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Abstract. We show that for δ(2) Chen ideal submanifolds in Euclidean spaces the
(intrinsic) Ricci principal directions and the (extrinsic) Casorati principal directions
coincide.

1. δ(2) Chen ideal submanifolds of Euclidean spaces

Let Mn be an n–dimensional Riemannian submanifold of an (n+m)–dimensional
Euclidean spaceEn+m, (n ≥ 2, m ≥ 1) and let g,∇ and g̃, ∇̃ be the Riemannian metric
and the corresponding Levi–Civita connection on Mn and on En+m, respectively.
Tangent vector fields on Mn will be written as X, Y, . . . and normal vector fields on
Mn in En+m will be written as ξ, η, . . . . The formulae of Gauss and Weingarten,
concerning the decomposition of the vector fields ∇̃XY and ∇̃Xξ, respectively, into
their tangential and normal components along Mn in En+m, are given by ∇̃XY =
∇XY + h(X, Y ) and ∇̃Xξ = −Aξ(X) + ∇⊥

Xξ, respectively, whereby h is the second
fundamental form and Aξ is the shape operator orWeingarten map ofMn with respect
to the normal vector field ξ, such that g̃(h(X, Y ), ξ) = g(Aξ(X), Y ), and ∇⊥ is the
connection in the normal bundle. The mean curvature vector field $H is defined by
$H = 1

n
tr h and its length ‖ $H‖ = H is the (extrinsic) mean curvature of Mn in

En+m. A submanifold Mn in En+m is totally geodesic when h = 0, totally umbilical
when h = g $H, minimal when H = 0 and pseudo–umbilical when $H is an umbilical

Key words and phrases. δ(2) Chen ideal submanifolds, Casorati curvature, Ricci principal direc-
tions, Casorati principal directions.

2010 Mathematics Subject Classification. Primary: 53B20, 53B25, 53A07; Secondary: 53C42 .
Received: March 10, 2013.

25
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normal direction. Let {E1, . . . , En, ξ1, . . . , ξm} be any adapted orthonormal local frame
field on the submanifold Mn in En+m, denoted for short also as {Ei, ξα}, whereby
i ∈ {1, 2, . . . , n} and α ∈ {1, 2, . . . , m}. By the equation of Gauss, the (0, 4) Riemann–
Christoffel curvature tensor of a submanifoldMn in En+m is given by R(X, Y, Z,W ) =
g̃(h(Y, Z), h(X,W ))− g̃(h(X,Z), h(Y,W )). The (0, 2) Ricci curvature tensor of Mn

is defined by S(X, Y ) =
∑

i R(X,Ei, Ei, Y ) and the metrically corresponding (1, 1)
tensor or Ricci operator will also be denoted by S: g(S(X), Y ) = S(X, Y ). Since S
is symmetric there exists on Mn an orthonormal set of eigenvector fields R1, . . . , Rn

which determine the (intrinsic) Ricci principal directions of the Riemannian manifold
Mn, and the corresponding eigenfunctions Ric1, . . . , Ricn are the Ricci curvatures
of Mn:S(Ri) = Rici Ri. A Riemannian manifold Mn is an Einstein space when
S = Ric g, or still when all Ricci curvatures are equal Ric1 = · · · = Ricn = Ric,
Mn is a quasi–Einstein space when it has a Ricci curvature of multiplicity ≥ n − 1
and Mn is a 2–quasi–Einstein space when it has a Ricci curvature of multiplicity
≥ n − 2. The scalar curvature of a Riemannian manifold Mn is defined by τ =
∑

i<j K(Ei∧Ej) whereby K(Ei∧Ej) = R(Ei, Ej , Ej, Ei) is the sectional curvature for
the plane section π = Ei∧Ej , (i '= j). By the equation of Ricci, the normal curvature
tensor of a submanifold Mn in En+m is given by R⊥(X, Y, ξ, η) = g([Aξ, Aη](X), Y ),
whereby [Aξ, Aη] = AξAη − AηAξ, which, as already observed by Cartan [1], implies
that the normal connection is flat or trivial if and only if all shape operators Aξ are
simultaneously diagonalisable.

The function infK : Mn → R is defined by (infK)(p) = inf{K(p, π) |π is a plane
section of Tp(Mn)}. In [2], B.-Y. Chen introduced the δ(2)–curvature as δ(2) =
τ − infK, which clearly is a Riemannian scalar invariant of the manifold (Mn, g).
Later B.-Y. Chen introduced many further new scalar Riemannian invariants, to-
gether with δ(2) called his delta–curvatures δ(n1, n2, . . . , nk); (cfr. [3][4][5][6]). And,
for all submanifolds Mn of Euclidean spaces En+m, or of arbitrary Riemannian ambi-
ent spaces M̃n+m for that matter, B.-Y. Chen established optimal pointwise inequal-
ities between these intrinsic delta–curvatures of Mn and the squared mean curvature
H2, and some number determined by the curvature of the ambient space M̃n+m,
which is zero for Euclidean spaces. Such inequalities can be considered as imposing
definite lower bounds, basically dictated by these delta–curvatures, to the extrinsic
squared mean curvature or surface tension H2 which results from the kind of shape
of the submanifold Mn in the ambient space M̃n+m. From this point of view, the
submanifolds Mn which actually do realise such lower bound for their surface tension
are called Chen ideal submanifolds.

For surfaces M2 in E3, the Euler inequality K ≤ H2, whereby K is the Gauss
curvature of M2 at once follows from the fact that K = k1k2 and H = 1

2
(k1 + k2),

whereby k1 and k2 are the principal curvatures ofM2 in E3, and, moreover, K = H2 if
and only if M2 is totally umbilical i.e. if k1 = k2, or still, by a Theorem of Meusnier,
if M2 is (part of) a plane E2 or of a round sphere S2 in E3. The inequalities of
Chen do generalise this Euler inequality for the submanifolds Mn in general ambient
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Riemannian manifolds M̃n+m, and, in particular, for ambient Euclidean spaces they
take the following form, (for more details, cfr. [6]).

Theorem A. For any submanifold Mn in En+m, δ(n1, . . . , nk) ≤ c(n1, . . . , nk).H2,
∀(n1, . . . , nk) ∈ S(n), and equality holds at a point p if and only if, with respect to
some suitable adapted orthonormal frame {Ei, ξα} around p along Mn in En+m, the
shape operators of Mn in En+m are given

Aα =













Aα
1 . . . 0
...

. . .
... 0

0 . . . Aα
k

0 µαI













,

whereby I is an identity matrix and Aα
1 , . . . , A

α
k are symmetric n1 × n1, . . . , nk × nk

matrices, respectively, for which trAα
1 = · · · = trAα

k = µα : Mn → R.

The next result is the special case of Theorem A for k = 1 and n1 = 2 [2].

Theorem B. For any submanifold Mn in En+m,

δ(2) ≤ {[n2(n− 2)]/[2(n− 1)]}.H2, (∗)

and equality holds at a point p of Mn if and only if, with respect to some suitable
adapted orthonormal frame {Ei, ξα} around p along Mn in En+m, the shape operators
of Mn in En+m are given by

Aα =





Aα
1 0

0 µαI



 ,

whereby I is an identity matrix and Aα
1 is a symmetric 2×2 matrix for which trAα

1 =
µα : Mn → R.

And, one may further specialise to an orthonormal frame {F1, . . . , Fn, η1, . . . , ηm}
such that η1 lies in the direction of $H and such that F1, . . . , Fn diagonalise A1, so
that Theorem B can also be formulated as follows.

Theorem C. For any submanifold Mn in En+m,

δ(2) ≤ {[n2(n− 2)]/[2(n− 1)]}.H2, (∗)

and equality holds at a point p if and only if, with respect to a suitable adapted or-
thonormal frame {Fi, ηα} around p along Mn in En+m, the shape operators of Mn in
En+m are given by
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A1 =













a 0 0 . . . 0
0 b 0 . . . 0
0 0 µ . . . 0
...

...
...

...
0 0 0 . . . µ













, Aγ =













cγ dγ 0 . . . 0
dγ −cγ 0 . . . 0
0 0 0 . . . 0
...

...
...

...
0 0 0 . . . 0













,

(γ ∈ {2, . . . , m}), whereby µ = a+ b, (and infK = ab−
∑

γ (c
2
γ + d2γ)).

Such frame {Fi, ηα} will be called an adapted Chen frame on δ(2) Chen ideal sub-
manifolds.

According to Theorems B and C it is clear that such ideal submanifolds Mn in
En+m in general admit two mutually orthogonal and complementary distinguished
(tangent) distributions: (i) the 2D distribution E1∧E2 = F1∧F2, which will be called
the distribution of the Chen planes and which is the 2D distribution on which the
Riemannian manifoldsMn point by point do attain their minimal sectional curvatures,
and (ii) the orthogonally complementary distribution E3 ∧ · · · ∧ En = F3 ∧ · · · ∧ Fn.
For a detailed description of the minimal δ(2) Chen ideal submanifolds referring to
[2], we recall that for the non–minimal such submanifolds η1 determines their mean
curvature vector field $H .

2. The Casorati and the Ricci principal directions
on δ(2) Chen ideal submanifolds

For any submanifold Mn in some ambient Riemannian manifold M̃n+m, the (1, 1)
tensor field AC =

∑

αA
2
α is called its Casorati operator and the Casorati curvature (as

such) of Mn in M̃n+m is defined by C = 1

n
tr AC = 1

n
‖h‖2. The Casorati operator be-

ing symmetric there exists on Mn an orthonormal set of eigenvector fields F1, . . . , Fn

which determine the extrinsic or Casorati principal directions of the submanifold Mn

in M̃n+m, and the corresponding eigenfunctions c1, . . . , cn (all ≥ 0), are the extrinsic
(tangential) principal curvatures or the (tangential) Casorati principal curvatures of
Mn in M̃n+m; AC(Fi) = ci Fi. For the geometrical meanings of these notions, which
essentially go back to Jordan and Casorati, see [7][8][9][10].

A hypersurface Mn in a Riemannian space M̃n+1 is called umbilical when its shape
operator is proportional to the identity, i.e. has an eigenvalue of multiplicity n, or,
still, when all its principal curvatures are equal. A hypersurface Mn in M̃n+1 is called
quasi–umbilical when its shape operator has an eigenvalue of multiplicity ≥ n−1, (see
e.g. [11]), and it is called 2–quasi–umbilical when its shape operator has an eigenvalue
of multiplicity ≥ n−2 ([12][13]). Similarly, a general submanifold Mn in some ambient
Riemannian space M̃n+m is called Casorati umbilical when its Casorati operator is
proportional to the identity, i.e. has an eigenvalue of multiplicity n, or, still, when all
its (tangential) Casorati principal curvatures are equal. A submanifold Mn in M̃n+m

is called Casorati quasi–umbilical when its Casorati operator has an eigenvalue of



RICCI AND CASORATI PRINCIPAL DIRECTIONS OF δ(2) CHEN IDEAL SUBMANIFOLDS 29

multiplicity ≥ n − 1, and it is called Casorati 2–quasi–umbilical when its Casorati
operator has an eigenvalue of multiplicity ≥ n− 2.

From Theorem C it follows that

A2
1 =













a2 0 0 . . . 0
0 b2 0 . . . 0
0 0 µ2 . . . 0
...

...
...

...
0 0 0 . . . µ2













,

A2
γ =













c2γ + d2γ 0 0 . . . 0
0 c2γ + d2γ 0 . . . 0
0 0 0 . . . 0
...

...
...

...
0 0 0 . . . 0













,

AC =















a2 +
∑

γ(c
2
γ + d2γ) 0 0 . . . 0

0 b2 +
∑

γ(c
2
γ + d2γ) 0 . . . 0

0 0 µ2 . . . 0
...

...
...

...
0 0 0 . . . µ2















.

This shows that for δ(2) Chen ideal submanifolds the eigendirections F1, F2, F3, . . . ,
Fn of the mean curvature vector field $H also are the eigendirections of the Casorati
operator. In particular, it follows from these expressions of the matrices A1 and AC

that for both of them the (n−2)D subspaces F3∧· · ·∧Fn are eigenspaces corresponding
to their common eigenvalue µ2 of multiplicity n− 2. And since S = nHA1 − AC , as
follows by contraction of the Gauss equation for any submanifold Mn in En+m, we
have the following.

Theorem 2.1.

(i) On all δ(2) Chen ideal submanifolds Mn in En+m the (extrinsic) principal
(tangential) Casorati directions and the (intrinsic) principal Ricci directions
do coincide.

(ii) Every generic such submanifold is Ricci and Casorati 2–quasi–umbilical,
whereby the corresponding common (n − 2)D eigenspaces are the orthogonal
complements of the Chen planes on which the Riemannian manifolds Mn re-
alise their minimal sectional curvatures.

Remark. Part (i) of this result had been stated already in [14]. Part (ii), as also
various other kinds of results, from e.g. [2] [15] and [16], could be reflected upon in
the light of some questions raised by Professor Berger (see e.g. [17]) concerning the
distribution of the 2D–planes on which Riemannian manifolds take extremal values.
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3. δ(2, 2, . . . , 2) Chen ideal submanifolds

The special case of B.-Y. Chen’s Theorem A for n1 = · · · = nk = 2 and for k ≥ 2
is the following.

Theorem D. For any submanifold Mn in En+m,

δ(2, 2, . . . , 2) ≤ {n2[(n− k)− 1]/[2(n− k)]}.H2, (∗∗)

and equality holds at a point p, if and only if, with respect to some suitable adapted
orthonormal frame {Ei, ξα} around p along Mn in En+m, the shape operators of Mn

in En+m are given by

Aα =



































bα1 cα1 0 . . . 0 0 0 0 . . . 0
cα1 dα1 0 . . . 0 0 0 0 . . . 0
0 0 . . . . . 0 0 0 . . . 0
...

...
...

...
...

...
...

...
0 0 . . . . . 0 0 0 . . . 0
0 0 0 . . . 0 bαk cαk 0 . . . 0
0 0 0 . . . 0 cαk dαk 0 . . . 0
0 0 0 . . . 0 0 0 µα . . . 0
...

...
...

...
...

...
...

...
0 0 0 . . . 0 0 0 0 . . . µα



































,

whereby bα1 + dα1 = · · · = bαk + dαk = µα : Mn → R.

The submanifolds Mn of En+m for which (∗∗) at all of their points actually is an
equality are called δ(2, 2, . . . , 2) Chen ideal submanifolds. And since the algebraic
considerations of the eigenvectors and eigenvalues of the matrices A %H and AC of such
submanifolds, just like in Section 2, essentially concern the 2× 2 blocks involved, we
also have the following.

Theorem 3.1. On all δ(2, 2, . . . , 2) Chen ideal submanifolds Mn in En+m the prin-
cipal Casorati directions and the principal Ricci directions do coincide.
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