F (y, x). Finally, suppose that assumption (b)
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holds. Since {gxn} is a non decreasing sequence and gxn → x and {gyn} is a non
increasing sequence and gyn → y, we have ggxn # gx and ggyn & gy, for all n.

Since F and g are compatible and g is continuous, from (2.21), (2.23) and (2.24)
we have

(2.26) lim
n→∞

ggxn = gx = lim
n→∞

gF (xn, yn) = lim
n→∞

F (gxn, gyn)

and

(2.27) lim
n→∞

ggyn = gy = lim
n→∞

gF (yn, xn) = lim
n→∞

F (gyn, gxn) .

We have

ϕ (d (F (x, y) , F (gxn, gyn))) ≤ ϕ (max {d (gx, ggxn) , d (gy, ggyn)})

− θ (d (gx, ggxn) , d (gy, ggyn))

≤ ϕ (max {d (gx, ggxn) , d (gy, ggyn)}) .

We also have

d (gx, F (x, y)) ≤ d (gx, ggxn+1) + d (ggxn+1, F (x, y))

= d (gx, ggxn+1) + d (gF (xn, yn) , F (x, y))

= d (gx, ggxn+1) + d (F (x, y) , F (gxn, gyn)) .

Since ϕ is non-decreasing, we have

ϕ(d (gx, F (x, y))− d (gx, ggxn+1) ≤ ϕ(d (F (x, y) , F (gxn, gyn)))

≤ ϕ(max {d (ggxn, gx) , d (ggyn, gy)})

Taking the limit as n → ∞ in the previous inequalities and using (2.26), (2.27)
and the continuity of ϕ, we obtain

ϕ(d (gx, F (x, y))) = ϕ(d (gx, F (x, y))− lim
n→∞

d (gx, ggxn+1))

≤ ϕ( lim
n→∞

max {d (ggxn, gx) , d (ggyn, gy)})

= ϕ(0) = 0

which implies that d(gx, F (x, y) = 0. Hence gx = F (x, y). Similarly, one can show
that gy = F (y, x). !

Corollary 2.1. Let (X,#, d) be a partially ordered complete metric space. Let
F : X ×X → X and g : X → X be two mappings such F has the mixed g-monotone
property. Assume that

ϕ (d(F (x, y), F (u, v)))

≤ ϕ (max{d(gx, gu), d(gy, gv)})− ψ (max{d(gx, gu), d(gy, gv)})(2.28)

for all x, y, u, v ∈ X with gx & gu and gy # gv, where ϕ is an altering distance
function and ψ : [0,∞) → [0,∞) is such that lim

t→r
ψ (t) > 0 for each t > 0 and ψ(t) = 0

if and only if t = 0. Assume also that F (X ×X) ⊆ g(X), g is continuous and F and
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g are O-compatible mappings. Suppose either the assumption (a) or (b) in Theorem
2.1 holds. If there exist x0, y0 ∈ X such that gx0 # F (x0, y0) and gy0 & F (y0, x0),
then F and g have a coupled coincidence point in X.

Proof. In Theorem 2.1, taking θ(t1, t2) = ψ(max{t1, t2}) for all t1, t2 ∈ [0,∞), we get
Corollary 2.1. !

Corollary 2.2. Let (X,#, d) be a partially ordered complete metric space. Let F :
X × X → X and g : X → X be two mappings such F has the mixed g-monotone
property. Assume that

ϕ (d(F (x, y), F (u, v)))

≤ ϕ (max{d(gx, gu), d(gy, gv)})− ψ (d(gx, gu) + d(gy, gv))(2.29)

for all x, y, u, v ∈ X with gx & gu and gy # gv, where ϕ is an altering distance
function and ψ : [0,∞) → [0,∞) such that lim

t→r
ψ (t) > 0 for each t > 0 and ψ(t) = 0

if and only if t = 0. Assume also that F (X ×X) ⊆ g(X), g is continuous and F and
g are O-compatible mappings. Suppose either the assumption (a) or (b) in Theorem
2.1 holds. If there exist x0, y0 ∈ X such that gx0 # F (x0, y0) and gy0 & F (y0, x0),
then F and g have a coupled coincidence point in X.

Proof. In Theorem 2.1, taking θ(t1, t2) = ψ(t1 + t2) for all t1, t2 ∈ [0,∞), we get
Corollary 2.2. !

In Theorem 2.1, taking gx = x for all x ∈ X , we get the following corollary.

Corollary 2.3. Let (X,#) be a partially ordered set and suppose there is a metric
d on X such that (X, d) is a complete metric space. Let F : X × X → X be a
mapping having the mixed monotone property on X such that there exist two elements
x0, y0 ∈ X with

x0 # F (x0, y0) and y0 & F (y0, x0)

Assume that

(2.30) ϕ (d(F (x, y), F (u, v))) ≤ ϕ (max{d(x, u), d(y, v)})− θ (d(x, u), d(y, v))

for all x, y, u, v ∈ X with x & u and y # v, where ϕ is an altering distance function
and θ ∈ Θ. Suppose either

(a) F is continuous or
(b) X has the following property:

(i) if a non-decreasing sequence {xn} → x, then xn # x for all n,
(ii) if a non-increasing sequence {yn} → y, then y # yn for all n.

Then F has a coupled fixed point in X.

Remark 2.1. 1) In Corollary 2.1, the function ψ need not be continuous as was as-
sumed in Theorem 3.1 in [4], so Corollary 2.1 is an improvement of the result of
Choudhury, Metiya and Kundu [4].
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2) Notice that Theorem 2.1 of Luong and Thuan [10] is also a consequence of
Corollary 2.3. In fact, the condition (1.2) appearing in Theorem 2.1 in [10]

φ (d (F (x, y) , F (u, v))) ≤
1

2
φ (d (x, u) + d (y, v))− ψ

(

d (x, u) + d (y, v)

2

)

can be written as follows

2φ (d (F (x, y) , F (u, v))) ≤ φ (d (x, u) + d (y, v))− 2ψ

(

d (x, u) + d (y, v)

2

)

.

Since φ is subadditive, φ (2d (F (x, y) , F (u, v))) ≤ 2φ (d (F (x, y) , F (u, v))). Thus,
(2.31)

φ (2d (F (x, y) , F (u, v))) ≤ φ

(

2
d (x, u) + d (y, v)

2

)

− 2ψ

(

d (x, u) + d (y, v)

2

)

.

Taking ϕ(t) = φ(2t) for all t ∈ [0,∞) and θ(t1, t2) = 2ψ
(

t1+t2
2

)

for all (t1, t2) ∈ [0,∞)2

then ϕ is an altering distance function and θ ∈ Θ and (2.31) can be written as

ϕ (d (F (x, y) , F (u, v))) ≤ ϕ

(

d (x, u) + d (y, v)

2

)

− θ (d (x, u) , d (y, v)) .

Since ϕ is non decreasing and

d (x, u) + d (y, v)

2
≤ max {d (x, u) , d (y, v)} ,

we have

ϕ (d (F (x, y) , F (u, v))) ≤ ϕ (max {d (x, u) , d (y, v)})− θ (d (x, u) , d (y, v)) .

Therefore, by applying Corollary 2.3 we obtain the desired result.

3. Examples

In this section, we give some examples to show that our results are effective.

Example 3.1. Let X = [0,∞). Then (X,≤) is a totally ordered set with the usual
ordering of real numbers. Let d(x, y) = |x − y|, for all x, y ∈ X . Then (X, d) is a
complete metric space andX has the property as in Theorem 2.1. Let F : X×X → X
be defined by

F (x, y) =

{

x3
−y3

4
if x, y ∈ X,x ≥ y,

0 if x < y.

and g : X → X be defined by

gx = x3, for all x ∈ X

Then F has the mixed g-monotone property, F (X×X ⊆ g(X)), g is continuous. Let
{xn} and {yn} are two sequences in X such that

lim
n→∞

F (xn, yn) = x, lim
n→∞

gxn = x,



116 NGUYEN V. CAN1, VASILE BERINDE2, NGUYEN V. LUONG3, AND NGUYEN X. THUAN4

and
lim
n→∞

F (yn, xn) = y, lim
n→∞

gyn = y

Then, obviously, x = y = 0.
For n ≥ 0, we have

F (xn, yn) =

{

x3
n−y3n
4

if xn ≥ yn,
0 if xn < yn.

and

F (yn, xn) =

{

y3n−x3
n

4
if yn ≥ xn,

0 if yn < xn.

and gxn = x3
n, gyn = y3n.

Then it easy to see that

lim
n→∞

d (gF (xn, yn), F (gxn, gyn)) = 0

and
lim
n→∞

d (gF (yn, xn), F (gyn, gxn)) = 0,

that is, F and g are compatible and thus are O-compatible. Let ϕ : [0,∞) → [0,∞)
be given by

ϕ(t) = t, for all t ∈ [0,∞)

and θ : [0,∞)2 → [0,∞) be given by

θ(t1, t2) =
t1 + t2

4
, for all (t1, t2) ∈ [0,∞)2

Then ϕ is an altering distance function and θ ∈ Θ.
We next show that the inequality (2.1) of Theorem 2.1 holds.
We take x, y, u, v ∈ X such that gx ≥ gu and gy ≤ gv, that is, x3 ≥ u3 and y3 ≤ v3.
Let A = d (gx, gu) + d (gy, gv) = |x3 − u3|+ |y3 − v3|. Then

max {d (gx, gu) , d (gy, gv)} = max
{
∣

∣x3 − u3
∣

∣ ,
∣

∣y3 − v3
∣

∣

}

≥
1

2
A.

We have the following possible cases.
Case 1. x ≥ y and u ≥ v. Then

d (F (x, y) , F (u, v)) = d

(

x3 − y3

4
,
u3 − v3

4

)

=

∣

∣

∣

∣

x3 − y3

4
−

u3 − v3

4

∣

∣

∣

∣

=

∣

∣

∣

∣

x3 − u3

4
+

v3 − y3

4

∣

∣

∣

∣

≤
1

4
A

Case 2. x ≥ y and u < v. Then

d (F (x, y) , F (u, v)) = d

(

x3 − y3

4
, 0

)

=
x3 − y3

4
=

x3 − u3 + u3 − y3

4

≤
x3 − u3

4
+

v3 − y3

4
≤

1

4
A.
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Case 3. x < y and u ≥ v. Then

d (F (x, y) , F (u, v)) = d

(

0,
u3 − v3

4

)

=
u3 − v3

4
=

u3 − x3 + x3 − v3

4

=
x3 − v3

4
−

x3 − u3

4
≤

x3 − v3

4
+

x3 − u3

4

≤
x3 − u3

4
+

y3 − v3

4
≤

1

4
A.

Case 4. x < y and u < v. Then

d (F (x, y) , F (u, v)) = d (0, 0) = 0 ≤
1

4
A

In all above cases, we have

ϕ (d (F (x, y) , F (u, v))) ≤
1

4
A =

1

2
A−

1

4
A

≤ max {d (gx, gu) , d (gy, gv)}−
d (gx, gu) + d (gy, gv)

4
= ϕ (max {d (gx, gu) , d (gy, gv)})− θ (d (gx, gu) , d (gy, gv))

Hence all the conditions of Theorem 2.1 are satisfied and it is seen that (0, 0) is a
coupled coincidence point of F and g in X .

Example 3.2. Let (X, d,#), F and g be defined as in Example 2.1. Then

(i) X is complete and X has the property
• if a non-decreasing sequence {xn} → x, then gxn # gx for all n,
• if a non-increasing sequence {yn} → y, then gy # gyn for all n.

(ii) F (X ×X) = {0, 1} ⊂ {0} ∪ [1/2, 1] = g(X)
(iii) g is continuous and g and F are O-compatible.
(iv) There exist x0 = 0, y0 = 1 such that gx0 # F (x0, y0) and gy0 & F (y0, x0).
(v) F has the mixed g-monotone property. Indeed, for every y ∈ X , let x1, x2 ∈ X

such that gx1 # gx2

• if gx1 = gx2 then x1, x2 = 0 or x1, x2 ∈ [1/2, 1] or x1, x2 ∈ (1, 3/2] or
x1, x2 ∈ (3/2, 2]. Thus, F (x1, y) = 0 = F (x2, y) if y ∈ {0} ∪ [1/2, 1] and
x1, x2 = 0 or x1, x2 ∈ [1/2, 1], otherwise F (x1, y) = 1 = F (x2, y).

• if gx1 ≺ gx2, then gx1 = 0 and gx2 = 1, i.e., x1 = 0 and x2 ∈ [1/2, 1].
Thus F (x1, y) = 0 = F (x2, y) if y ∈ {0} ∪ [1/2, 1] and F (x1, y) = 1 =
F (x2, y) if y ∈ (1, 2]

Therefore, F is g-non-decreasing in its first argument. Similarly, F is g-non-
increasing in its second argument.

(vi) For x, y, u, v ∈ X , if gx & gu and gy # gv then d(F (x, y), F (u, v)) = 0.
Indeed,

• if gx 0 gu and gy ≺ gv then y = u = 0 and x, v ∈ [1/2, 1]. Thus
d(F (x, y), F (u, v)) = d(0, 0) = 0.



118 NGUYEN V. CAN1, VASILE BERINDE2, NGUYEN V. LUONG3, AND NGUYEN X. THUAN4

• if gx = gu and gy ≺ gv then y = 0 and v ∈ [1/2, 1]. Thus if x =
u = 0 or x, u ∈ [1/2, 1] then d(F (x, y), F (u, v)) = d(0, 0) = 0, otherwise
d(F (x, y), F (u, v) = d(1, 1) = 0. Similarly, if gx 0 gu and gy = gv then
d(F (x, y), F (u, v)) = 0.

• if gx = gu and gy = gv then both x, u are in one of the sets {0},
[1/2, 1], (1, 3/2] or (3/2, 2] and both y, v are also in one of the sets {0},
[1/2, 1], (1, 3/2] or (3/2, 2]. Thus d(F (x, y), F (u, v)) = d(0, 0) = 0 if
x = u = 0 or x, u ∈ [1/2, 1] and y = v = 0 or y, v ∈ [1/2, 1], otherwise,
d(F (x, y), F (u, v)) = d(1, 1) = 0

Therefore, all the conditions of Theorem 2.1 are satisfied with φ(t) = t and θ(t1, t2) =
max{t1, t2}/2. Applying Theorem 2.1, we conclude that F and g have a coupled coin-
cidence point. Note that, we cannot apply the result of Choudhury and Kundu [3], the
result of Choudhury, Metiya and Kundu [4] as well as the result of Lakshmikantham
and Ćirić [9] to the mappings in this example.
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