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ON THE d2-SPLITTING GRAPH OF A GRAPH

N. R. SANTHI MAHESWARI 1 AND C. SEKAR 2

Abstract. For a positive integer d and a vertex v of a graph G, the dth degree
of v in G, denoted by dd(v), is defined as the number of vertices at a distance d
away from v. Hence d1(v) = d(v) and d2(v) means number of vertices at a distance
2 away from v. A graph G is said to be (2, k)-regular if d2(v) = k, for all v in G. In
this paper we define d2-splitting graph of a graph and we study some properties of
d2-splitting graph.

1. Introduction

Throughout this paper we consider only finite, simple and connected graphs. No-
tations and terminology that we do not define here can be found in [3, 2]. We denote
the graph G by (V (G), E(G)). The addition of two graphs G1 and G2 is a graph
G1 + G2 with V (G1 + G2) = V (G1) ∪ V (G2) and E(G1 + G2) = E(G1) ∪ E(G2) ∪
{uv/u ∈ V (G1), v ∈ V (G2)}. The degree of a vertex v is the number of edges incident
at v and we denote it by d(v). A graph G is regular if all its vertices have the same
degree. The set of all vertices at a distance one from v is denoted by N(v). Two
vertices u and v of G are said to be connected if there is a (u, v)-path in G. In a
connected graph G, the distance between two vertices u and v is the length of the
shortest (u, v)-path in G and is denoted by d(u, v). Consequently, we define the de-
gree of a vertex v as the number of vertices at a distance 1 from v. This observation
suggests a generalization of degree. That is, dd(v) is defined as the number of vertices
at a distance d from v. Hence d1(v) = d(v) and Nd(v) denote the set of all vertices
that are at a distance d away from v in a graph G. Hence N1(v) = N(v).

A graph G is said to be distance d-regular [1] if every vertex of G has the same
number of vertices at a distance d from it. If k ≥ 0 and if every vertex of G has
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exactly k number of vertices at a distance d from it, then we call this graph by (d, k)-
regular graph. That is, a graph G is said to be (d, k)-regular graph if dd(v) = k, for
all v in G. The (1, k)-regular graphs and regular graphs are the same. (d, k)-regular
graphs are natural extension of regular graphs. A graph G is said to be (2, k)-regular
if d2(v) = k, for all v in G, where d2(v) denotes number of vertices at a distance 2
from v.

Splitting graph S(G) was introduced by Sampath Kumar and Walikar [5]. For each
vertex v of a graph G, take a new vertex v′ and join v′ to all vertices of G adjacent
to v. The graph S(G) thus obtained is called the splitting graph of G.

In the similar way, degree splitting graph DS(G) was introduced by R. Ponraj and
S. Somasundaram [4]. Let G = (V, E) be a graph with V = S1 ∪ S2 ∪ · · · ∪ St ∪ T ,
where each Si is a set of vertices having at least two vertices and having the same
degree and T = V − ∪Si. The degree splitting graph of G denoted by DS(G) is
obtained from G by adding vertices w1, w2, . . . , wt and joining wi to each vertex of Si

(1 ≤ i ≤ t).

We define d2-splitting graph of G denoted by D2S(G) and we investigate some
properties of D2S(G).

2. d2-splitting graph

Definition 2.1. Let G be a graph with V (G) = V1 ∪ V2 ∪ V3 ∪ · · · ∪ Vw ∪W where
each Vi is a set having at least two vertices, all having the same d2 and W = V −∪Vi.
The d2-splitting graph of G denoted by D2S(G) is obtained from G by introducing
new vertices u1, u2, . . . , uw and joining ui to each vertex of Vi (1 ≤ i ≤ w).

Example 2.1.
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Figure 1.

Here, V1 = {2, 3, 4, 5}, W = {1}.
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Here, V1 = {1, 4}, V2 = {2, 3, 5},W = φ.

Observation 2.1. In a graph with more than one vertex, at least two vertices have the
same degree d2.

Observation 2.2. Trivial graph K1 is the only graph such that K1 = D2S(K1).

Observation 2.3. For any graph G 6= K1, G is a sub graph of D2S(G).

Observation 2.4. If G = KC
n , then D2S(G) = K1,n.

Definition 2.2. Consider Pn (n ≥ 6) and two new vertices u and v on either side of
Pn. Join the vertex v to first two vertices from the left and last two vertices of Pn

from the right. Join the vertex u to the remaining vertices of Pn in the middle. The
resulting graph is called Shipping graph and is denoted by SPn.

Example 2.2. For a path on 6 vertices, the shipping graph SP6 is shown in Figure 3.
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Figure 3.
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Observation 2.5. If G = Pn (n ≥ 6), then D2S(G) = SPn.

Observation 2.6. If G = Cn, then D2S(G) = Wn.

Observation 2.7. If G = W4, then D2S(G) = K5.

Observation 2.8. If G = Kn (n > 1), then D2S(G) = Kn+1.
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Observation 2.9. If G is a (2, k)-regular, then D2S(G) = G + K1.
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Figure 4.

Theorem 2.1. Let G be a graph with p vertices and q edges. If G(6= Kp) is (2, k)-
regular, then D2S(G) is not (2, k)-regular.

Proof. Let G be (2, k)-regular with k > 0, that is, d2(v) = k for all v ∈ V (G). Let
V (D2S(G) − V (G)) = {u}. Since u is adjacent to all the vertices of G, in D2S(G),
d2(u) = 0. That is, d2(u) 6= d2(v), for all v ∈ V (G). Hence D2S(G) is not (2, k)-
regular. ¤

Theorem 2.2. If G is a connected graph with at least one edge, then D2S(G) contains
a cycle.

Proof. Let G be a connected graph with |E(G)| ≥ 1.
Case 1. If G contains a cycle, then D2S(G) also contains a cycle.
Case 2. Suppose G contains no cycle. Since G is a connected graph with |E(G)| ≥ 1,
G contains more than one vertex. By Observation 2.1 G contains at least two vertices
having the same d2.

Without loss of generality, let x and y be two vertices in G such that d2(x) = d2(y).
By definition of D2S(G), it contains a vertex u such that u is adjacent with both x
and y.
Subcase 1. If x and y are adjacent, then u, x, y, u form a cycle in D2S(G).
Subcase 2. If x and y are not adjacent, then they are connected by a path
x = v1, v2, . . . , vn = y. Since G is connected, u, v1, . . . , vn, u is a cycle in D2S(G). ¤

Remark 2.1. If G is a disconnected graph with |E(G)| ≥ 1, then at least one compo-
nent of G has edge set, so by Theorem 2.2, D2S(G) contains a cycle.

Result 2.1. Let G be a bipartite graph with bipartition (V1, V2), where
V1 = {v1, v2, . . . , vm} and V2 = {v1

1, v
1
2, . . . , v

1
n}. If there is a pair of vertices vi and v1

j

such that the length of the vi - v1
j path is odd and d2(vi) = d2(v

1
j ), then D2S(G) is
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not bipartite. Also, if there is no pair of vertices vi and v1
j such that d2(vi) = d2(v

1
j ),

then D2S(G) is bipartite.

Theorem 2.3. D2S(Km,n) is a bipartite graph if and only if m 6= n.

Proof. Let V1 = {v1, v2, . . . , vm} and V2 = {v1
1, v

1
2, . . . , v

1
n} be the partition of V (Km,n).

Therefore d2(vi) = m− 1 for i = 1, 2, . . . , m and d2(v
1
j ) = n− 1 for j = 1, 2, . . . , n.

Suppose m 6= n. Then m − 1 6= n − 1. Therefore, for i = 1, 2, . . . , m and j =
1, 2, . . . , n, there is no pair vi and v1

j such that d2(vi) = d2(v
1
j ). Let V (D2S(Km,n))\

V (Km,n) = {u1, u2}. Let u1 be adjacent to every vertex in V2 and u2 be adjacent
to every vertex in V1. Clearly, (V1 ∪ {u1}, V2 ∪ {u2}) is a bipartition of D2S(Km,n).
Therefore, (D2S(Km,n)) is a bipartite graph when m 6= n.

Conversely, let D2S(Km,n) be a bipartite graph. Suppose m = n. Then m − 1 =
n−1, that is, d2(v) = m−1 for all v ∈ Km,n. Therefore, there exists a pair of adjacent
vertices vi and v1

j such that d2(vi) = d2(v
1
j ). By definition of D2S(Km,n), there exists

a vertex u which is adjacent to both vi and v1
j . Therefore, D2S(Km,n) will contain the

odd cycle u1viv
1
j u1. This implies that D2S(Km,n) is not a bipartite graph, which is a

contradiction. Hence m 6= n. ¤
Theorem 2.4. D2S(Kn,n) is a tripartite graph.

Proof. Let V1 = {v1, v2, . . . , vn} and V2 = {u1, u2, u3, . . . , un} are the partition of
V (Kn,n). Then d2(vi) = n−1 for i = 1, 2, . . . , n and d2(uj) = n−1 for j = 1, 2, . . . , n.
By definition of D2S(G), D2S(Kn,n) contains a vertex u such that u is adjacent to
all ui (i = 1, 2 . . . , n) and vj (j = 1, 2, . . . , n), that is, u is adjacent with all vertices
of Kn,n. D2S(Kn,n) is K1,n,n and hence tripartite. ¤
Result 2.2. For any graph G, ω(D2S(G)) ≤ ω(G), where ω(G) denotes the number
of components of G.

Proof. Case 1. If G is a connected graph, then D2S(G) is connected. Therefore,
ω(G) = 1 = ω(D2S(G)).
Case 2. If G is a disconnected graph then G has more than one component. Let
us assume that G has two components G1 and G2. Let x ∈ V (G1) and y ∈ V (G2)
such that d2(x) = d2(y). By definition of D2S(G), there exists a vertex u such that
u is adjacent to both x and y. Hence ω(D2S(G)) = 1 < ω(G). Suppose that either x
and y are in V (G1) or x and y are in V (G2). Then ω(D2S(G)) = 2 = ω(G). Hence
ω(D2S(G)) ≤ ω(G). ¤
Theorem 2.5. If G is an Eulerian graph, then D2S(G) is not an Eulerian graph.

Proof. Let G be an Eulerian graph. Since G is an Eulerian graph, each vertex in G
is of even degree. By Observation 2.1, G contains at least two vertices having the
same d2. Let x and y be two vertices in G such that d2(x) = d2(y). By definition of
D2S(G), there exits a vertex u which is adjacent to both x and y. Therefore, degree
of x in D2S(G) = (degree of x in G) + 1 = even + 1 = odd. Degree of x and y in
D2S(G) are odd. Therefore, D2S(G) is not an Eulerian graph. ¤
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Theorem 2.6. Let G be a graph with p vertices and q edges and let s be the number
of vertices in W. Then |E(D2S(G))| = p + q − s where W is as in Definition 2.1.

Proof. Let V (G) = {v1, v2, v3, . . . , vp} and V (D2S(G))−V (G) = {u1, u2, . . . , us}. Let
d′(v) denote the degree of a vertex v in D2S(G) (clearly d′(v) ≤ d(v), for all v in G).

Then |E(D2S(G))| = 1
2

∑
d′(v) = 1

2

[ p∑
i=1

(d(vi) + 1)− s + p− s
]

= p + q − s. ¤

Remark 2.2. If G is a (2, k)-regular graph, then |E(D2S(G))| = p + q.

Theorem 2.7. D2S(Kn,n) is a Hamiltonian graph.

Proof. For n ≥ 1, the number of vertices in D2S(Kn,n) = 2n + 1 = p ≥ 3. Minimum
degree of the graph D2S(Kn,n) is n + 1, that is, p = 2n + 1 and δ = n + 1. Therefore,
δ ≥ p

2
. By Dirac’s theorem, D2S(Kn,n) is a Hamiltonian graph. ¤

Theorem 2.8. D2S(Km,n) is a Non-Hamiltonian graph with m 6= n.

Proof. Let V1 = {v1, v2, . . . , vm} and V2 = {u1, u2, u3, . . . , un} be the partition of
V (Km,n). Assume m < n. Here V (D2S(Km,n)) = {V1 ∪ {u1}} ∪ {V2 ∪ {u2}}, u1

is adjacent with all the vertices of V2 and u2 is adjacent to all the vertices of V1.
Therefore, |V1 ∪ {u1}| = m + 1 and |V2 ∪ {u2}| = n + 1. Then

(ω(D2S(Km,n))− {V1 ∪ {u1}}) = n + 1 > m + 1 = |V1 ∪ {u1}|.
Hence D2S(Km,n) is a Non-Hamiltonian. ¤
Note 2.1. D2S(G) of a disconnected graph G may be connected. For instance, let G
be a graph with two components G1 and G2 such that G1 and G2 are (2, k)-regular
and each vertex of G1 and G2 have the same d2. Then, by definition of D2S(G), there
exists a vertex which is adjacent to all the vertices of G1 and G2. Therefore D2S(G)
is connected.

Theorem 2.9. Let G be a connected graph. Then K(D2S(G)) ≥ K(G).

Proof. Let G be a connected graph with vertex set V (G) = {v1, v2, v3, . . . , vn}. Let
V (D2S(G))− V (G)) = {u1, u2, u3, . . . , uw}. Since G is a connected graph, by Obser-
vation 2.1, G contains at least two vertices having same d2 and they are connected
by a path. Let vi and vj be the vertices of G such that d2(vi) = d2(vj) and vi and vj

are connected by a path. Suppose G is k-connected. Let S = {v1, v2, v3, . . . , vk} be
the minimum vertex cut of G. Since G − S is disconnected, G − S has at least two
components. Take two components G1 and G2.
Case 1. Suppose vi and vj are in the same component. Then K(D2S(G)) = K(G).
Case 2. Suppose vi and vj belong to different components. Without loss of generality,
let vi ∈ G1 and vj ∈ G2. Then there is no vi-vj path in G − S. But vi and vj are
connected by a path viuivj in (D2S(G)−S). That is, D2S(G)−S is connected. Hence
K(D2S(G)) ≥ K(G). ¤
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