
Kragujevac Journal of Mathematics

Volume 37(1) (2013), Pages 33–43.

SUBMANIFOLD THEORY AND PARALLEL TRANSPORT

FRANKI DILLEN1, JOHAN FASTENAKELS, STEFAN HAESEN2, JOERI VAN DER VEKEN1,
AND LEOPOLD VERSTRAELEN1

Dedicated to Professor Bang–Yen Chen at the occasion of his 70th anniversary

Abstract. A geometrical interpretation of semi-parallel submanifolds is presented
in terms of parallel transport of the second fundamental form around an infinites-
imal coordinate parallelogram. Further, a new scalar curvature invariant of the
immersion is introduced. Isotropy of this invariant at every point means that the
submanifold is pseudo-parallel.

1. Introduction

The most symmetric of all Riemannian manifolds (M, g) are the real space forms,
i.e. the manifolds with constant sectional curvature K = c. Their (0,4)-Riemann-

Christo↵el curvature tensor R is given by R = c
2g ^ g, (^ denoting the Nomizu-

Kulkarni product of (0,2)-tensors), and they were characterized by Riemann, Helm-
holtz and Lie as the Riemannian spaces which satisfy the axiom of free mobility. The
class of the real space forms can be obtained by applying projective transformations

to the locally flat spaces, i.e. to the manifolds (M, g) for which K = 0, or equivalently,
for which R = 0. The Riemann-Christo↵el curvature tensor according to Schouten
[15] essentially measures the change of direction when a vector v 2 TpM is parallelly
transported all around infinitesimal coordinate parallelograms to a vector v? 2 TpM .
The locally flat spaces are characterized by the fact that such parallel transport leaves
v invariant, i.e. such that v? = v for all such coordinate parallelograms cornered at p.

In the 1920ties, Cartan introduced the locally symmetric spaces, i.e. the Riemannian
manifolds (M, g) for which R is parallel, rR = 0, where r denotes the Levi-Civita

connection of the metric [2]. As shown by Cartan, the locally symmetric spaces are
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the Riemannian manifolds for which locally all geodesic reflections or symmetries �p

in all points p of M actually are isometries, and, as shown by Levy [13], they can
also be characterized as the Riemannian manifolds for which the sectional curvature

K(p, ⇡) remains invariant under parallel transport along any curve in M, i.e. for which
K(p?, ⇡?) = K(p, ⇡), where ⇡? ⇢ Tp?M is the plane obtained by moving ⇡ parallelly
from p to p? along any curve � joining p and p?. The study of the locally symmetric
spaces was independently started by Shirokov [16][17].

Every locally symmetric space satisfies R · R = 0, whereby the first R stands
for the curvature operator of (M, g), i.e. for tangent vector fields X and Y one has
R(X, Y ) = rXrY � rYrX � r[X,Y ], which acts as a derivation on the second R
which stands for the Riemann-Christo↵el curvature tensor. The converse however
does not hold in general. The Riemannian manifolds for which R · R = 0 are called
semi-symmetric spaces and were classified by Szabó [18][19]. They can be character-
ized by the geometric property that, up to second order, K(p, ⇡?) = K(p, ⇡), whereby
⇡ is any tangent 2-plane to M at p and ⇡? is the tangent 2-plane to M at p obtained
by parallelly transporting ⇡ all around any infinitesimal coordinate parallelogram cor-
nered at p. For short, their sectional curvatures are invariant under parallel transport

around infinitesimal coordinate parallelograms [10].
In the 1980ties, Deszcz [6][7][11] introduced the pseudo-symmetric spaces as follows.

Let Q(g,R) ⌘ ^g · R be the Tachibana tensor of a Riemannian manifold (M, g), i.e.
the (0, 6)-tensor ^g ·R where the metrical endomorphism (X^gY ) : TM ! TM given
by (X ^g Y )Z = g(Y, Z)X � g(X,Z)Y acts as a derivation on the (0, 4)-curvature
tensor R, thenM is said to be pseudo-symmetric if the (0, 6)-tensors R·R and Q(g,R)
are proportional, i.e. if R ·R = LQ(g, R) for some scalar valued function L : M ! R.
This function is called the double sectional curvature or the sectional curvature of

Deszcz [10]. The class of pseudo-symmetric manifolds can be obtained by applying
projective transformations to the semi-symmetric manifolds, i.e. to the manifolds for
which L = 0 [4][20].

In analogy with the above intrinsic symmetries of Riemannian manifolds concern-
ing their Riemann-Christo↵el curvature tensor R, table 1 lists the corresponding
extrinsic symmetries of submanifolds concerning their second fundamental form.

Table 1. Comparison between intrinsic and extrinsic symmetries

Intrinsic Extrinsic
Flat space R = 0 Totally geodesic h = 0
Space form R = c

2 g ^ g Totally umbilical h = gH
Locally symmetric rR = 0 Parallel rh = 0
Semi-symmetric R ·R = 0 Semi-parallel R · h = 0
Pseudo-symmetric R ·R = LQ(g, R) Pseudo-parallel R · h = LQ(g, h)

In section 2 we will recall some basic definitions and notations. In section 3 we will
give some geometrical interpretations of totally geodesic and parallel submanifolds in
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terms of parallel transport. Further, we will present a new geometrical interpretation
of semi-parallel submanifolds. Every semi-parallel submanifold satisfies the condi-
tion R?(X, Y )H = 0. However, the converse is not true in general. We call spaces
which satisfy this condition H-semi-parallel because for these spaces the mean cur-
vature vector H is invariant under parallel transport around infinitesimal coordinate
parallelograms.

In section 4 we introduce a new scalar curvature invariant of submanifolds which
depends on the point, a tangent direction and a plane, as well as on a normal direction
to the submanifold. If this invariant is isotropic, i.e. only depends on the point, the
submanifold turns out to be pseudo-parallel at this point.

2. Notation

Let (Mn, g) and (fMn+m, eg) be two Riemannian manifolds with dimension n and
n+m, and with respective Levi-Civita connections r and er. Assume that (M, g) is

isometrically immersed in (fM, eg). We can decompose the covariant derivative er of
two tangent vector fields X and Y to M , i.e. X, Y 2 X(M), into its tangential and
normal part as follows,

(2.1) erXY = rXY + h(X, Y ),

where h(X, Y ) is normal to M and h is called the second fundamental form. Equation
(2.1) is known as the Gauss formula. A submanifold is called totally geodesic if h = 0.

We can further define the normal connection r? through the decomposition of the
covariant derivative in fM of a normal vector field ⇠ of M in fM with respect to a
tangent vector field X 2 X(M) into its tangential and normal parts,

(2.2) erX⇠ = �A⇠X +r?
X⇠,

where A⇠ is called the shape operator with respect to ⇠. The shape operator is related
to the second fundamental form by g(A⇠X, Y ) = eg(h(X, Y ), ⇠). Equation (2.2) is
known as the Weingarten formula. A point p of M is called umbilic if h(u, v) =
g(u, v)H, for all u, v 2 TpM . H is called the mean curvature vector field, or the

Bompiani vector field, of the submanifold M in fM .
The Bortolotti - Van der Waerden connection r of M in fM acting on h gives,

(rh)(X, Y, Z) := r?
X

⇣
h(Y, Z)

⌘
� h(rXY, Z)� h(Y,rXZ),

with X, Y, Z 2 X(M).

3. A geometrical interpretation of semi-parallel submanifolds

Let � : I ✓ R ! M be a curve in a Riemannian manifold M . Choose points
p = �(t0) and p? = �(t?0) on the curve and a vector v 2 TpM . Let V be the unique
vector field along � such that

V (t0) = v, r�0V = 0,
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where r is the Levi-Civita connection of (M, g). Then we call v? = V (t?0) the parallel
transport of v from p to p? along the curve � with respect to the connection r.

If M is immersed in another Riemannian manifold fM , we can also transport the
vector v parallel along � in fM with respect to the Levi-Civita connection er of (fM, eg).
The following result can be proven straightforwardly.

Proposition 3.1. A submanifold M in

fM is totally geodesic if and only if the parallel

transports of tangent vectors to M with respect to the connections r on M and

er on

fM are the same.

Given a curve � in M and two vectors u, v 2 TpM , with �(t0) = p, we have the
vector h(u, v) in the normal space of M at the point p, T?

p M . At the point �(t?0) = p?,
we can consider two normal vectors. First, the parallel translate of h(u, v) by r?,
which we denote by h(u, v)??, and secondly, the vector h(u?, v?) obtained after first
parallelly translating u and v by r, and then applying h.
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Figure 1. A geometrical interpretation of parallel submanifolds.

A submanifold is called parallel or extrinsically symmetric when rh = 0.

Proposition 3.2. A submanifold M in

fM is parallel if and only if the parallel trans-

port of the second fundamental form with respect to r?
along any curve in M is equal

to the second fundamental form acting on the parallel transport of two tangent vectors

to M along the same curve.

Proof. Let p 2 M and � : I ⇢ R ! M a curve in M with �(t0) = p. Consider two
vector fields U, V 2 X(�) so that Up = u and Vp = v, and r�0U = r�0V = 0.

Assume that M is parallel, i.e. rh = 0. Because the parallel transport defines a
unique vector field it is su�cient to prove that r?

�0h(U, V ) = 0. In fact,

r?
�0h(U, V ) = h(r�0U, V ) + h(U,r�0V ) = 0.
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Conversely, let us assume that h(u, v)?? = h(u?, v?). Then,

(rh)(�0(t0), u, v) |p =
⇣
r?

�0h(U, V )� h(r�0U, V )� h(U,r�0V )
⌘
|p

= r?
�0h(U, V ) |p= 0.

Because p, u, v and � can be chosen arbitrary this implies rh = 0. ⇤

The parallel submanifolds were introduced in [8][9] as an extrinsic analogue of
the symmetric Riemannian manifolds introduced by Cartan. In a space of constant
curvature, they are the submanifolds which are invariant with respect to the reflections
in the normal space. For example, the only surfaces in E3 which are parallel are the
open parts of planes, spheres and round cylinders [9][14]. Remark that every extrinsic
symmetric submanifold in a space form is also an intrinsically symmetric manifold in
the sense of Cartan.

If we are given an infinitesimal coordinate parallelogram cornered in p, with tan-
gents x and y in M , the parallel translate of a tangent vector v 2 TpM around the
whole parallelogram with respect to r, is given by

v? = v �
⇥
R(x, y)v

⇤
�x�y +O>2(�x,�y),

while the parallel translate of a normal vector ⇠ with r? is given by

⇠?? = ⇠ �
⇥
R?(x, y)⇠

⇤
�x�y +O>2(�x,�y).

The normal curvature tensor R? is defined by R?(u, v)⇠ :=
⇣
r?

ur?
v � r?

v r?
u �

r?
[u,v]

⌘
⇠, for all u, v 2 TpM . Just as the Riemann-Christo↵el curvature tensor R can

be geometrically interpreted as measuring the second order di↵erence in the direction
of a vector after parallel transport around an infinitesimal coordinate parallelogram
(see [15]), the normal curvature tensor R? can be analogously interpreted as mea-
suring the second order di↵erence in the direction of a normal vector after parallel
transport with the normal connection r? around an infinitesimal coordinate paral-
lelogram in the submanifold.

We can then consider the second fundamental form after parallel transport of u
and v around the parallelogram,

h(u?, v?) = h(u, v)�
h
h
⇣
R(x, y)u, v

⌘
+ h

⇣
u,R(x, y)v

⌘i
�x�y +O>2(�x,�y),

and the parallel translate of the second fundamental form itself around the parallel-
ogram with r?,

h(u, v)?? = h(u, v)�
h
R?(x, y)h(u, v)

i
�x�y +O>2(�x,�y).

Subtracting both expressions gives

h(u?, v?)� h(u, v)?? = (R · h)(u, v; x, y)�x�y +O>2(�x,�y),
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where

(R · h)(U, V ;X, Y ) = (R(X, Y ) · h)(U, V )

:= R?(X, Y )h(U, V )� h(R(X, Y )U, V )� h(U,R(X, Y )V ),

with X, Y, U, V 2 X(M).
A submanifold is called semi-parallel when R · h = 0 [5].

Proposition 3.3. A submanifold is semi-parallel if and only if, for all p 2 M , the

normal vectors h(u, v)?? and h(u?, v?) coincide for all u, v 2 TpM and for every

coordinate parallelogram in M , up to second order.

Remark that the results in Proposition 3.1 and 3.2 are exact results, while the
interpretation in Proposition 3.3 only holds up to second order.

In [5] it was shown that a semi-parallel submanifold of the Euclidean space En is
intrinsically semi-symmetric.

4. A new scalar invariant and pseudo-parallel submanifolds

Probably the most simple (0,4)-tensor acting on tangent vectors which has the
same symmetry properties as R · h, is given by

Q(g, h)(U, V ;X, Y ) = �((X ^ Y ) · h)(U, V ) = h((X ^ Y )U, V ) + h(U, (X ^ Y )V ),

with X, Y, U, V 2 X(M). The wedge product ^ between two vector fields X, Y 2
X(M) is defined as

(X ^ Y )U = g(U,X)Y � g(U, Y )X,

for all U 2 X(M).

Proposition 4.1. A submanifoldM in

fM is totally umbilical if and only if Q(g, h) = 0.

Proof. Assume that Q(g, h) = 0. In particular, if X, Y 2 X(M) are orthonormal
vectors,

Q(g, h)(X, Y ;X, Y ) = h(Y, Y )� h(X,X) = 0.

Moreover, it holds that

Q(g, h)(X,X;X, Y ) = 2h(X, Y ) = 0,

and hence M is totally umbilical. The other direction is trivial. ⇤

We can give the following geometrical interpretation of the vector Q(g, h)(u, v; x, y).
Let u, v, x, y 2 TpM and assume that {x, y} are orthonormal. We extend these
vectors to an orthonormal basis {x, y, e3, . . . , en} of TpM . Both vectors u and v can
be decomposed with respect to this basis. Consider the vectors bu and bv which are
obtained after a rotation of the components of u and v in the plane spanned by
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the basis vectors x and y about an infinitesimal angle ", while keeping the other
components fixed. Up to first order in ", these vectors read

bu = u+ " {g(u, x)y � g(u, y)x}+O("2)

= u+ " (x ^ y)u+O("2),

and analogously for bv. The second fundamental form applied to these two vectors
gives

h(bu, bv) = h(u, v) + " {h((x ^ y)u, v) + h(u, (x ^ y)v)}+O("2)

= h(u, v) + "Q(g, h)(u, v; x, y) +O("2).

If we compare our interpretation of Q(g, h) with R · h we find the following. The
tensor R ·h measures the first order di↵erence in direction of two second fundamental
forms obtained after parallel transport of, first two vectors around an infinitesimal
coordinate parallelogram, and secondly, the parallel transport of the second funda-
mental form itself around the parallelogram. The vector Q(g, h)(u, v; x, y) on the
other hand measures the first order di↵erence in direction of the second fundamental
form with the second fundamental form obtained after rotating the vectors in a par-
ticular plane. Notice that this is a movement in p, while R · h measures a di↵erence
in direction after a movement away from p.

It seems therefore natural to consider Q(g, h) as some kind of normalization of R ·h.
Using this idea we can define a new invariant of the immersion as follows.

Definition 4.1. Let f : M ! fM be an isometric immersion. At p 2 M consider a
tangent direction d, spanned by a vector u 2 TpM , a tangent plane ⇡ = span{x, y} in
TpM and a normal direction ⇠ 2 T?

p M . The direction d, plane ⇡ and normal direction
⇠ are said to be fundamentally independent if eg(Q(g, h)(u, u; x, y), ⇠) 6= 0.

Definition 4.2. Let p 2 M and consider a fundamentally independent tangent di-
rection d, spanned by a vector u 2 TpM , tangent plane ⇡ = span{x, y} in TpM and
normal direction ⇠ 2 T?

p M . We can then define the scalar L⇠(p, d, ⇡) as

L⇠(p, d, ⇡) =
eg
�
(R · h)(u, u; x, y), ⇠

�

eg (Q(g, h)(u, u; x, y), ⇠)
.

Note that this definition is independent of the choice of basis of ⇡, and of the
vectors u and ⇠ which span the tangent and normal directions, respectively.

Theorem 4.1. Let f : M ! fM be an isometric immersion and p 2 U ⇢ M , whereby

U is the set of points where Q(g, h) is not identically zero. If the function L is isotropic

in p, i.e. L⇠(p, d, ⇡) = L(p), for all tangent directions d, tangent planes ⇡ and normal

directions ⇠ 2 T?
p M , then

(4.1) R · h = L(p)Q(g, h) at p 2 U.
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Proof. At the point p 2 U, define the tensor

S := R · h� L(p)Q(g, h).

It holds that S(u, u; x, y) = 0, for all u, x, y 2 TpM . Using the symmetries of the
tensor S it follows that S(u, v; x, y) = 0, for all u, v, x, y 2 TpM . ⇤

Definition 4.3. Let f : M ! fM be an isometric immersion. A point p 2 U is called
pseudo-parallel if (4.1) holds at p. A submanifold M is called pseudo-parallel if every
point of M is pseudo-parallel.

From the Gauss equation it follows that a hypersurface in a space with constant
curvature c is pseudo-parallel if and only if the shape operator A has at most two

distinct eigenvalues � and µ [1]. If � 6= µ, then L = �µ+ c.
The concept of pseudo-parallel submanifolds is the extrinsic analogue of pseudo-

symmetric manifolds. Moreover, if a manifold M can be L-pseudo-parallel immersed
in a space form, then M itself is intrinsically L-pseudo-symmetric [1][21].

Proposition 4.2. Let f : M ! fM be an isometric immersion, p 2 U, ⇡ =
span{x, y} ⇢ TpM and ⇠ 2 T?

p M . If L⇠(p, d, ⇡) = L⇠(p, ⇡), for all tangent direc-

tions d, then

eg
⇣
R?(x, y)H, ⇠

⌘
= 0.

Proof. We have that

eg
⇣
(R · h)(u, u; x, y)� L⇠(p, ⇡)Q(g, h)(u, u; x, y), ⇠

⌘
= 0,

for all u 2 TpM . Let {e1, . . . , en} be the orthonormal basis of TpM which diagonalizes
A⇠. Then

(4.2)
nX

i=1

eg
⇣
(R · h)(ei, ei; x, y), ⇠

⌘
� L⇠(p, ⇡)

nX

i=1

eg
⇣
Q(g, h)(ei, ei; x, y), ⇠

⌘
= 0.

The last term becomes

eg
⇣
Q(g, h)(ei, ei; x, y), ⇠

⌘
= 2, eg

⇣
h((x ^ y)ei, ei), ⇠

⌘

= 2 eg
⇣
A⇠ei, (x ^ y)ei

⌘

= 2�⇠i eg
⇣
ei, (x ^ y)ei

⌘
= 0.
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The first term in (4.2) reads
nX

i=1

eg
⇣
(R · h)(ei, ei; x, y), ⇠

⌘
=

nX

i=1

eg
⇣
R?(x, y)h(ei, ei), ⇠

⌘
� 2

nX

i=1

eg
⇣
h(R(x, y)ei, ei), ⇠

⌘

= n eg
⇣
R?(x, y)H, ⇠

⌘
� 2

nX

i=1

�⇠i eg
⇣
ei, R(x, y)ei

⌘

= n eg
⇣
R?(x, y)H, ⇠

⌘
.

Hence, eg
⇣
R?(x, y)H, ⇠

⌘
= 0. ⇤

Corollary 4.1. Let f : M ! fM be a pseudo-parallel immersion, then, for every

X, Y 2 X(M), there holds that R?(X, Y )H = 0.

In view of the previous result we introduce the following class of submanifolds.

Definition 4.4. Let f : M ! fM be a n-dimensional Riemannian submanifold of
fM and denote by H the mean curvature vector. M is called H-semi-parallel if
R?(X, Y )H = 0, for all X, Y 2 X(M).

From the previous remarks it is obvious that H-semi-parallel submanifolds can be
geometrically understood as those submanifolds for which the mean curvature vector
H, up to second order, remains invariant after parallel transport with r? around an
infinitesimal coordinate parallelogram.

Let us recall that a submanifold is pseudo-umbilical if the shape operator associated
with H is a scalar multiple of the identity [3].

Theorem 4.2. Let M be a H-semi-parallel surface in a Riemannian space form

fM2+m(c). Then, M is either minimal, pseudo-umbilical or has trivial normal con-

nection, i.e. R? = 0.

Proof. The Ricci equation in this case reads

eg(R?(X, Y )⇠, ⌘) = eg([A⇠, A⌘]X, Y ),

with X, Y 2 X(M) and ⇠, ⌘ 2 X?(M). Let {⇠1, . . . , ⇠m} be an orthonormal frame in
the normal bundle T?M . If H 6= 0, assume ⇠1 =

H
kHk and choose a tangent orthonor-

mal frame {e1, e2} so that A⇠1ei = ↵iei, i = 1, 2. Because M is H-semi-parallel we
have that eg(R?(X, Y )⇠1, ⇠a) = 0, for all ⇠a, a = 2, . . . ,m. Hence [A⇠1 , A⇠a ] = 0, for all
⇠a, a = 2, . . . ,m. If we write

A⇠a =

✓
(�a)11 (�a)12
(�a)12 (�a)22

◆
,

we obtain the relations (�a)12(↵1 � ↵2) = 0, for all a = 2, . . . ,m. Either ↵1 = ↵2 and
thus M is pseudo-umbilical, or (�a)12 = 0, 8a and thus R? = 0. ⇤

This result corrects Theorem 5 of [12].
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Proposition 4.3. Let f : M ! fM(c) be an n-dimensional submanifold of a real space

form

fM(c). If the first normal subspace has maximal dimension at a point p 2 M ,

i.e. dim{h(u, v) | u, v 2 TpM} = n(n+1)
2 , and M is H-semi-parallel it follows that M

is pseudo-umbilical at p.

Proof. Because M is H-semi-parallel, it follows from the Ricci equation that AH

commutes with every A⇠, ⇠ 2 X?(M). Choose an orthonormal basis for TpM . Because
the first normal subspace has maximal dimension, the shape operators span the space
of all symmetric matrices. Hence, since AH commutes with every shape operator, it
commutes with every symmetric matrix. Thus we find that AH must be a multiple
of the identity. ⇤

The following corollaries show that the pseudo-parallel submanifolds are a proper
subset of the H-semi-parallel submanifolds (see also [1]).

Corollary 4.2. Every minimal surface with non-vanishing normal connection in a

4-dimensional space form, for which there exists points where the ellipse of curvature

is not a circle, is H-semi-parallel but not pseudo-parallel.

Corollary 4.3. Every non-isotropic, pseudo-umbilical surface with non-vanishing

normal connection in a space form, is H-semi-parallel but not pseudo-parallel.
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