KRAGUJEVAC JOURNAL OF MATHEMATICS VOLUME 36 NUMBER 2 (2012), PAGES 315–321.

## ON THE *d*<sub>2</sub>-SPLITTING GRAPH OF A GRAPH

N. R. SANTHI MAHESWARI  $^{\rm 1}$  AND C. SEKAR  $^{\rm 2}$ 

ABSTRACT. For a positive integer d and a vertex v of a graph G, the  $d^{th}$  degree of v in G, denoted by  $d_d(v)$ , is defined as the number of vertices at a distance daway from v. Hence  $d_1(v) = d(v)$  and  $d_2(v)$  means number of vertices at a distance 2 away from v. A graph G is said to be (2, k)-regular if  $d_2(v) = k$ , for all v in G. In this paper we define  $d_2$ -splitting graph of a graph and we study some properties of  $d_2$ -splitting graph.

### 1. INTRODUCTION

Throughout this paper we consider only finite, simple and connected graphs. Notations and terminology that we do not define here can be found in [3, 2]. We denote the graph G by (V(G), E(G)). The addition of two graphs  $G_1$  and  $G_2$  is a graph  $G_1 + G_2$  with  $V(G_1 + G_2) = V(G_1) \cup V(G_2)$  and  $E(G_1 + G_2) = E(G_1) \cup E(G_2) \cup$  $\{uv/u \in V(G_1), v \in V(G_2)\}$ . The degree of a vertex v is the number of edges incident at v and we denote it by d(v). A graph G is regular if all its vertices have the same degree. The set of all vertices at a distance one from v is denoted by N(v). Two vertices u and v of G are said to be connected if there is a (u, v)-path in G. In a connected graph G, the distance between two vertices u and v is the length of the shortest (u, v)-path in G and is denoted by d(u, v). Consequently, we define the degree of a vertex v as the number of vertices at a distance 1 from v. This observation suggests a generalization of degree. That is,  $d_d(v)$  is defined as the number of vertices at a distance d from v. Hence  $d_1(v) = d(v)$  and  $N_d(v)$  denote the set of all vertices that are at a distance d away from v in a graph G. Hence  $N_1(v) = N(v)$ .

A graph G is said to be distance d-regular [1] if every vertex of G has the same number of vertices at a distance d from it. If  $k \ge 0$  and if every vertex of G has

Key words and phrases. Complete graph; trees; bipartite; complete bipartite; Eulerian graph; Hamiltonian graph; Connectivity of a graph; (2, k) regular graph; (d, k) regular graph.

<sup>2010</sup> Mathematics Subject Classification. 05C12.

Received: June 01, 2011.

Revised: October 01, 2012.

#### SANTHI MAHESWARI AND SEKAR

exactly k number of vertices at a distance d from it, then we call this graph by (d, k)-regular graph. That is, a graph G is said to be (d, k)-regular graph if  $d_d(v) = k$ , for all v in G. The (1, k)-regular graphs and regular graphs are the same. (d, k)-regular graphs are natural extension of regular graphs. A graph G is said to be (2, k)-regular if  $d_2(v) = k$ , for all v in G, where  $d_2(v)$  denotes number of vertices at a distance 2 from v.

Splitting graph S(G) was introduced by Sampath Kumar and Walikar [5]. For each vertex v of a graph G, take a new vertex v' and join v' to all vertices of G adjacent to v. The graph S(G) thus obtained is called the splitting graph of G.

In the similar way, degree splitting graph DS(G) was introduced by R. Ponraj and S. Somasundaram [4]. Let G = (V, E) be a graph with  $V = S_1 \cup S_2 \cup \cdots \cup S_t \cup T$ , where each  $S_i$  is a set of vertices having at least two vertices and having the same degree and  $T = V - \cup S_i$ . The degree splitting graph of G denoted by DS(G) is obtained from G by adding vertices  $w_1, w_2, \ldots, w_t$  and joining  $w_i$  to each vertex of  $S_i$  $(1 \le i \le t)$ .

We define  $d_2$ -splitting graph of G denoted by  $D_2S(G)$  and we investigate some properties of  $D_2S(G)$ .

## 2. $d_2$ -splitting graph

**Definition 2.1.** Let G be a graph with  $V(G) = V_1 \cup V_2 \cup V_3 \cup \cdots \cup V_w \cup W$  where each  $V_i$  is a set having at least two vertices, all having the same  $d_2$  and  $W = V - \cup V_i$ . The  $d_2$ -splitting graph of G denoted by  $D_2S(G)$  is obtained from G by introducing new vertices  $u_1, u_2, \ldots, u_w$  and joining  $u_i$  to each vertex of  $V_i$   $(1 \le i \le w)$ .

Example 2.1.



Here,  $V_1 = \{2, 3, 4, 5\}, W = \{1\}.$ 

316



Here,  $V_1 = \{1, 4\}, V_2 = \{2, 3, 5\}, W = \phi$ .

Observation 2.1. In a graph with more than one vertex, at least two vertices have the same degree  $d_2$ .

Observation 2.2. Trivial graph  $K_1$  is the only graph such that  $K_1 = D_2 S(K_1)$ .

Observation 2.3. For any graph  $G \neq K_1$ , G is a sub graph of  $D_2S(G)$ .

Observation 2.4. If  $G = K_n^C$ , then  $D_2S(G) = K_{1,n}$ .

**Definition 2.2.** Consider  $P_n$   $(n \ge 6)$  and two new vertices u and v on either side of  $P_n$ . Join the vertex v to first two vertices from the left and last two vertices of  $P_n$  from the right. Join the vertex u to the remaining vertices of  $P_n$  in the middle. The resulting graph is called Shipping graph and is denoted by  $SP_n$ .

*Example 2.2.* For a path on 6 vertices, the shipping graph  $SP_6$  is shown in Figure 3.



Observation 2.5. If  $G = P_n$   $(n \ge 6)$ , then  $D_2S(G) = SP_n$ .

Observation 2.6. If  $G = C_n$ , then  $D_2S(G) = W_n$ .

Observation 2.7. If  $G = W_4$ , then  $D_2S(G) = K_5$ .

Observation 2.8. If  $G = K_n$  (n > 1), then  $D_2S(G) = K_{n+1}$ .

Observation 2.9. If G is a (2, k)-regular, then  $D_2S(G) = G + K_1$ .



Figure 4.

**Theorem 2.1.** Let G be a graph with p vertices and q edges. If  $G(\neq K_p)$  is (2, k)-regular, then  $D_2S(G)$  is not (2, k)-regular.

Proof. Let G be (2, k)-regular with k > 0, that is,  $d_2(v) = k$  for all  $v \in V(G)$ . Let  $V(D_2S(G) - V(G)) = \{u\}$ . Since u is adjacent to all the vertices of G, in  $D_2S(G)$ ,  $d_2(u) = 0$ . That is,  $d_2(u) \neq d_2(v)$ , for all  $v \in V(G)$ . Hence  $D_2S(G)$  is not (2, k)-regular.

**Theorem 2.2.** If G is a connected graph with at least one edge, then  $D_2S(G)$  contains a cycle.

*Proof.* Let G be a connected graph with  $|E(G)| \ge 1$ .

Case 1. If G contains a cycle, then  $D_2S(G)$  also contains a cycle.

Case 2. Suppose G contains no cycle. Since G is a connected graph with  $|E(G)| \ge 1$ , G contains more than one vertex. By Observation 2.1 G contains at least two vertices having the same  $d_2$ .

Without loss of generality, let x and y be two vertices in G such that  $d_2(x) = d_2(y)$ . By definition of  $D_2S(G)$ , it contains a vertex u such that u is adjacent with both x and y.

Subcase 1. If x and y are adjacent, then u, x, y, u form a cycle in  $D_2S(G)$ .

Subcase 2. If x and y are not adjacent, then they are connected by a path  $x = v_1, v_2, \ldots, v_n = y$ . Since G is connected,  $u, v_1, \ldots, v_n, u$  is a cycle in  $D_2S(G)$ .  $\Box$ 

Remark 2.1. If G is a disconnected graph with  $|E(G)| \ge 1$ , then at least one component of G has edge set, so by Theorem 2.2,  $D_2S(G)$  contains a cycle.

**Result 2.1.** Let G be a bipartite graph with bipartition  $(V_1, V_2)$ , where  $V_1 = \{v_1, v_2, \ldots, v_m\}$  and  $V_2 = \{v_1^1, v_2^1, \ldots, v_n^1\}$ . If there is a pair of vertices  $v_i$  and  $v_j^1$  such that the length of the  $v_i - v_j^1$  path is odd and  $d_2(v_i) = d_2(v_j^1)$ , then  $D_2S(G)$  is

not bipartite. Also, if there is no pair of vertices  $v_i$  and  $v_j^1$  such that  $d_2(v_i) = d_2(v_j^1)$ , then  $D_2S(G)$  is bipartite.

**Theorem 2.3.**  $D_2S(K_{m,n})$  is a bipartite graph if and only if  $m \neq n$ .

*Proof.* Let  $V_1 = \{v_1, v_2, \dots, v_m\}$  and  $V_2 = \{v_1^1, v_2^1, \dots, v_n^1\}$  be the partition of  $V(K_{m,n})$ . Therefore  $d_2(v_i) = m - 1$  for  $i = 1, 2, \dots, m$  and  $d_2(v_j^1) = n - 1$  for  $j = 1, 2, \dots, n$ .

Suppose  $m \neq n$ . Then  $m - 1 \neq n - 1$ . Therefore, for i = 1, 2, ..., m and j = 1, 2, ..., n, there is no pair  $v_i$  and  $v_j^1$  such that  $d_2(v_i) = d_2(v_j^1)$ . Let  $V(D_2S(K_{m,n})) \setminus V(K_{m,n}) = \{u_1, u_2\}$ . Let  $u_1$  be adjacent to every vertex in  $V_2$  and  $u_2$  be adjacent to every vertex in  $V_1$ . Clearly,  $(V_1 \cup \{u_1\}, V_2 \cup \{u_2\})$  is a bipartition of  $D_2S(K_{m,n})$ . Therefore,  $(D_2S(K_{m,n}))$  is a bipartite graph when  $m \neq n$ .

Conversely, let  $D_2S(K_{m,n})$  be a bipartite graph. Suppose m = n. Then m - 1 = n - 1, that is,  $d_2(v) = m - 1$  for all  $v \in K_{m,n}$ . Therefore, there exists a pair of adjacent vertices  $v_i$  and  $v_j^1$  such that  $d_2(v_i) = d_2(v_j^1)$ . By definition of  $D_2S(K_{m,n})$ , there exists a vertex u which is adjacent to both  $v_i$  and  $v_j^1$ . Therefore,  $D_2S(K_{m,n})$  will contain the odd cycle  $u_1v_iv_j^1u_1$ . This implies that  $D_2S(K_{m,n})$  is not a bipartite graph, which is a contradiction. Hence  $m \neq n$ .

# **Theorem 2.4.** $D_2S(K_{n,n})$ is a tripartite graph.

Proof. Let  $V_1 = \{v_1, v_2, \ldots, v_n\}$  and  $V_2 = \{u_1, u_2, u_3, \ldots, u_n\}$  are the partition of  $V(K_{n,n})$ . Then  $d_2(v_i) = n-1$  for  $i = 1, 2, \ldots, n$  and  $d_2(u_j) = n-1$  for  $j = 1, 2, \ldots, n$ . By definition of  $D_2S(G)$ ,  $D_2S(K_{n,n})$  contains a vertex u such that u is adjacent to all  $u_i$   $(i = 1, 2, \ldots, n)$  and  $v_j$   $(j = 1, 2, \ldots, n)$ , that is, u is adjacent with all vertices of  $K_{n,n}$ .  $D_2S(K_{n,n})$  is  $K_{1,n,n}$  and hence tripartite.  $\Box$ 

**Result 2.2.** For any graph G,  $\omega(D_2S(G)) \leq \omega(G)$ , where  $\omega(G)$  denotes the number of components of G.

*Proof. Case 1.* If G is a connected graph, then  $D_2S(G)$  is connected. Therefore,  $\omega(G) = 1 = \omega(D_2S(G))$ .

Case 2. If G is a disconnected graph then G has more than one component. Let us assume that G has two components  $G_1$  and  $G_2$ . Let  $x \in V(G_1)$  and  $y \in V(G_2)$ such that  $d_2(x) = d_2(y)$ . By definition of  $D_2S(G)$ , there exists a vertex u such that u is adjacent to both x and y. Hence  $\omega(D_2S(G)) = 1 < \omega(G)$ . Suppose that either x and y are in  $V(G_1)$  or x and y are in  $V(G_2)$ . Then  $\omega(D_2S(G)) = 2 = \omega(G)$ . Hence  $\omega(D_2S(G)) \leq \omega(G)$ .

**Theorem 2.5.** If G is an Eulerian graph, then  $D_2S(G)$  is not an Eulerian graph.

Proof. Let G be an Eulerian graph. Since G is an Eulerian graph, each vertex in G is of even degree. By Observation 2.1, G contains at least two vertices having the same  $d_2$ . Let x and y be two vertices in G such that  $d_2(x) = d_2(y)$ . By definition of  $D_2S(G)$ , there exits a vertex u which is adjacent to both x and y. Therefore, degree of x in  $D_2S(G) = (\text{degree of } x \text{ in } G) + 1 = \text{ even } + 1 = \text{ odd. Degree of } x \text{ and } y \text{ in } D_2S(G)$  are odd. Therefore,  $D_2S(G)$  is not an Eulerian graph.

**Theorem 2.6.** Let G be a graph with p vertices and q edges and let s be the number of vertices in W. Then  $|E(D_2S(G))| = p + q - s$  where W is as in Definition 2.1.

Proof. Let  $V(G) = \{v_1, v_2, v_3, \dots, v_p\}$  and  $V(D_2S(G)) - V(G) = \{u_1, u_2, \dots, u_s\}$ . Let d'(v) denote the degree of a vertex v in  $D_2S(G)$  (clearly  $d'(v) \le d(v)$ , for all v in G). Then  $|E(D_2S(G))| = \frac{1}{2} \sum d'(v) = \frac{1}{2} \left[ \sum_{i=1}^p (d(v_i) + 1) - s + p - s \right] = p + q - s$ .

Remark 2.2. If G is a (2, k)-regular graph, then  $|E(D_2S(G))| = p + q$ .

**Theorem 2.7.**  $D_2S(K_{n,n})$  is a Hamiltonian graph.

*Proof.* For  $n \ge 1$ , the number of vertices in  $D_2S(K_{n,n}) = 2n + 1 = p \ge 3$ . Minimum degree of the graph  $D_2S(K_{n,n})$  is n+1, that is, p = 2n + 1 and  $\delta = n + 1$ . Therefore,  $\delta \ge \frac{p}{2}$ . By Dirac's theorem,  $D_2S(K_{n,n})$  is a Hamiltonian graph.  $\Box$ 

**Theorem 2.8.**  $D_2S(K_{m,n})$  is a Non-Hamiltonian graph with  $m \neq n$ .

*Proof.* Let  $V_1 = \{v_1, v_2, \ldots, v_m\}$  and  $V_2 = \{u_1, u_2, u_3, \ldots, u_n\}$  be the partition of  $V(K_{m,n})$ . Assume m < n. Here  $V(D_2S(K_{m,n})) = \{V_1 \cup \{u_1\}\} \cup \{V_2 \cup \{u_2\}\}, u_1$  is adjacent with all the vertices of  $V_2$  and  $u_2$  is adjacent to all the vertices of  $V_1$ . Therefore,  $|V_1 \cup \{u_1\}| = m + 1$  and  $|V_2 \cup \{u_2\}| = n + 1$ . Then

$$(\omega(D_2S(K_{m,n})) - \{V_1 \cup \{u_1\}\}) = n + 1 > m + 1 = |V_1 \cup \{u_1\}|.$$

Hence  $D_2S(K_{m,n})$  is a Non-Hamiltonian.

Note 2.1.  $D_2S(G)$  of a disconnected graph G may be connected. For instance, let G be a graph with two components  $G_1$  and  $G_2$  such that  $G_1$  and  $G_2$  are (2, k)-regular and each vertex of  $G_1$  and  $G_2$  have the same  $d_2$ . Then, by definition of  $D_2S(G)$ , there exists a vertex which is adjacent to all the vertices of  $G_1$  and  $G_2$ . Therefore  $D_2S(G)$  is connected.

**Theorem 2.9.** Let G be a connected graph. Then  $K(D_2S(G)) \ge K(G)$ .

Proof. Let G be a connected graph with vertex set  $V(G) = \{v_1, v_2, v_3, \ldots, v_n\}$ . Let  $V(D_2S(G)) - V(G)) = \{u_1, u_2, u_3, \ldots, u_w\}$ . Since G is a connected graph, by Observation 2.1, G contains at least two vertices having same  $d_2$  and they are connected by a path. Let  $v_i$  and  $v_j$  be the vertices of G such that  $d_2(v_i) = d_2(v_j)$  and  $v_i$  and  $v_j$  are connected by a path. Suppose G is k-connected. Let  $S = \{v_1, v_2, v_3, \ldots, v_k\}$  be the minimum vertex cut of G. Since G - S is disconnected, G - S has at least two components. Take two components  $G_1$  and  $G_2$ .

Case 1. Suppose  $v_i$  and  $v_j$  are in the same component. Then  $K(D_2S(G)) = K(G)$ . Case 2. Suppose  $v_i$  and  $v_j$  belong to different components. Without loss of generality, let  $v_i \in G_1$  and  $v_j \in G_2$ . Then there is no  $v_i$ - $v_j$  path in G - S. But  $v_i$  and  $v_j$  are connected by a path  $v_i u_i v_j$  in  $(D_2S(G) - S)$ . That is,  $D_2S(G) - S$  is connected. Hence  $K(D_2S(G)) \ge K(G)$ .

#### References

- G.S. Bloom, J.K. Kennedy and L.V. Quintas, *Distance degree Regular Graphs*. In G. Chartrand Editor. The Theory and Applications of Graphs, John Wiley, New York, (1981), 95–108.
- [2] J.A. Bondy and U.S.R. Murty, *Graph Theory with Application*, MacMillan, London (1979).
- [3] F. Harary, *Graph theory*, Addison Wesley, (1969).
- [4] R. Ponraj and S. Somasundaram, On the degree splitting graph of a graph, NATL ACAD SCI LETT, 27(7& 8) (2004), 275–278.
- [5] E. Sampathkumar and H.B. Walikar, On Splitting Graph of a Graph, J. Karnatak Univ. Sci., 25(13) (1980), 13–16.

<sup>1</sup> DEPARTMENT OF MATHEMATICS, G. VENKATASWAMY NAIDU COLLEGE, KOVILPATTI-628 502, TAMIL NADU, INDIA. *E-mail address*: nrsmaths@yahoo.com

<sup>2</sup> DEPARTMENT OF MATHEMATICS, ADITANAR COLLEGE OF ARTS AND SCIENCE, TIRUCHENDUR, TAMIL NADU, INDIA. *E-mail address:* sekar.acas@gmail.com