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THE RIESZ ASPECTS OF χ2 SEQUENCE SPACES

NAGARAJAN SUBRAMANIAN 1 AND UMAKANTA MISRA 2

Abstract. Let χ2 denote the space of all double gai sequences. Let Λ2 denote the
space of all double analytic sequences. In this paper we introduce the concept of
sectional analyticity. We also prove a theorem on type M(χ2:χ2) and also the mean
value condition is established. We construct a mildly conservative FK-space, which
is not semi-conservative.

1. Introduction

Throughout the paper w, χ and Λ denote the classes of all, gai and analytic scalar
valued single sequences, respectively.

We write w2 for the set of all complex sequences (xmn), where m,n ∈ N, the set of
positive integers. Then, w2 is a linear space under the coordinatewise addition and
scalar multiplication.

Some initial work on double sequence spaces is found in Bromwich [4]. Later on,
they were investigated by Hardy [5], Moricz [9], Moricz and Rhoades [10], Basarir
and Solankan [2], Tripathy [17], Turkmenoglu [19], and many others.

Let us define the following sets of double sequences:

Mu (t) :=

{
(xmn) ∈ w2 : sup

m,n∈N
|xmn|tmn < ∞

}
,

Cp (t) :=
{
(xmn) ∈ w2 : p− lim

m,n→∞ |xmn − l|tmn = 1for some l ∈ C
}

,

C0p (t) :=
{
(xmn) ∈ w2 : p− lim

m,n→∞ |xmn|tmn = 1
}

,
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Lu (t) :=

{
(xmn) ∈ w2 :

∞∑

m=1

∞∑

n=1

|xmn|tmn < ∞
}

,

Cbp (t) := Cp (t)
⋂

Mu (t) , and

C0bp (t) := C0p (t)
⋂

Mu (t) ;

where t = (tmn) is the sequence of strictly positive reals tmn for all m,n ∈ N and
p − limm,n→∞ denotes the limit in the Pringsheim’s sense. In the case tmn = 1
for all m,n ∈ N; Mu (t) ,Cp (t) ,C0p (t) ,Lu (t) ,Cbp (t) and C0bp (t) reduce to the sets
Mu, Cp,C0p, Lu,Cbp and C0bp, respectively. Now, we may summarize the knowledge
given in some document related to the double sequence spaces. Gökhan and Colak
[21, 22] have proved that Mu (t) and Cp (t) ,Cbp (t) are complete paranormed spaces
of double sequences and gave the α−, β−, γ− duals of the spaces Mu (t) and Cbp (t).
Quite recently, in her PhD thesis, Zelter [23] has essentially studied both the theory of
topological double sequence spaces and the theory of summability of double sequences.
Mursaleen and Edely [24] have recently introduced the statistical convergence and
Cauchy for double sequences and given the relation between statistical convergent and
strongly Cesàro summable double sequences. Next, Mursaleen [25] and Mursaleen and
Edely [26] have defined the almost strong regularity of matrices for double sequences
and applied these matrices to establish a core theorem and introduced the M -core for
double sequences and determined those four dimensional matrices transforming every
bounded double sequences x = (xjk) into one whose core is a subset of the M -core of x.
More recently, Altay and Basar [27] have defined the spaces BS,BS (t) ,CSp, CSbp,CSr

and BV of double sequences consisting of all double series whose sequence of partial
sums are in the spaces Mu, Mu (t) ,Cp,Cbp,Cr and Lu, respectively, and also have
examined some properties of those sequence spaces and determined the α− duals of
the spaces BS, BV,CSbp and the β (ϑ)-duals of the spaces CSbp and CSr of double
series. Quite recently, Basar and Sever [28] have introduced the Banach space Lq of
double sequences corresponding to the well-known space `q of single sequences and
have examined some properties of the space Lq. Quite recently, Subramanian and
Misra [29] have studied the space χ2

M (p, q, u) of double sequences and have given
some inclusion relations.

Spaces of strongly summable sequences were discussed by Kuttner [31], Maddox
[32], and others. The class of sequences which are strongly Cesàro summable with
respect to a modulus was introduced by Maddox [8] as an extension of the definition
of strongly Cesàro summable sequences. Connor [33] further extended this definition
to a definition of strong A-summability with respect to a modulus where A = (an,k)
is a nonnegative regular matrix and established some connections between strong
A-summability, strong A-summability with respect to a modulus, and A-statistical
convergence. In [34] the notion of convergence of double sequences was presented by
A. Pringsheim. Also, in [35]–[38], and [39] the four dimensional matrix transformation
(Ax)k,` =

∑∞
m=1

∑∞
n=1 amn

k` xmn was studied extensively by Robison and Hamilton. In
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their work and throughout this paper, the four dimensional matrices and double
sequences have real-valued entries unless specified otherwise. In this paper we extend
a few results known in the literature for ordinary (single) sequence spaces to multiply
sequence spaces.

In what follows in this paper, we need the following inequality. For a, b,≥ 0 and
0 < p < 1, we have

(1.1) (a + b)p ≤ ap + bp.

The double series
∑∞

m,n=1 xmn is called convergent if and only if the double sequence
(smn) is convergent, where smn =

∑m,n
i,j=1 xij(m,n ∈ N) (see [1]).

A sequence x = (xmn) is said to be double analytic if supmn |xmn|1/m+n < ∞.
The vector space of all double analytic sequences will be denoted by Λ2. A sequence

x = (xmn) is called double gai sequence if ((m + n)! |xmn|)1/m+n → 0 as m,n → ∞.
The double gai sequences will be denoted by χ2. Let φ = {all finite sequences}.

Consider a double sequence x = (xij). The (m,n)th section x[m,n] of the sequence
is defined by x[m,n] =

∑ m,n
i,j=0xij=ij for all m,n ∈ N; where =ij denotes the double

sequence whose only non-zero term is a 1
(i+j)!

in the (i, j)th place for each i, j ∈ N.

An FK-space (or a metric space) X is said to have AK property if (=mn) is a
Schauder basis for X. Or equivalently x[m,n] → x.

An FDK-space is a double sequence space endowed with a complete metrizable;
locally convex topology under which the coordinate mappings x = (xk) → (xmn)
(m,n ∈ N) are also continuous.

If X is a sequence space, we give the following definitions:

(i) X
′
= the continuous dual of X;

(ii) Xα =
{
a = (amn) :

∑∞
m,n=1 |amnxmn| < ∞, for each x ∈ X

}
;

(iii) Xβ =
{
a = (amn) :

∑∞
m,n=1amnxmn is convergent, for each x ∈ X

}
;

(iv) Xγ =
{
a = (amn) : supmn ≥ 1

∣∣∣∑M,N
m,n=1 amnxmn

∣∣∣ < ∞, for each x ∈ X
}
;

(v) let X be an FK-space ⊃ φ; then Xf =
{
f(=mn) : f ∈ X

′}
;

(vi) Xδ =
{
a = (amn) : supmn |amnxmn|1/m+n < ∞, for each x ∈ X

}
;

(vii) XΛ =
{
a = (amn) : supmn |amnxmn|1/m+n < ∞

}
.

Xα, Xβ, Xγ are called α-(or Köthe-Toeplitz) dual of X, β-(or generalized-Köthe-
Toeplitz) dual of X, γ-dual of X, δ-dual of X, Λ-dual of X, respectively. Xα is
defined by Gupta and Kamptan [20]. It is clear that Xα ⊂ Xβ and Xα ⊂ Xγ, but
Xβ ⊂ Xγ does not hold, since the sequence of partial sums of a double convergent
series need not to be bounded.

The notion of difference sequence spaces (for single sequences) was introduced by
Kizmaz [30] as follows

Z (∆) = {x = (xk) ∈ w : (∆xk) ∈ Z}
for Z = c, c0 and `∞, where ∆xk = xk − xk+1 for all k ∈ N.
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Here c, c0 and `∞ denote the classes of convergent, null and bounded scalar valued
single sequences respectively. The difference space bvp of the classical space `p is
introduced and studied in the case 1 ≤ p ≤ ∞ by BaŞar and Altay in [42] and in the
case 0 < p < 1 by Altay and BaŞar in [43]. The spaces c (∆), c0 (∆), `∞ (∆) and bvp

are Banach spaces normed by

‖x‖ = |x1|+ sup
k≥1

|∆xk| and

‖x‖bvp
=

( ∞∑

k=1

|xk|p
)1/p

, (1 ≤ p < ∞) .

Later on the notion was further investigated by many others. We now introduce the
following difference double sequence spaces defined by

Z (∆) =
{
x = (xmn) ∈ w2 : (∆xmn) ∈ Z

}

where Z = Λ2, χ2 and ∆xmn = (xmn − xmn+1)− (xm+1n − xm+1n+1) = xmn−xmn+1−
xm+1n + xm+1n+1 for all m,n ∈ N.

A linear topological space X over the real field R is said to be a paranormed space
if there is a subadditive function g : X → R such that g (θ) = 0, g (x) = g (−x) and
scalar multiplication is continuous; that is |αmn − α| → 0 and g (xmn − x) → 0 imply
g (αmnxmn − αx) → 0 for all α′s in R and all x′s in X, where θ is the zero vector
in the linear space X. Assume here and after that p = (pmn) is a double analytic
sequence of strictly positive real numbers with suppmn = H and M = max (1, H).

Let λ and µ be two sequence spaces and A =
(
amn

k,`

)
be a four dimensional infinite

matrix of real numbers
(
amn

k,`

)
, where m,n, k, ` ∈ N. Then we say A defines a matrix

mapping from λ into µ and we denote it by writing A : λ → µ if for every sequence
x = (xmn) ∈ λ the sequence Ax = {(Ax)k`}, the A-transform of x, is in µ, where

(1.2) (Ax)k` =
∞∑

m=1

∞∑

n=1

amn
k` xmn (k, ` ∈ N) .

By (λ : µ), we denote the class of all matrices A such that A : λ → µ. Thus
A ∈ (λ : µ) if and only if the series on the right side of (1.2) converges for each
k, ` ∈ λ. A sequence x is said to be A-summable to α if Ax converges to α which is
called as the A-limit of x.

Let (qmn) be a sequence of positive numbers and

(1.3) Qk` =
k∑

m=0

∑̀

n=0

qmn (k, ` ∈ N) .

Then the matrix Rq = (rmn
k` )q of the Riesz mean is given by

(1.4) (rmn
k` )q =





qmn

Qk`

, if 0 ≤ m,n ≤ k, `;

0, if (m,n) > k`.
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The double Riesz sequence spaces are defined as follows:

Λ2q
r =

{
x = (xmn) ∈ w2 : sup

k`∈N

∣∣∣∣∣
1

Qk`

k∑

m=0

∑̀

n=0

qmn (xmn)1/m+n

∣∣∣∣∣ < ∞
}

,

χ2q
r =

{
x = (xmn) ∈ w2 : lim

k`→∞

∣∣∣∣∣
1

Qk`

k∑

m=0

∑̀

n=0

qmn ((m + n)!xmn)1/m+n

∣∣∣∣∣ = 0

}
,

which are the sequence spaces of the sequences x whose Rq-transforms are in Λ2 and
χ2, respectively.

The main purpose of this paper is to introduce the Riesz sequence spaces Λ2q
r and

χ2q
r of the sequences whose transform are in Λ2 and χ2, respectively and to investigate

some topological and geometric properties of the following results.

(1) z ∈ XfΛ ⇔ z−1X ⊃ χ2q
r .

(2) The Taylor method is of type M(χ2q
r :χ2q

r ).

(3) Let A be a triangular matrix which is absolutely regular. If A satisfies the mean

value property, then
∣∣∣akk

mm

∣∣∣ 6= 0 for all m and k.

(4) Mildly conservative matrices are introduced.

Example 1.1. Let {xmn} ∈ Λ2q
r . Take X = 1∗, where

1∗ =




1 1 . . . 1
1 1 . . . 1

. . .

1 1 . . . 1
1 1 . . . 1




.

Then 1∗ = Λ2q
r .

Example 1.2. φΛ2q
r = w2.

Definition 1.1. Let X be an FK-space containing φ. Then E+ or E+ (X) is defined

as z ∈ w2 :
{
zmnf (δmn) ∈ Λ2q

r ∀f ∈ X
′}

and we put E = E+ ∩X.

Definition 1.2. Let X be an FK-space containing φ. Then X is said to have sectional
analyticity if X = E.

Definition 1.3. Let A ∈ (χ2q
r : χ2q

r ). Suppose that
∑∞

m=1

∑∞
n=1 αmnamn

k` = 0 (k, ` ∈ N)
with {αmn} ∈ Λ2 implies that αmn = 0 for all m,n. Then A is said to be type
M (χ2q

r : χ2q
r ).

Definition 1.4. A four dimensional triangular matrix A = (amn
k` ) is said to satisfy

the mean value condition Mmn (A) if |∑p
m=1

∑q
n=1 amn

k` xmn| ≤ K supi≤p,j≤q |yij| where
p ≤ k, ` and q ≤ m, n is independent of p, q and {xmn}.
Definition 1.5. A FK-space X is mildly double conservative if Xf ⊂ c2; where c2 is
double convergent sequence spaces.
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Definition 1.6. The set of all sequences {xmn} such that
∑∞

m=1

∑∞
n=1 xmn converges

is denoted by cs2.

Definition 1.7. The set of all sequences {xmn} such that
∑∞

m=1

∑∞
n=1 |xmn| converges

is denoted by `2.

Definition 1.8. For any complex number α, let
Take

amn
k` =





(k − 1) (`− 1) αmn (1− α)(k−m)(`−n) , if 0 ≤ m,n ≤ p, q

1, if m,n = k, ` = 0;

0, otherwise.

In particular, A = (amn
k` ) is an upper triangular matrix.

2. Main Results

Theorem 2.1. Let X be an FK-space containing φ. Let z ∈ w2. Then z ∈ E+ ⇔
z−1X ⊃ χ2q

r . Here, z−1X = {y ∈ w2 : {ymnzmn} ∈ X}.
Proof. Let f ∈ (z−1X)

′
.

Then

f (δmn) = αmn + g (zδmn)

= αmn + g (zmnδmn)

= αmn + zmng (δmn) where α ∈ φ and g ∈ X
′
.

Hence, if z ∈ E+, then {f (δmn)} ∈ Λ2, ∀f ∈ (z−1X)
′
. That is, (z−1X)

f ⊂ Λ2. But

Λ2 = (χ2q
r )

f
. Hence (z−1X)

f ⊂ Λ2 = (χ2q
r )

f
and consequently χ2q

r ⊂ z−1X. Thus,
z ∈ E+ ⇒ z−1X ⊃ χ2q

r . The reverse implication follows similarly. ¤
Theorem 2.2. Let X be an FK-space containing φ. Then z ∈ XfΛ ⇔ z−1X ⊃ χ2q

r .

Proof. By Definition 1.3, z ∈ E+ ⇔ zu ∈ Λ2 ∀u ∈ Xf . Hence E+ = XfΛ. By
Theorem 2.1, z ∈ E+ ⇔ z−1X ⊃ χ2q

r . Hence z ∈ XfΛ ⇔ z−1X ⊃ χ2q
r . ¤

Theorem 2.3. Let X be an FK-space containing φ. Then X is said to have sectional
analyticity if and only if Xf = XΛ.

Proof. Suppose X has sectional analyticity. Then X = E = E+ ∩ X, so that X ⊂
E+ = XfΛ. Hence xΛ ⊃ XfΛ ⊃ Xf and so XΛ ⊃ Xf . But always XΛ ⊂ Xf . Hence
XΛ = Xf .

Conversely, suppose that XΛ = Xf . But E+ = XfΛ = XΛΛ ⊃ X. Thus, E+ ⊃ X
or equivalently, E = X, so that X has sectional analyticity. ¤
Theorem 2.4. Let A = (amn

k` ) is any four dimensional upper triangular matrix, that
is amn

k` = 0 for k > ` and m > n, then a sufficient condition for A ∈ (χ2q
r : χ2q

r ) is
that the elements should be analytic. Further if, amm

kk 6= 0, ∀k, m, then A is of type
M (χ2q

r : χ2q
r ) .
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Proof. Suppose that |amn
k` | ≤ K,∀k, `, m, n. For any given q, we have

(2.1) qk` |amn
k` | ≤ qmnK, (k, m ≤ `, n)

and if k, m > `, n the expression on the left is 0, and thus (2.1) still holds. Thus we
have that A ∈ (χ2q

r : χ2q
r ) , since Brown’s condition holds with p = q and M = K.

Conversely suppose that

(2.2)
∞∑

m=0

∞∑

n=0

αmnamn
k` = 0, {αmn} ∈ Λ2

By induction, αmn = 0,∀m,n. Taking k, ` = 0, since amn
k` = 0 for k,m > `, n, the

equation (2.1) reduces to α00 (a00
00) = 0. But (a00

00) 6= 0. Hence α00 = 0. Now take
m, n ≥ 1 and suppose that




α01 α02 . . . α0n−1

α11 α12 . . . α1n−1

. . .

αm1 αm2 . . . αm−1n−1




= 0.

Since amn
k` = 0 for k, ` > m, n, the equation (2.2) gives

∑k
m=0

∑`
n=0 αmnamn

k` = 0.

By induction hypothesis this reduces to αmmamn
kk = 0. But amn

kk 6= 0. Hence this gives
αmm = 0. ¤

Theorem 2.5. Taylor method is of type M (χ2q
r : χ2q

r ).

Proof. This follows from Theorem 2.4. ¤

Theorem 2.6. Let A be a four dimensional triangular matrix which is absolutely

regular. Suppose that Mmn (A) holds. Then
∣∣∣aqq

pp

∣∣∣ 6= 0 for all p, q.

Proof. Since A is absolutely regular, we have

(2.3)
∞∑

m=1

∞∑

n=1

|amn
k` | is convergent ∀k, ` ≤ m,n.

(2.4)
∞∑

m=1

∞∑

n=1

|amn
k` | = 1, ∀k, ` ≤ m,n.

Assume that for some positive integer P and Q

(2.5)
P∑

m=1

Q∑

n=1

|amn
k` | = 0, ∀k, `.

Then, for any given ε > 0, we have

∞∑

m=1

∞∑

n=1

|amn
k` | ≤

P∑

m=1

Q∑

n=1

|amn
k` |+

∞∑

m=P+1

∞∑

n=Q+1

|amn
k` | < ε
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by (2.3) and (2.5). Hence
∑∞

m=1

∑∞
n=1 amn

k` = 0, ∀k, `. This contradicts (2.4). This
contradiction shows that

(2.6)
P∑

m=1

Q∑

n=1

amn
k` 6= 0 for some positive integer P and Q and ∀k, ` ≤ m,n.

Since Mmn (A) holds, we have
∣∣∣∣∣

p∑

m=1

q∑

n=1

amn
k` xmn

∣∣∣∣∣ ≤ K sup
i≤p, j≤q

|yij| .

Take

xmn =





1, if m,n = p, q

0, otherwise.

Then
∣∣∣amq

kp

∣∣∣ ≤ K
∣∣∣aqq

pp

∣∣∣. This implies that
∑P

m=1

∑Q
n=1

∣∣∣amq
kp

∣∣∣ ≤ KPQ
∣∣∣aqq

pp

∣∣∣ . This is turn

gives that
∣∣∣aqq

pp

∣∣∣ 6= 0 by using (2.6). ¤

Problem 2.1. Give an example of a midly double conservative space, which is not
semi conservative.

Solution. Let T denote the set of all FK-spaces X with F f ⊂ c2. This is more
restrictive then supposing that Xf is contained in the space of sequences summable
(C, 1). Now cs2 even belongs to T. But cs2 is not semi conservative.

To prove this, let x = {xmn} ∈ cs2 write



x11 x12 . . . x1n 0
x21 x22 . . . x2n 0

. . .

xm1 xm2 . . . xmn 0




.

The most general linear continuous functional on cs2 is
∞∑

m=1

∞∑

n=1

λmnSmn + λ lim
mn→∞Smn

where {λmn} ∈ `2. If x = δpq, then

Smn =




1 1 . . . 1
1 1 . . . 1

. . .

1 1 . . . 1
1 1 . . . 1




, ∀m,n ≥ p, q

and so that f (δpq) =
∑∞

m=p

∑∞
n=q λmn + λ. It follows easily that (cs)f is the set of all

sequences {ymn} such that {∆ymn} ∈ `2. This implies that {ymn} ∈ c2; but does not
imply that

∑ ∑
ymn converges. Thus {ymn} ∈ cs2.
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