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ON EMBEDDINGS, TRACES AND MULTIPLIERS IN HARMONIC
FUNCTION SPACES

MILOŠ ARSENOVIĆ AND ROMI F. SHAMOYAN

Abstract. This paper is devoted to certain applications of classical Whitney de-
composition of the upper half space Rn+1

+ to various problems in harmonic function
spaces in the upper half space. We obtain sharp new assertions on embeddings,
distances and traces for various spaces of harmonic functions. New sharp theorems
on multipliers for harmonic function spaces in the unit ball are also presented.

1. Introduction, preliminaries and auxiliary results

The role of Whitney decomposition of an open set Ω ⊂ Rn in Analysis is well known,

it has many applications, for example in the theory of singular integral operators,

see [8] and [18]. The aim of this work is to present new applications of Whitney

decomposition of the upper half space. In the first section we introduce notations we

use in this paper and collect various auxiliary results. The second section is devoted

to embedding theorems for spaces of harmonic functions in the upper half space. The

third section contains results on trace problems and distance estimates and in the

last one we turn from the upper half space to the unit ball B in Rn and characterize

multipliers between certain spaces of harmonic functions on B. Most of our results

rely on Lemma 1.1, which provides a Whitney type decomposition of the upper half

space, and Lemma 1.2.

Key words and phrases. Harmonic functions, distances, traces, embedding theorems, multipliers,
Whitney decomposition.
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We set R
n+1
+ = {(x, t) : x ∈ Rn, t > 0} ⊂ Rn+1. For z = (x, t) ∈ R

n+1
+ we set

z = (x,−t). We denote the points in R
n+1
+ usually by z = (x, t) or w = (y, s). The

Lebegue measure is denoted by dm(z) = dz = dxdt or dm(w) = dw = dyds. We

also use standard weighted measures dmλ(z) = tλdxdt, λ ∈ R. Given two positive

quantities A and B, we write A $ B if there are two constants c, C > 0 such that

cA ≤ B ≤ CA.

The space of all harmonic functions in a domain Ω is denoted by h(Ω). The space

of all functions f(z1, . . . , zm) on (Rn+1
+ )m which are harmonic in each of variables

z1, . . . , zm is denoted by h̃((Rn+1
+ )m). Weighted harmonic Bergman spaces on R

n+1
+

are defined, for 0 < p < ∞ and λ > −1, by

Ap
λ = Ap

λ(R
n+1
+ ) =







f ∈ h(Rn+1
+ ) : ‖f‖Ap

λ
=

(

∫

R
n+1
+

|f(z)|pdmλ(z)

)1/p

< ∞







,

these spaces are complete metric spaces and for 1 ≤ p < ∞ they are Banach spaces.

For −→s = (s1, . . . , sm), where sj > −1, and 0 < p < ∞ we set

Ap
−→s

= h((Rn+1
+ )m) ∩ Lp((Rn+1

+ )m, dms1(z1) . . . dmsm(zm)).

For p = ∞ and sj > 0, 1 ≤ j ≤ m, we define A∞
−→s as the space of all f ∈ h((Rn+1

+ )m)

such that

‖f‖A∞
−→s
= sup

zj∈R
n+1
+

|f(z1, . . . , zm)|t
s1
1 . . . tsmm < ∞,

form = 1 and s1 = α we use simpler notation A∞
α . Again, the spaces Ap

−→s are complete

metric spaces, for 1 ≤ p ≤ ∞ they are Banach spaces.

Finally, if X is a space of functions harmonic on (Rn+1
+ )m, then we set h̃X =

X ∩ h̃((Rn+1
+ )m).

Definition 1.1. For a function f : (Rn+1
+ )m → C we define Trf : Rn+1

+ → C by

Trf(z) = f(z, . . . , z).

Let X ⊂ h(Rn+1
+ )m. The trace of X is Trace X = {Tr f : f ∈ X}.

The problem of characterizing traces of various analytic spaces received much at-

tention, for some results and further references see [15][16][17].

We denote the Poisson kernel for Rn+1
+ by P (x, t), i.e.

P (x, t) = cn
t

(|x|2 + t2)
n+1
2

, x ∈ R
n, t > 0.
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For l ∈ N0 a Bergman kernel Ql(z, w), where z = (x, t) ∈ R
n+1
+ and w = (y, s) ∈ R

n+1
+ ,

is defined by

Ql(z, w) =
(−2)l+1

l!

∂l+1

∂tl+1
P (x− y, t+ s).

The following theorem from [7] gives a Bergman type integral representation for

functions in Ap
α spaces and justifies the above terminology.

Theorem 1.1. Let 0 < p < ∞ and α > −1. If 0 < p ≤ 1 and l ≥ α+n+1
p − (n + 1)

or 1 ≤ p < ∞ and l > α+1
p − 1, then

(1.1) f(z) =

∫

R
n+1
+

f(w)Ql(z, w)s
ldyds, f ∈ Ap

α, z ∈ R
n+1
+ .

The following elementary estimate of this kernel is contained in [7]

(1.2) |Ql(z, w)| ≤ C|z − w|−(l+n+1), z = (x, t), w = (y, s) ∈ R
n+1
+ .

Next we formulate two lemmata which are at the core of proofs of some of our main

results. The first one provides the above mentioned Whitney type decomposition of

the upper half space. The second one is based on subharmonic behavior of |f |p for

harmonic f and 0 < p < ∞.

Lemma 1.1 ([18]). There exists a collection {∆k}∞k=1 of closed cubes in R
n+1
+ with

sides parallel to coordinate axes such that

1◦. ∪∞
k=1∆k = R

n+1
+ and diam∆k $ dist(∆k, ∂R

n+1
+ ).

2◦. The interiors of the cubes ∆k are pairwise disjoint.

3◦. If ∆∗
k is a cube with the same center as ∆k, but enlarged 5/4 times, then

the collection {∆∗
k}

∞
k=1 forms a finitely overlapping covering of Rn+1

+ , i.e. there is a

constant C = Cn such that
∑

k χ∆∗

k
≤ C.

Lemma 1.2 ([6]). Let ∆k and ∆∗
k be the cubes from the previous lemma and let

(ξk, ηk) be the center of ∆k. Then, for 0 < p < ∞ and α > 0, we have

(1.3) ηαp−1
k max

∆k

|f |p ≤
C

|∆∗
k|

∫

∆∗

k

tαp−1|f(x, t)|pdxdt, f ∈ h(Rn+1
+ ), k ≥ 1.

We will also use the following three technical estimates.

Lemma 1.3 ([18]). Let ∆k and ∆∗
k are as in the previous lemma, let ζk = (ξk, ηk) be

the center of the cube ∆k. Then we have

(1.4) mλ(∆k) $ ηn+1+λ
k $ mλ(∆

∗
k), λ ∈ R,
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(1.5) |w − z| $ |ζk − z|, w ∈ ∆∗
k, z ∈ R

n+1
+ ,

(1.6) t $ ηk, (x, t) ∈ ∆∗
k.

Lemma 1.4 ([1]). For δ > −1, γ > n+ 1 + δ and m ∈ N0 we have
∫

R
n+1
+

|Qm(z, w)|
γ

n+m+1sδdyds ≤ Ctδ−γ+n+1, z = (x, t) ∈ R
n+1
+ .

Lemma 1.5 ([10]). If α > −1 and n+ α < 2γ − 1, then

(1.7)

∫

R
n+1
+

tαdz

|z − w|2γ
≤ Csα+n+1−2γ, w = (y, s) ∈ R

n+1
+ .

2. Embedding theorems in spaces of harmonic functions in the upper

half space

In this section we provide, using Whitney decomposition, various extensions of

some embedding results from [9]. In particular, we prove embedding theorems for

Bp,q
α and F p,q

α mixed norm classes.

Our first result relates Carleson type condition to the trace operator, as a conse-

quence we obtain a generalization of an embedding result from [9].

Theorem 2.1. Let 0 < p < ∞, s1, . . . , sm > −1 and let µ be a positive Borel measure

on R
n+1
+ . Then the following conditions are equivalent.

1◦. The measure µ satisfies a Carleson type condition

(2.1)
µ(∆k)

|∆k|
m+ 1

n+1

∑m
j=1 sj

≤ C, k ≥ 1.

2◦. Trace Ap
−→s

↪→ Lp(Rn+1
+ , dµ), i.e. the trace operator is bounded from Ap

−→s
to

Lp(Rn+1
+ , dµ).

3◦. Trace hAp
−→s

↪→ Lp(Rn+1
+ , dµ), i.e. the trace operator is bounded from hAp

−→s
to

Lp(Rn+1
+ , dµ).

4◦. If fj ∈ Ap
sj for 1 ≤ j ≤ m, then

(2.2)

∫

R
n+1
+

m
∏

j=1

|fj(z)|
pdµ(z) ≤ C

m
∏

j=1

‖fj‖
p
Ap

sj

.



ON EMBEDDINGS, TRACES... 49

Proof. Let us show 1◦ ⇒ 2◦. Let us choose f ∈ Ap
−→s . We use partition of Rn+1

+ into

cubes ∆k centered at ζk = (ξk, ηk). Using Lemma 1.1 we obtain

‖Tr f‖pLp(µ) =

∫

R
n+1
+

|f(z, . . . , z)|pdµ(z) =
∞
∑

k=1

∫

∆k

|f(z, . . . , z)|pdµ(z)

≤
∞
∑

k=1

µ(∆k) sup
z∈∆k

|f(z, . . . , z)|p.

Let us fix z ∈ ∆k. Let Bk(z) ⊂ (Rn+1
+ )m be the ball centered at (z, . . . , z) with radius

equal 1/8 of the side length of ∆k. Since |Bk| $ |∆k|m $ ηm(n+1)
k and Bk(z) ⊂ (∆∗

k)
m

we obtain, using Lemma 1.2

|f(z, . . . , z)|p ≤
C

|Bk(z)|

∫

Bk(z)

|f(w1, . . . , wm)|
pdm(w1) . . . dm(wm)

≤
C

ηm(n+1)
k

∫

(∆∗

k)
m

|f(w1, . . . , wm)|
pdm(w1) . . . dm(wm).

Since the last estimate is valid for every z ∈ ∆k we obtain, using (1.6)

‖Tr f‖pLp(µ) ≤ C
∞
∑

k=1

µ(∆k)

ηm(n+1)
k

∫

(∆∗

k)
m

|f(w1, . . . , wm)|
pdm(w1) . . . dm(wm)

≤ C
∞
∑

k=1

µ(∆k)

η
m(n+1)+

∑m
j=1 sj

k

∫

(∆∗

k)
m

|f(w1, . . . , wm)|
pdms1(w1) . . . dmsm(wm).

Now condition (2.1) and finite overlapping property of ∆∗
k combine to give

‖Tr f‖pLp(µ) ≤ C
∞
∑

k=1

∫

(∆∗

k)
m

|f(w1, . . . , wm)|
pdms1(w1) . . . dmsm(wm)

≤ C

∫

(Rn+1
+ )m

|f(w1, . . . , wm)|
pdms1(w1) . . . dmsm(wm),

which implies 2◦.

The implication 2◦ ⇒ 3◦ being trivial, we turn to 3◦ ⇒ 4◦. Let us choose fj ∈ Ap
sj ,

j = 1, . . . , m. Using Fubini’s theorem we see that f(z1, . . . , zm) = f1(z1) · · · fm(zm) is

in hAp
−→s with ‖f‖Ap

−→s
=
∏m

j=1 ‖fj‖Ap
sj

and (2.2) follows immediately from 3◦.

Finally, we prove 4◦ ⇒ 1◦. Let us fix a cube ∆k and set fj(z) = |z − ζk|
−n+1 for

1 ≤ j ≤ m. Clearly fj ∈ Ap
sj and, by Lemma 1.5, ‖fj‖

p
Ap

sj

≤ Cη
sj+n+1−p(n−1)
k . Since

∏m
j=1 fj(z) = |z − ζk|

m(1−n) we have, using Lemma 1.3,

µ(∆k)η
mp(1−n)
k ≤ C‖

m
∏

j=1

fj‖
p
Lp(µ) ≤ C

m
∏

j=1

‖fj‖
p
Ap

sj

≤ Cη
mp(1−n)+m(n+1)+

∑m
j=1 sj

k ,
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which gives (2.1) and completes the proof. !

Corollary 2.1. Assume 0 < p < ∞, α > −1 and let µ be a positive Borel measure

on R
n+1
+ . Then the following conditions are equivalent.

1◦. The measure µ satisfies a Carleson type condition

(2.3)
µ(∆k)

|∆k|
1+ α

n+1
≤ C, k ≥ 1.

2◦. Ap
α is continuously embedded into Lp(Rn+1

+ , dµ).

The above result was proved, in the special case α = 0 and 1 ≤ p < ∞, in [9].

For a measurable function f(x, t) defined on R
n+1
+ we define

Mp(f, t) = ‖f(·, t)‖Lp(dx), t > 0, 0 < p ≤ ∞.

The following spaces of harmonic functions were considered, for 0 < p < ∞, 0 <

q < ∞ and α > 0, in [4]

Bp,q
α =

{

f ∈ h(Rn+1
+ ) : ‖f‖Bp,q

α
=

(
∫ ∞

0

Mp
q (f, t)t

αp−1dt

)1/p

< ∞

}

,

in fact one can consider these spaces for p = ∞ or q = ∞, see [4]. These spaces have

obvious (quasi)-norms, with respect to these (quasi)-norms they are Banach spaces

or complete metric spaces.

Let us set, for w ∈ R
n+1
+ and l ≥ 0,

(2.4) fw,l(z) =
∂l

∂tl
1

|z − w|n−1
.

This function is harmonic in R
n+1
+ and, for every l ≥ 0, we have

(2.5) fw,l(z) =
1

|z − w|n−1+l
Pl((t+ s)|z − w|−1),

where Pl is a polynomial with integer coefficients of degree l. The last statement

follows by induction on l using identity ∂t|z−w| = (t+ s)|z−w|−1. In particular we

have

(2.6) |fw,l(z)| ≤ C|z − w|−n−l+1, z, w ∈ R
n+1
+ .

Using (2.6) one derives estimate

(2.7) Mp(fw,l, t) ≤ C(t+ s)
n
p
−(n−1+l), p(n− 1 + l) > n,
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and this estimate yields

(2.8) ‖fw,l‖Bq,p
α

≤ Cs
n
p
−(n−1+l)+α, p(n− 1 + l) > n+ αp.

Next, for w ∈ R
n+1
+ , let Qw be the closed cube centered at w with sides parallel to the

coordinate axes and with side length equal to s. Since the polynomial Pl has finitely

many zeroes it is easy to show that there are constants δ > 0 and c > 0 such that

(2.9) |Tw| = c|Qw|, Tw = {z ∈ Qw : |Pl((t+ s)|z − w|−1)| > δ}.

Lemma 2.1. Let µ be a positive Borel measure on R
n+1
+ and let θ > 0. Assume

µ(Tw) ≤ Csθ for every w = (y, s) ∈ R
n+1
+ . Then we have µ(Qw) ≤ Csθ for every

w = (y, s) ∈ R
n+1
+ .

Proof. Let us set T o
w = Tw ∩Qo

w, where Qo
w denotes the interior of the cube Qw. We

note that all pairs (Qw, T o
w) are similar to each other, either by translation by a vector

parallel to the boundary ∂Rn+1
+ or by a homothecy with center on ∂Rn+1

+ . Let us fix

a cube Qw. Using noted similarity it is easy to conclude that Qw ⊂ ∪{T o
w′ : w′ =

(y′, s′) ∈ R
n+1
+ , s/2 ≤ s′ ≤ 2s}. Now we have a finite subcover Qw ⊂ ∪N

j=1T
o
wj

where

N does not depend on w and therefore

µ(Qw) ≤
N
∑

j=1

µ(T o
wj
) ≤ C

N
∑

j=1

sθj ≤ Csθ.

!

The above discussion is a preparation for the following embedding theorem for Bp,q
α

spaces. Its analogue for analytic functions in the unit ball appeared in [14].

Theorem 2.2. Let 0 < p ≤ q < ∞, α > 0 and let µ be a Borel measure on R
n+1
+ .

Then the following conditions are equivalent.

1◦. The measure µ satisfies the following condition:

(2.10) µ(∆k) ≤ Cη
n q

p
+αq

k , k ≥ 1,

where (ξk, ηk) is the center of ∆k.

2◦. We have continuous embedding Bq,p
α ↪→ Lq(Rn+1

+ , dµ).

Proof. Let us assume (2.10) is satisfied. We have Bq,p
α ↪→ Bq,q

α+n
p
−n

q
= Aq

θ, where

θ = αq + q
pn − n − 1, for the above embedding see Lemma 5 from [4]. Now we use

Corollary 2.1 to obtain Aq
θ ↪→ Lq(Rn+1

+ , dµ).
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Now assume 2◦ is satisfied. Let us choose l ∈ N0 such that p(n− 1 + l) > n + αp.

Then, using (2.9), (2.8) and (2.5), we have

(2.11) µ(Tw)s
(1−n−l)q ≤ C‖fw,l‖

q
Lq(dµ) ≤ C‖fw,l‖

q
Bq,p

α
≤ Csq[

n
p
−(n−1+l)q]+αq,

which gives µ(Tw) ≤ Csq
n
p
+αq. However, Lemma 2.1 shows that the last estimate is

equivalent to (2.10). !

In the next theorem we consider harmonic Triebel-Lizorkin spaces F p,q
α consisting

of all functions f ∈ h(Rn+1
+ ) satisfying

‖f‖p
F p,q
α

=

∫

Rn

(
∫ ∞

0

|f(x, t)|qtαq−1dt

)p/q

dx < ∞.

These spaces are complete metric spaces, for min(p, q) ≥ 1 these spaces are Banach

spaces.

The following theorem has a counterpart for analytic functions in the unit ball in

Cn, see [14].

Theorem 2.3. Let 0 < τ ≤ p < ∞. Assume µ is a Borel measure on R
n+1
+ . Then

the following conditions are equivalent.

1◦. The measure µ satisfies a Carleson type condition

(2.12) µ(∆k) ≤ Cηn+αp
k , k ≥ 1,

where (ξk, ηk) is the center of ∆k.

2◦. The space F p,τ
α is continuously embedded into Lp(Rn+1

+ , µ).

Proof. The sufficiency of condition (2.12) follows from the following chain of embed-

dings

F p,τ
α ↪→ F p,p

α = Bp,p
α = Ap

θ ↪→ Lp(Rn+1, dµ), θ = αp− 1,

for the first one see [4] and for the last one see Corollary 2.1.

Next we prove necessity of the condition (2.12). Let us choose l ∈ N0 satisfying

p(n − 1 + l) > n + αp and as test functions consider fw,l from (2.4). Our condition

on l ensures that fw,l ∈ F p,τ
α , w = (y, s) ∈ R

n+1
+ . Clearly the norm ‖fw,l‖F p,τ

α
depends

on s but not on y, hence we can assume w = (0, s), s > 0. A simultaneous change of

variables x = λξ, t = λr where ξ ∈ Rn, r > 0, gives the following identity

‖f(0,s),l‖
p
F p,τ
α

= λn−p(n−1+l−α)‖f(0,s/λ),l‖
p
F p,τ
α

, λ > 0, s > 0.
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This identity gives the following norm evaluation

‖fw,l‖
p
F p,τ
α

= ‖f(0,s),l‖
p
F p,τ
α

= ‖f(0,1),l‖
p
F p,τ
α

sn−p(n−1+l−α), w = (y, s) ∈ R
n+1
+ .

Therefore, we obtain the following inequalities, analogous to (2.11)

µ(Tw)s
(1−n−l)p ≤ C‖fw,l‖

p
Lp(dµ) ≤ C‖fw,l‖

p
F p,τ
α

≤ Cs−p(n−1+l−α)+n.

This gives µ(Tw) ≤ Csn+αp which is, by Lemma 2.1, equivalent to (2.12). !

Remark 2.1. We note that in Theorems 2.2 and 2.3 it is tempting to use |z −w|−n+1

as test functions, they have useful property of being positive. But this works only for

certain values of α and p. The problem is that this test function is not always in the

required space. If it happens to be, the proof can be simplified. But in general we

take derivatives and improve ”size” of our test functions. However, taking derivatives

in principle destroys positivity, the functions fw,l can have zeros and this makes proofs

technically more complicated and explains the need for Lemma 2.1.

3. Traces and distances in spaces of harmonic functions in the upper

half space

In this section, using Whitney decomposition, we present complete analogues of pre-

viously known results on traces in analytic classes in polydisk and polyball [15][16][17]

and complement our previous results on distances [2][1].

Theorem 3.1. Let s1, . . . , sm > −1 and set λ =
∑m

j=1 sj. Then

(3.1) A∞
λ ⊂ Trace h̃A∞

−→s .

Conversely, if f ∈ A∞
−→s and if Tr f is harmonic, then Tr f ∈ A∞

λ .

Proof. The second part of theorem follows from definitions. Let g ∈ A∞
λ . We choose

a non negative integer k > λ− 1 and define

f(z1, . . . , zm) =

∫

R
n+1
+

Qk

(

z1 + · · ·+ zm
m

,w

)

g(w)skdw, zj ∈ R
n+1
+ .

It is immediate from Theorem 1.1 that Tr f = g. Since the kernel Qk is harmonic

in the variables z1, . . . , zm it is clear that f ∈ h̃((Rn+1
+ )m). Using classical inequality
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between arithmetic and geometric mean we obtain

|f(z1, . . . , zm)| ≤ ‖g‖A∞

λ

∫

R
n+1
+

∣

∣

∣

∣

Qk

(

z1 + · · ·+ zm
m

,w

)
∣

∣

∣

∣

sk−λdw

≤ C‖g‖A∞

λ

∫ ∞

0

sk−λ

∫

Rn

dy

| z1+···+zm
m − w|k+n+1

ds

≤ C‖g‖A∞

λ

∫ ∞

0

sk−λds

( t1+···+tm
m + s)k+1

≤ C‖g‖A∞

λ

∫ ∞

0

sk−
∑m

j=1 sj

(

∏m
j=1(tj + s)

)(k+1)/m
ds

= C‖g‖A∞

λ

∫ ∞

0

m
∏

j=1

sk/m−sj

(tj + s)
k+1
m

ds.

Next we use Hölder’s inequality for m functions to obtain

|f(z1, . . . , zm)| ≤ C

(

m
∏

j=1

∫ ∞

0

sk−msj

(tj + s)k+1
ds

)1/m

≤ Ct−s1
1 . . . t−sm

m ,

and the proof is finished. !

For any two m-tuples (m ≥ 1) of reals a = (a1, . . . , am) and b = (b1, . . . , bm) we

define an integral operator

(3.2) (Sa,bf)(z1, . . . , zm) =
m
∏

j=1

t
aj
j

∫

R
n+1
+

f(w)s−n−1+
∑m

j=1 bj

∏m
j=1 |zj − w|aj+bj

dw, zj ∈ R
n+1
+ .

This operator is used in norm estimates of extension operators used in the proofs

of trace theorems, it is well defined for f(w) ∈ L1(Rn+1
+ , s−n−1−

∑m
j=1 bj ). A unit ball

analogue of this operator was used in [15], see also [21].

The following proposition is well known in the case m = 1, its analogues for m > 1

in polydiscs and polyballs were proved in [15], [16]. The proof relies on Lemma 1.2

and on Whitney decomposition, i.e. on Lemma 1.1.

Proposition 3.1. Let 0 < p ≤ 1, a, b ∈ Rm and s1, . . . , sm > −1 satisfy paj > −1−sj

and pbj > n+1+ sj for j = 1, . . . , m. Set λ = (m− 1)(n+1)+
∑m

j=1 sj. Then there

is a constant C > 0 such that

(3.3)

∫

R
n+1
+

· · ·

∫

R
n+1
+

|(Sa,bf)(z1, . . . , zm)|
pdms1(z1) . . . dmsm(zm) ≤ C‖f‖pAp

λ

for every f ∈ Ap
λ(R

n+1
+ ).
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Proof. We use again family ∆k of cubes from Lemma 1.1. We have, using (1.5),

|(Sa,bf)(z1, . . . , zm)| =
m
∏

j=1

t
aj
j

∞
∑

k=1

∫

∆k

f(w)s−n−1+
∑m

j=1 bj

∏m
j=1 |zj − w|aj+bj

dw

≤ C
∞
∑

k=1

m
∏

j=1

t
aj
j

|zj − ζk|
aj+bj

∫

∆k

|f(w)|s−n−1+
∑m

j=1 bjdm(w)

≤ C
∞
∑

k=1

m
∏

j=1

t
aj
j η

∑m
j=1 bj

k

|zj − ζk|
aj+bj

sup
∆k

|f |.

Since 0 < p ≤ 1 this gives

(3.4) |(Sa,bf)(z1, . . . , zm)|
p ≤ C

∞
∑

k=1

m
∏

j=1

t
paj
j η

p
∑m

j=1 bj
k

|zj − ζk|
paj+pbj

sup
∆k

|f |p.

We integrate this inequality with respect to dms1(z1) . . . dmsm(zm) and obtain, using

Lemma 1.5 and Lemma 1.2

M =

∫

R
n+1
+

· · ·

∫

R
n+1
+

|(Sa,bf)(z1, . . . , zm)|
pdms1(z1) . . . dmsm(zm)

≤ C
∞
∑

k=1

η
m(n+1)+

∑m
j=1 sj

k sup
∆k

|f |p ≤ C
∞
∑

k=1

∫

∆∗

k

|f(w)|pdmλ(w).

This is sufficient due to finite overlapping property of the family ∆∗
k. !

Lemma 3.1. Let 0 < p < ∞ and s1, . . . , sm > −1. Set λ = (m−1)(n+1)+
∑m

j=1 sj.

Then there is a constant C > 0 such that for all f ∈ h((Rn+1
+ )m) we have

∫

R
n+1
+

|f(z, . . . , z)|pdmλ(z)

≤ C

∫

R
n+1
+

· · ·

∫

R
n+1
+

|f(z1, . . . , zm)|
pdms1(z1) . . . dmsm(zm).(3.5)

Proof. This is an immediate consequence of Theorem 2.1, indeed it is easy to check

that measure dmλ satisfies condition (2.1). !

Remark 3.1. We note that the trace results from [15] for harmonic spaces in the unit

ball are true under one additional condition: namely that the trace of a considered

harmonic function on a product of unit balls is harmonic on the unit ball.

The theorem below was announced, without proof, in [15] for 0 < p < ∞. Analo-

gous results in the case of the unit ball were proved in [15]. Let us note that in the
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case n = 1 a precise subclass for which we have characterization of traces was found

in [17], this is precisely the space of all pluriharmonic functions in the unit poly disk.

Theorem 3.2. Let 0 < p ≤ 1, s1, . . . , sm > −1 and set λ = (m−1)(n+1)+
∑m

j=1 sj.

Then

(3.6) Ap
λ ⊂ Trace h̃Ap

−→s ⊂ Trace Ap
−→s ⊂ Lp(Rn+1

+ , dmλ).

In particular, if f ∈ Ap
−→s and if Tr f is harmonic, then Tr f ∈ Ap

λ.

Proof. The second inclusion in (3.6) is trivial and the last one follows from Lemma

3.1, which also establishes the last part of the theorem. It remains to prove Ap
λ ⊂

Trace h̃Ap
−→s . Let g ∈ Ap

λ and set

f(z1, . . . , zm) =

∫

R
n+1
+

Ql

(

z1 + · · ·+ zm
m

,w

)

g(w)sldw, zj ∈ R
n+1
+ ,

where l > λ−1 is an integer. As in the previous theorem, clearly f ∈ h̃((Rn+1
+ )m). In

order to simplify notation we set Z = z1 + · · ·+ zm. Now we have, using (1.6), (1.2)

and (1.5),

|f(z1, . . . , zm)| ≤
∞
∑

k=1

∫

∆k

|Ql(Z/m,w)| |g(w)|sldw

≤ C
∞
∑

k=1

ηlk

∫

∆k

|Ql(Z/m,w)|dw sup
∆k

|g|

≤ C
∞
∑

k=1

ηn+l+1
k

|Z/m− ζk|n+1+l
sup
∆k

|g|.

Since 0 < p ≤ 1 this estimate and Lemma 1.2 give

|f(z1, . . . , zm)|
p ≤ C

∞
∑

k=1

ηp(n+l+1)
k

|Z/m− ζk|p(n+1+l)
sup
∆k

|g|p

≤ C
∞
∑

k=1

ηp(n+l+1)−λ−n−1
k

|Z/m− ζk|p(n+1+l)
‖g‖pLp(∆∗

k,dmλ)
.

Now we set zj = (xj , tj), 1 ≤ j ≤ m and obtain

Ik(t1, . . . , tm) =

∫

Rn

· · ·

∫

Rn

dx1 . . . dxm
∣

∣

∣

(x1+···+xm,t1+···tm)
m − ζk

∣

∣

∣

p(n+l+1)

≤ C

(

t1 + · · ·+ tm
m

+ ηk

)−p(n+l+1)+mn

.
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Inequality between arithmetic and geometric mean and the above estimate imply

M =

∫

R
n+1
+

· · ·

∫

R
n+1
+

|f(z1, . . . , zm)|
pdms1(z1) . . . dmsm(zm)

≤ C
∞
∑

k=1

ηp(n+l+1)−λ−n−1
k

∫ ∞

0

· · ·

∫ ∞

0

ts11 . . . tsmm dt1 . . . dtm
(

t1+···tm
m + ηk

)p(n+l+1)−mn
‖g‖pLp(∆∗

k ,dmλ)

≤ C
∞
∑

k=1

ηp(n+l+1)−λ−n−1
k

m
∏

j=1

∫ ∞

0

t
sj
j dtj

(tj + ηk)
p(n+l+1)−mn

m

‖g‖pLp(∆∗

k,dmλ)

≤ C
∞
∑

k=1

‖g‖pLp(∆∗

k ,dmλ)
≤ C‖g‖Ap

λ

due to finite overlapping property of the family ∆∗
k. !

Remark 3.2. As already noted in [16], the above results on traces can be extended to

certain mixed norm spaces of harmonic functions.

We note that Ap
α is continuously embedded into A∞

α+n+1
p

, see [4]. Hence it is a

natural problem to look for estimates of distA∞

α+n+1
p

(f, Ap
α) for f ∈ A∞

α+n+1
p

. The case

1 < p < ∞ was treated in [1], the theorem below covers the remaining case 0 < p ≤ 1.

For ε > 0, λ > 0 and f ∈ h(Rn+1
+ ) we set

Vε,λ(f) = Vε,λ =
{

(x, t) ∈ R
n+1
+ : |f(x, t)|tλ ≥ ε

}

.

Theorem 3.3. Let 0 < p ≤ 1, α > −1, λ = α+n+1
p , m ∈ N0 and m > max(λ− 1, α

p ).

Set, for f ∈ A∞
α+n+1

p

,

(3.7) d1(f) = distA∞

α+n+1
p

(f, Ap
α),

(3.8) d2(f) = inf

{

ε > 0 :

∫

R
n+1
+

(

∫

Vε,λ

|Qm(z, w)|s
m−λdyds

)p

tαdxdt < ∞

}

.

Then d1(f) $ d2(f).

Proof. We begin with inequality d1(f) ≥ d2(f). Assume d1(f) < d2(f). Then there

are ε > ε1 > 0 and f1 ∈ Ap
α(R

n+1
+ ) such that ‖f − f1‖A∞

λ
≤ ε1 and

(3.9)

∫

R
n+1
+

(

∫

Vε,λ

|Qm(z, w)|s
m−λdyds

)p

tαdxdt = +∞.

Since ‖f − f1‖A∞

λ
≤ ε1 we have

(3.10) (ε− ε1)χVε,λ
(w)s−λ ≤ |f1(w)|, w = (y, s) ∈ R

n+1
+ .
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Combining (3.9) and (3.10) we obtain

+∞ =

∫

R
n+1
+

(

∫

R
n+1
+

χVε,λ
(w)|Qm(z, w)|s

m−λdyds

)p

tαdxdt

≤ C

∫

R
n+1
+

(

∫

R
n+1
+

|f1(w)Qm(z, w)|s
mdyds

)p

tαdxdt = M.

Our goal is to obtain a contradiction by showing that M is finite. We use cubes

∆k and ∆∗
k from Lemma 1.1 and Lemma 1.2, let ζk = (ξk, ηk) be the corresponding

centers. Using Lemma 1.3, Lemma 1.1 and assumption 0 < p ≤ 1 we obtain

I(z) =

(

∫

R
n+1
+

|f1(w)Qm(z, w)|s
mdyds

)p

=

(

∞
∑

k=1

∫

∆k

|f1(w)Qm(z, w)|s
mdyds

)p

≤ C

(

∞
∑

k=1

ηmk |∆k| max
w∈∆k

|f1(w)|max
w∈∆k

|Qm(z, w)|

)p

≤ C
∞
∑

k=1

ηmp
k |∆k|

p max
w∈∆k

|f1(w)|
p max
w∈∆k

|Qm(z, w)|
p.

Therefore, using Lemma 1.2, Lemma 1.3 and finite overlapping property of the family

∆∗
k we obtain

I(z) ≤ C
∞
∑

k=1

ηmp
k |∆k|

p|z − ζk|
−p(m+n+1)η1−αp

k

1

|∆∗
k|

∫

∆∗

k

sαp−1|f1(w)|
pdyds

≤ C
∞
∑

k=1

ηmp
k |∆k|

p−1

∫

∆∗

k

|f1(w)|pdyds

|z − w|p(m+n+1)

≤ C
∞
∑

k=1

∫

∆∗

k

|f1(w)|psmp+(n+1)(p−1)dyds

|z − w|p(m+n+1)

≤ C

∫

R
n+1
+

|f1(w)|psmp+(n+1)(p−1)dyds

|z − w|p(m+n+1)
.

This estimate, Lemma 1.5 with 2γ = p(m+ n+ 1) and Fubini’s theorem yield

M ≤ C

∫

R
n+1
+

(

∫

R
n+1
+

|f1(w)|psmp+(n+1)(p−1)dw

|z − w|p(m+n+1)

)

tαdz

= C

∫

R
n+1
+

|f1(w)|
psmp+(n+1)(p−1)

∫

R
n+1
+

tαdz

|z − w|p(m+n+1)
dw

≤ C

∫

R
n+1
+

|f1(w)|
psαdw < ∞,
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arriving at a contradiction. Therefore we proved d1(f) ≥ d2(f).

Next we prove d1(f) ≤ Cd2(f). We choose ε > 0 such that the integral appearing

in (3.8) is finite. Using Theorem 1.1 we obtain

f(z) =

∫

R
n+1
+ \Vε,λ

f(w)Qm(z, w)s
mdw +

∫

Vε,λ

f(w)Qm(z, w)s
mdw = f1(z) + f2(z).

Since the kernel Qm(z, w) is harmonic in the second variable both f1 and f2 are

harmonic in R
n+1
+ . Next, using Lemma 1.4 and definition of the set Vε,λ we obtain

(3.11) |f1(z)| ≤ ε

∫

R
n+1
+

|Qm(z, w)|s
m−λdw ≤ Cεt−λ, z = (x, t) ∈ R

n+1
+ ,

which gives ‖f1‖A∞

λ
≤ Cε. To complete the proof it suffices to show that f2 ∈ Ap

α.

Since |f(w)| ≤ ‖f‖A∞

λ
s−λ we have

‖f2‖Ap
α
≤ ‖f‖A∞

λ

∫

Rn+1

(

∫

Vε,λ

|Qm(z, w)|s
m−λdw

)p

tαdz ≤ C‖f‖A∞

λ
,

and the proof is complete. !

4. Multipliers on spaces of harmonic functions in the unit ball

In this section we prove new sharp theorems on multipliers in spaces of harmonic

functions in the unit ball B = {x ∈ Rn : |x| < 1}. This topic is fairly new, it was

initiated in [13] and pursued further in [1] and [3]. This section presents new results

in this direction. Even the case of the unit disc was not studied extensively, for some

results we refer to [12]. Of course, the topic of multipliers between analytic function

spaces is a vast subject.

We denote spherical harmonics of order k by Y (k)
j , 1 ≤ j ≤ dk, see [19] for details

on spherical harmonics. Let us recall, for reader’s convenience, needed definitions.

Definition 4.1. For a double indexed sequence of complex numbers

c = {cjk : k ≥ 0, 1 ≤ j ≤ dk}

and a harmonic function f(rx′) =
∑∞

k=0 r
k
∑dk

j=1 b
j
k(f)Y

(k)
j (x′) we define

(c ∗ f)(rx′) =
∞
∑

k=0

dk
∑

j=1

rkcjkb
j
k(f)Y

(k)
j (x′), rx′ ∈ B,



60 MILOŠ ARSENOVIĆ AND ROMI F. SHAMOYAN

if the series converges in B. Similarly we define convolution of f, g ∈ h(B) by

(f ∗ g)(rx′) =
∞
∑

k=0

dk
∑

j=1

rkbjk(f)b
j
k(g)Y

(k)
j (x′), rx′ ∈ B,

it is easily seen that f ∗ g is defined and harmonic in B.

Definition 4.2. Let X and Y be subspaces of h(B). We say that a double indexed

sequence c is a multiplier from X to Y if c ∗ f ∈ Y for every f ∈ X . The vector space

of all multipliers from X to Y is denoted by MH(X, Y ).

We are looking for sufficient and/or necessary condition for a double indexed se-

quence c to be in MH(X, Y ), for certain spaces X and Y of harmonic functions. We

associate to such a sequence c a harmonic function

(4.1) gc(x) = g(x) =
∑

k≥0

rk
dk
∑

j=1

cjkY
(k)
j (x′), x = rx′ ∈ B,

The conditions we are looking for are expressed in terms of fractional derivatives

of g = gc.

Definition 4.3. For t ∈ R\Z− and a harmonic function f(x) =
∑∞

k=0 r
kbk(f) ·Y k(x′)

on B we define a fractional derivative of order t of f by the following formula

(Λtf)(x) =
∞
∑

k=0

rk
Γ(k + n/2 + t)

Γ(k + n/2)Γ(t)
bk(f) · Y

k(x′), x = rx′ ∈ B.

It is easily seen that Λt maps h(B) into h(B).

We record the following formula

(4.2) (c ∗ f)(r2x′) =

∫

S

(gc ∗ Py′)(rx
′)f(ry′)dy′ =

∫

S

(gc ∗ Px′)(ry′)f(ry′)dy′

where Py′(x) = P (x, y′) = cn
1−|x|2

|x−y′|n is the Poisson kernel for the unit ball B, see [1]

for details and further references.

Next we recall definitions of some harmonic function spaces. For α > 0 we set

A∞
α = {f ∈ h(B) : ‖f‖A∞

α
= supx∈B(1− |x|2)α|f(x)| < ∞} and

Ap
α =

{

f ∈ h(B) : ‖f‖Ap
α
=

(
∫

B

|f(x)|p(1− |x|2)αdx

)1/p

< ∞

}

, 0 < p < ∞.

For 0 < p < ∞, 0 ≤ r < 1 and f ∈ h(B) we set

Mp(f, r) =

(
∫

S

|f(rx′)|pdx′

)1/p

,
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with the usual modification to cover the case p = ∞. The harmonic Hardy spaces are

defined by Hs = {f ∈ h(B) : sup0≤r<1Ms(f, r) < ∞}, 0 < s ≤ ∞. For 0 < p ≤ ∞,

0 < q ≤ ∞, α > 0 and f ∈ h(B) we consider mixed (quasi)-norms ‖f‖p,q,α defined by

(4.3) ‖f‖p,q,α =

(
∫ 1

0

Mq(f, r)
p(1− r2)αp−1rn−1dr

)1/p

, 0 < p < ∞,

and, for p = ∞, ‖f‖∞,q,α = sup0≤r<1(1 − r2)αMq(f, r). The corresponding mixed

norm spaces are

Bp,q
α (B) = Bp,q

α = {f ∈ h(B) : ‖f‖p,q,α < ∞}.

For details on these spaces we refer to [7], Chapter 7. In particular these spaces are

complete metric spaces and for min(p, q) ≥ 1 they are Banach spaces.

Our next result uses duality arguments. For M > −1, 0 < p < ∞ and α > −1 we

denote by D−MAp
α the space of all functions f ∈ h(B) such that

‖f‖p,M ;α =

(
∫

B

|ΛM+1f(x)|
p(1− |x|2)αdx

)1/p

< ∞.

It is immediate that each f ∈ D−MA1
M−β, M > β − 1, generates a continuous linear

functional on A∞
β by the following formula

Lf (g) =

∫

B

ΛM+1f(x)g(x)(1− |x|2)Mdx, g ∈ A∞
β .

Therefore, the above pairing gives an embedding D−MA1
M−β ↪→ (A∞

β )∗, M > β − 1,

which is used in the proof of the next theorem.

Theorem 4.1. Let 1 < s < ∞, β > 0 and let s′ be the exponent conjugate to s. Then

c ∈ MH(Hs, A∞
β ) if and only if the function g = gc satisfies the following condition

(4.4) Ns′(g) = sup
0≤ρ<1

sup
y′∈S

(1− ρ)β
(
∫

S

|(g ∗ Px′)(ρy′)|s
′

dx′

)1/s′

< ∞.

Proof. Assume c ∈ MH(Hs, A∞
β ), i.e. Mc : Hs → A∞

β and choose M > β − 1.

Then, using the above embedding, the adjoint operatorM∗
c maps D−MA1

M−β into Hs′.

Moreover, it is easy to verify that M∗
c acts as a multiplier operator from D−MA1

M−β

to Hs′ generated by the same double indexed sequence c. Next, using definition of

the space D−MA1
M−β we see that the double indexed sequence

c′ =

{

Γ(k + n/2)Γ(M + 1)

Γ(k + n/2 +M + 1)
ckj , k ≥ 0, 1 ≤ j ≤ dk

}
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acts as a multiplier from A1
M−β to Hs′. Set g′ = gc′, then we have g = ΛM+1g′. Since

A1
M−β = B1,1

M−β+1 we have c′ ∈ MH(B
1,1
M−β+1, H

s′) and Theorem 1 from [3] gives, with

m > M − β

sup
0≤ρ<1

sup
y′∈S

(1− ρ)−(M−β+1)+m+1

(
∫

S

|Λm+1(g
′ ∗ Px′)(ρy′)|s

′

dx′

)1/s′

< ∞.

But this implies

sup
0≤ρ<1

sup
y′∈S

(1− ρ)β+m+1

(
∫

S

|Λm+1(g ∗ Px′)(ρy′)|s
′

dx′

)1/s′

= C sup
0≤ρ<1

sup
y′∈S

(1− ρ)β+m+1

(
∫

S

|Λm+M+2(g
′ ∗ Px′)(ρy′)|s

′

dx′

)1/s′

≤ C sup
0≤ρ<1

sup
y′∈S

(1− ρ)β+m−M

(
∫

S

|Λm+1(g
′ ∗ Px′)(ρy′)|s

′

dx′

)1/s′

< ∞.

Since β > 0, the last estimate implies (4.4).

Now we assume c satisfies (4.4) and choose f ∈ Hs. Set h = Mcf . Then, using

(4.2), we have

|h(r2x′)| ≤

∫

S

|(g ∗ Px′)(ry′)f(ry′)|dy′ ≤ Ns′(g)(1− r)−βMs(f, r),

which means that (1− r)βM∞(h, r) ≤ C‖f‖Hs. !

For the case 0 < s ≤ 1 we refer reader to [3].

The next theorem deals with Bp,q
α spaces on the unit ball. For another results on

multipliers from Bp,q
α spaces we refer to [3].

Theorem 4.2. Let 1 < p < ∞, 1 ≤ q < ∞, α, β > 0 and let q′ be the exponent

conjugate to q. Assume m > max(α− β − 1, β − 1). Then c ∈ MH(Bp,q
α , A∞

β ) if and

only if the function g = gc satisfies the following condition

(4.5) Mq′(g) = sup
0≤ρ<1

sup
y′∈S

(1− ρ)m+1+β−α

(
∫

S

|Λm+1(g ∗ Px′)(ρy′)|q
′

dx′

)1/q′

< ∞.

Proof. For necessity of this condition we use a duality result (Bp,q
α )∗ ∼= Bp′,q′

α from

[20], see [3] for another application of this duality to multiplier problems. Since the

arguments are analogous to those in the proof of Theorem 4.1 we omit details.
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Now we prove sufficiency of the condition (4.5). Assume f ∈ B∞,q
α and assume c

satisfies (4.5). Set h = Mcf . Using (4.2) we obtain

|Λm+1h(r
2x′)| ≤

∫

S

|Λm+1(g ∗ Px′)(ry′)f(ry′)|dy′

≤ Mq′(g)(1− r)α−β−m−1Mq(f, r),

which gives

(1− r)m+1+βM∞(Λm+1h, r) ≤ C(1− r)αMq(f, r) ≤ C‖f‖B∞,q
α

.

Hence (1− r)βM∞(h, r) ≤ C‖f‖B∞,q
α

, see [7] Chapter 7. Therefore Mc : B∞,q
α → A∞

β .

Since we have embedding Bp,q
α ↪→ B∞,q

α for all 0 < p ≤ ∞, see [7], the proof is

completed. !

Finally we state two results on multipliers in spaces where definitions of norms

involve derivatives, proofs will appear elsewhere. Let ∇f = (∂f/∂x1, . . . , ∂f/∂xn)

denote the gradient of a smooth function f on Ω ⊂ Rn. We set

DAp
α = {f ∈ h(B) : ‖f‖DAp

α
= |f(0)|+ ‖∇f‖Ap

α
< ∞}, α > 0, 0 < p < ∞,

DBp,q
α = {f ∈ h(B) : ‖f‖DBp,q

α
= |f(0)|+ ‖∇f‖Bp,q

α
< ∞}, α > 0, 0 < p, q < ∞.

Theorem 4.3. Let 1 < s < ∞, α, β > 0, 0 < p ≤ 1 and let s′ be the exponent

conjugate to s. Then c ∈ MH(DBp,1
α , Hs

β) if and only if the function g = gc satisfies

the following condition

(4.6) Ls′(g) = sup
0≤ρ<1

sup
y′∈S

(1− ρ)m+2+β−α

(
∫

S

|Λm+1(g ∗ Px′)(ρy′)|s
′

dx′

)1/s′

< ∞.

Since DAp
α = DBp,p

α+1
p

, see [7], taking p = 1 we obtain the following corollary.

Corollary 4.1. Let 1 < s < ∞, α, β > 0 and let s′ be the exponent conjugate to

s. Then c ∈ MH(DA1
α, H

s
β) if and only if the function g = gc satisfies the following

condition

(4.7) Ks′(g) = sup
0≤ρ<1

sup
y′∈S

(1− ρ)m+1+β−α

(
∫

S

|Λm+1(g ∗ Px′)(ρy′)|s
′

dx′

)1/s′

< ∞.
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[2] M. Arsenović, R. F. Shamoyan, On some extremal problems in spaces of harmonic functions,
Romanian Soc. for Appl. and Industrial Math. 7 (2011), No. 1, 13-24.
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