KRAGUJEVAC JOURNAL OF MATHEMATICS VOLUME 36 NUMBER 2 (2012), PAGES 277–286.

THE RIESZ ASPECTS OF χ^2 SEQUENCE SPACES

NAGARAJAN SUBRAMANIAN $^{\rm 1}$ AND UMAKANTA MISRA $^{\rm 2}$

ABSTRACT. Let χ^2 denote the space of all double gai sequences. Let Λ^2 denote the space of all double analytic sequences. In this paper we introduce the concept of sectional analyticity. We also prove a theorem on type $M_{(\chi^2;\chi^2)}$ and also the mean value condition is established. We construct a mildly conservative FK-space, which is not semi-conservative.

1. INTRODUCTION

Throughout the paper w, χ and Λ denote the classes of all, gai and analytic scalar valued single sequences, respectively.

We write w^2 for the set of all complex sequences (x_{mn}) , where $m, n \in \mathbb{N}$, the set of positive integers. Then, w^2 is a linear space under the coordinatewise addition and scalar multiplication.

Some initial work on double sequence spaces is found in Bromwich [4]. Later on, they were investigated by Hardy [5], Moricz [9], Moricz and Rhoades [10], Basarir and Solankan [2], Tripathy [17], Turkmenoglu [19], and many others.

Let us define the following sets of double sequences:

$$\begin{aligned} \mathcal{M}_{u}(t) &:= \left\{ (x_{mn}) \in w^{2} : \sup_{m,n \in N} |x_{mn}|^{t_{mn}} < \infty \right\}, \\ \mathcal{C}_{p}(t) &:= \left\{ (x_{mn}) \in w^{2} : p - \lim_{m,n \to \infty} |x_{mn} - l|^{t_{mn}} = 1 \text{for some } l \in \mathbb{C} \right\}, \\ \mathcal{C}_{0p}(t) &:= \left\{ (x_{mn}) \in w^{2} : p - \lim_{m,n \to \infty} |x_{mn}|^{t_{mn}} = 1 \right\}, \end{aligned}$$

Key words and phrases. Gai sequence, analytic sequence, double sequences, Riesz sequence, dual, sectional analyticity, type $M_{(\chi_r^{2q}:\chi_r^{2q})}$, mean value property, mildly conservative spaces.

²⁰¹⁰ Mathematics Subject Classification. 40A05, 40C05, 40D05.

Received: August 17, 2011.

Revised: October 30, 2012.

$$\mathcal{L}_{u}(t) := \left\{ (x_{mn}) \in w^{2} : \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |x_{mn}|^{t_{mn}} < \infty \right\},\$$

$$\mathcal{C}_{bp}(t) := \mathcal{C}_{p}(t) \bigcap \mathcal{M}_{u}(t), \text{ and}$$

$$\mathcal{C}_{0bp}(t) := \mathcal{C}_{0p}(t) \bigcap \mathcal{M}_{u}(t);$$

where $t = (t_{mn})$ is the sequence of strictly positive reals t_{mn} for all $m, n \in \mathbb{N}$ and $p - \lim_{m,n\to\infty}$ denotes the limit in the Pringsheim's sense. In the case $t_{mn} = 1$ for all $m, n \in \mathbb{N}$; $\mathcal{M}_{u}(t), \mathcal{C}_{p}(t), \mathcal{C}_{0p}(t), \mathcal{L}_{u}(t), \mathcal{C}_{bp}(t)$ and $\mathcal{C}_{0bp}(t)$ reduce to the sets $\mathcal{M}_u, \mathcal{C}_p, \mathcal{C}_{0p}, \mathcal{L}_u, \mathcal{C}_{bp}$ and \mathcal{C}_{0bp} , respectively. Now, we may summarize the knowledge given in some document related to the double sequence spaces. Gökhan and Colak [21, 22] have proved that $\mathcal{M}_{u}(t)$ and $\mathcal{C}_{p}(t)$, $\mathcal{C}_{bp}(t)$ are complete paranormed spaces of double sequences and gave the $\alpha - \beta - \gamma - \beta$ duals of the spaces $\mathcal{M}_{u}(t)$ and $\mathcal{C}_{bp}(t)$. Quite recently, in her PhD thesis, Zelter [23] has essentially studied both the theory of topological double sequence spaces and the theory of summability of double sequences. Mursaleen and Edely [24] have recently introduced the statistical convergence and Cauchy for double sequences and given the relation between statistical convergent and strongly Cesàro summable double sequences. Next, Mursaleen [25] and Mursaleen and Edely [26] have defined the almost strong regularity of matrices for double sequences and applied these matrices to establish a core theorem and introduced the M-core for double sequences and determined those four dimensional matrices transforming every bounded double sequences $x = (x_{jk})$ into one whose core is a subset of the *M*-core of *x*. More recently, Altay and Basar [27] have defined the spaces $\mathcal{BS}, \mathcal{BS}(t), \mathcal{CS}_p, \mathcal{CS}_{bp}, \mathcal{CS}_r$ and \mathcal{BV} of double sequences consisting of all double series whose sequence of partial sums are in the spaces $\mathcal{M}_{u}, \mathcal{M}_{u}(t), \mathcal{C}_{p}, \mathcal{C}_{bp}, \mathcal{C}_{r}$ and \mathcal{L}_{u} , respectively, and also have examined some properties of those sequence spaces and determined the α - duals of the spaces $\mathfrak{BS}, \mathfrak{BV}, \mathfrak{CS}_{bp}$ and the $\beta(\vartheta)$ -duals of the spaces \mathfrak{CS}_{bp} and \mathfrak{CS}_r of double series. Quite recently, Basar and Sever [28] have introduced the Banach space \mathcal{L}_q of double sequences corresponding to the well-known space ℓ_q of single sequences and have examined some properties of the space \mathcal{L}_q . Quite recently, Subramanian and Misra [29] have studied the space $\chi^2_M(p,q,u)$ of double sequences and have given some inclusion relations.

Spaces of strongly summable sequences were discussed by Kuttner [31], Maddox [32], and others. The class of sequences which are strongly Cesàro summable with respect to a modulus was introduced by Maddox [8] as an extension of the definition of strongly Cesàro summable sequences. Connor [33] further extended this definition to a definition of strong A-summability with respect to a modulus where $A = (a_{n,k})$ is a nonnegative regular matrix and established some connections between strong A-summability, strong A-summability with respect to a modulus, and A-statistical convergence. In [34] the notion of convergence of double sequences was presented by A. Pringsheim. Also, in [35]–[38], and [39] the four dimensional matrix transformation $(Ax)_{k,\ell} = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{k\ell}^{mn} x_{mn}$ was studied extensively by Robison and Hamilton. In

their work and throughout this paper, the four dimensional matrices and double sequences have real-valued entries unless specified otherwise. In this paper we extend a few results known in the literature for ordinary (single) sequence spaces to multiply sequence spaces.

In what follows in this paper, we need the following inequality. For $a, b, \ge 0$ and 0 , we have

$$(1.1) \qquad (a+b)^p \le a^p + b^p.$$

The double series $\sum_{m,n=1}^{\infty} x_{mn}$ is called convergent if and only if the double sequence (s_{mn}) is convergent, where $s_{mn} = \sum_{i,j=1}^{m,n} x_{ij} (m, n \in \mathbb{N})$ (see [1]).

A sequence $x = (x_{mn})$ is said to be double analytic if $\sup_{mn} |x_{mn}|^{1/m+n} < \infty$. The vector space of all double analytic sequences will be denoted by Λ^2 . A sequence $x = (x_{mn})$ is called double gai sequence if $((m+n)! |x_{mn}|)^{1/m+n} \to 0$ as $m, n \to \infty$. The double gai sequences will be denoted by χ^2 . Let $\phi = \{$ all finite sequences $\}$. Consider a double sequence $x = (x_{ij})$. The $(m, n)^{th}$ section $x^{[m,n]}$ of the sequence

Consider a double sequence $x = (x_{ij})$. The $(m, n)^{th}$ section $x^{[m,n]}$ of the sequence is defined by $x^{[m,n]} = \sum_{i,j=0}^{m,n} x_{ij} \Im_{ij}$ for all $m, n \in \mathbb{N}$; where \Im_{ij} denotes the double sequence whose only non-zero term is a $\frac{1}{(i+j)!}$ in the $(i, j)^{th}$ place for each $i, j \in \mathbb{N}$.

An FK-space (or a metric space) X is said to have AK property if (\mathfrak{S}_{mn}) is a Schauder basis for X. Or equivalently $x^{[m,n]} \to x$.

An FDK-space is a double sequence space endowed with a complete metrizable; locally convex topology under which the coordinate mappings $x = (x_k) \rightarrow (x_{mn})$ $(m, n \in \mathbb{N})$ are also continuous.

If X is a sequence space, we give the following definitions:

(i) X' = the continuous dual of X;

(ii)
$$X^{\alpha} = \left\{ a = (a_{mn}) : \sum_{m,n=1}^{\infty} |a_{mn} x_{mn}| < \infty, \text{ for each } x \in X \right\};$$

(iii)
$$X^{\beta} = \left\{ a = (a_{mn}) : \sum_{m,n=1}^{\infty} a_{mn} x_{mn} \text{ is convergent, for each } x \in X \right\};$$

(iv)
$$X^{\gamma} = \left\{ a = (a_{mn}) : \sup_{mn} \ge 1 \left| \sum_{m,n=1}^{M,N} a_{mn} x_{mn} \right| < \infty, \text{ for each } x \in X \right\};$$

(v) let X be an FK-space
$$\supset \phi$$
; then $X^f = \{f(\mathfrak{T}_{mn}) : f \in X'\}$

(vi)
$$X^{\delta} = \{a = (a_{mn}) : \sup_{mn} |a_{mn}x_{mn}|^{1/m+n} < \infty, \text{ for each } x \in X\};$$

(vii)
$$X^{\Lambda} = \left\{ a = (a_{mn}) : \sup_{mn} |a_{mn}x_{mn}|^{1/m+n} < \infty \right\}.$$

 $X^{\alpha}, X^{\beta}, X^{\gamma}$ are called α -(or Köthe-Toeplitz) dual of X, β -(or generalized-Köthe-Toeplitz) dual of X, γ -dual of X, δ -dual of X, Λ -dual of X, respectively. X^{α} is defined by Gupta and Kamptan [20]. It is clear that $X^{\alpha} \subset X^{\beta}$ and $X^{\alpha} \subset X^{\gamma}$, but $X^{\beta} \subset X^{\gamma}$ does not hold, since the sequence of partial sums of a double convergent series need not to be bounded.

The notion of difference sequence spaces (for single sequences) was introduced by Kizmaz [30] as follows

$$Z(\Delta) = \{x = (x_k) \in w : (\Delta x_k) \in Z\}$$

for $Z = c, c_0$ and ℓ_{∞} , where $\Delta x_k = x_k - x_{k+1}$ for all $k \in \mathbb{N}$.

Here c, c_0 and ℓ_{∞} denote the classes of convergent, null and bounded scalar valued single sequences respectively. The difference space bv_p of the classical space ℓ_p is introduced and studied in the case $1 \le p \le \infty$ by BaŞar and Altay in [42] and in the case $0 by Altay and BaŞar in [43]. The spaces <math>c(\Delta), c_0(\Delta), \ell_{\infty}(\Delta)$ and bv_p are Banach spaces normed by

$$\|x\| = |x_1| + \sup_{k \ge 1} |\Delta x_k| \text{ and} \\ \|x\|_{bv_p} = \left(\sum_{k=1}^{\infty} |x_k|^p\right)^{1/p}, (1 \le p < \infty)$$

Later on the notion was further investigated by many others. We now introduce the following difference double sequence spaces defined by

$$Z\left(\Delta\right) = \left\{x = (x_{mn}) \in w^2 : (\Delta x_{mn}) \in Z\right\}$$

where $Z = \Lambda^2$, χ^2 and $\Delta x_{mn} = (x_{mn} - x_{mn+1}) - (x_{m+1n} - x_{m+1n+1}) = x_{mn} - x_{mn+1} - x_{m+1n+1}$ for all $m, n \in \mathbb{N}$.

A linear topological space X over the real field R is said to be a paranormed space if there is a subadditive function $g: X \to R$ such that $g(\theta) = 0$, g(x) = g(-x) and scalar multiplication is continuous; that is $|\alpha_{mn} - \alpha| \to 0$ and $g(x_{mn} - x) \to 0$ imply $g(\alpha_{mn}x_{mn} - \alpha x) \to 0$ for all α 's in R and all x's in X, where θ is the zero vector in the linear space X. Assume here and after that $p = (p_{mn})$ is a double analytic sequence of strictly positive real numbers with $\operatorname{supp}_{mn} = H$ and $M = \max(1, H)$.

Let λ and μ be two sequence spaces and $A = (a_{k,\ell}^{mn})$ be a four dimensional infinite matrix of real numbers $(a_{k,\ell}^{mn})$, where $m, n, k, \ell \in \mathbb{N}$. Then we say A defines a matrix mapping from λ into μ and we denote it by writing $A : \lambda \to \mu$ if for every sequence $x = (x_{mn}) \in \lambda$ the sequence $Ax = \{(Ax)_{k\ell}\}$, the A-transform of x, is in μ , where

(1.2)
$$(Ax)_{k\ell} = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{k\ell}^{mn} x_{mn} (k, \ell \in \mathbb{N}) .$$

By $(\lambda : \mu)$, we denote the class of all matrices A such that $A : \lambda \to \mu$. Thus $A \in (\lambda : \mu)$ if and only if the series on the right side of (1.2) converges for each $k, \ell \in \lambda$. A sequence x is said to be A-summable to α if Ax converges to α which is called as the A-limit of x.

Let (q_{mn}) be a sequence of positive numbers and

(1.3)
$$Q_{k\ell} = \sum_{m=0}^{k} \sum_{n=0}^{\ell} q_{mn} \left(k, \ell \in \mathbb{N} \right).$$

Then the matrix $R^q = (r_{k\ell}^{mn})^q$ of the Riesz mean is given by

(1.4)
$$(r_{k\ell}^{mn})^q = \begin{cases} \frac{q_{mn}}{Q_{k\ell}}, & \text{if } 0 \le m, n \le k, \ell; \\ 0, & \text{if } (m, n) > k\ell. \end{cases}$$

The double Riesz sequence spaces are defined as follows:

$$\Lambda_{r}^{2q} = \left\{ x = (x_{mn}) \in w^{2} : \sup_{k\ell \in N} \left| \frac{1}{Q_{k\ell}} \sum_{m=0}^{k} \sum_{n=0}^{\ell} q_{mn} (x_{mn})^{1/m+n} \right| < \infty \right\},\$$

$$\chi_{r}^{2q} = \left\{ x = (x_{mn}) \in w^{2} : \lim_{k\ell \to \infty} \left| \frac{1}{Q_{k\ell}} \sum_{m=0}^{k} \sum_{n=0}^{\ell} q_{mn} ((m+n)!x_{mn})^{1/m+n} \right| = 0 \right\}$$

which are the sequence spaces of the sequences x whose R^q -transforms are in Λ^2 and χ^2 , respectively.

The main purpose of this paper is to introduce the Riesz sequence spaces Λ_r^{2q} and χ_r^{2q} of the sequences whose transform are in Λ^2 and χ^2 , respectively and to investigate some topological and geometric properties of the following results.

- (1) $z \in X^{f\Lambda} \Leftrightarrow z^{-1}X \supset \chi_r^{2q}$.
- (2) The Taylor method is of type $M_{(\chi_r^{2q}:\chi_r^{2q})}$.
- (3) Let A be a triangular matrix which is absolutely regular. If A satisfies the mean value property, then $|a_{mm}^{kk}| \neq 0$ for all m and k.
- (4) Mildly conservative matrices are introduced.

Example 1.1. Let $\{x_{mn}\} \in \Lambda_r^{2q}$. Take $X = 1^*$, where

$$1^* = \begin{pmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \\ & \ddots & & \\ 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \end{pmatrix}.$$

Then $1^* = \Lambda_r^{2q}$.

Example 1.2. $\phi^{\Lambda_r^{2q}} = w^2$.

Definition 1.1. Let X be an FK-space containing ϕ . Then E^+ or $E^+(X)$ is defined as $z \in w^2 : \left\{ z_{mn} f(\delta^{mn}) \in \Lambda_r^{2q} \forall f \in X' \right\}$ and we put $E = E^+ \cap X$.

Definition 1.2. Let X be an FK-space containing ϕ . Then X is said to have sectional analyticity if X = E.

Definition 1.3. Let $A \in (\chi_r^{2q} : \chi_r^{2q})$. Suppose that $\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \alpha_{mn} a_{k\ell}^{mn} = 0$ $(k, \ell \in \mathbb{N})$ with $\{\alpha_{mn}\} \in \Lambda^2$ implies that $\alpha_{mn} = 0$ for all m, n. Then A is said to be type $M(\chi_r^{2q} : \chi_r^{2q})$.

Definition 1.4. A four dimensional triangular matrix $A = (a_{k\ell}^{mn})$ is said to satisfy the mean value condition $M_{mn}(A)$ if $|\sum_{m=1}^{p} \sum_{n=1}^{q} a_{k\ell}^{mn} x_{mn}| \leq K \sup_{i \leq p, j \leq q} |y_{ij}|$ where $p \leq k, \ell$ and $q \leq m, n$ is independent of p, q and $\{x_{mn}\}$.

Definition 1.5. A FK-space X is mildly double conservative if $X^f \subset c^2$; where c^2 is double convergent sequence spaces.

Definition 1.6. The set of all sequences $\{x_{mn}\}$ such that $\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} x_{mn}$ converges is denoted by cs^2 .

Definition 1.7. The set of all sequences $\{x_{mn}\}$ such that $\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |x_{mn}|$ converges is denoted by ℓ^2 .

Definition 1.8. For any complex number α , let Take

$$a_{k\ell}^{mn} = \begin{cases} (k-1) \left(\ell - 1\right) \alpha^{mn} \left(1 - \alpha\right)^{(k-m)(\ell-n)}, & \text{if } 0 \le m, n \le p, q \\ 1, & \text{if } m, n = k, \ell = 0; \\ 0, & \text{otherwise.} \end{cases}$$

In particular, $A = (a_{k\ell}^{mn})$ is an upper triangular matrix.

2. Main Results

Theorem 2.1. Let X be an FK-space containing ϕ . Let $z \in w^2$. Then $z \in E^+ \Leftrightarrow z^{-1}X \supset \chi_r^{2q}$. Here, $z^{-1}X = \{y \in w^2 : \{y_{mn}z_{mn}\} \in X\}$.

Proof. Let $f \in (z^{-1}X)'$.

Then

$$f(\delta^{mn}) = \alpha_{mn} + g(z\delta^{mn})$$

= $\alpha_{mn} + g(z_{mn}\delta^{mn})$
= $\alpha_{mn} + z_{mn}g(\delta^{mn})$ where $\alpha \in \phi$ and $g \in X'$.

Hence, if $z \in E^+$, then $\{f(\delta^{mn})\} \in \Lambda^2$, $\forall f \in (z^{-1}X)'$. That is, $(z^{-1}X)^f \subset \Lambda^2$. But $\Lambda^2 = (\chi_r^{2q})^f$. Hence $(z^{-1}X)^f \subset \Lambda^2 = (\chi_r^{2q})^f$ and consequently $\chi_r^{2q} \subset z^{-1}X$. Thus, $z \in E^+ \Rightarrow z^{-1}X \supset \chi_r^{2q}$. The reverse implication follows similarly. \Box

Theorem 2.2. Let X be an FK-space containing ϕ . Then $z \in X^{f\Lambda} \Leftrightarrow z^{-1}X \supset \chi_r^{2q}$.

Proof. By Definition 1.3, $z \in E^+ \Leftrightarrow zu \in \Lambda^2 \ \forall u \in X^f$. Hence $E^+ = X^{f\Lambda}$. By Theorem 2.1, $z \in E^+ \Leftrightarrow z^{-1}X \supset \chi_r^{2q}$. Hence $z \in X^{f\Lambda} \Leftrightarrow z^{-1}X \supset \chi_r^{2q}$.

Theorem 2.3. Let X be an FK-space containing ϕ . Then X is said to have sectional analyticity if and only if $X^f = X^{\Lambda}$.

Proof. Suppose X has sectional analyticity. Then $X = E = E^+ \cap X$, so that $X \subset E^+ = X^{f\Lambda}$. Hence $x^{\Lambda} \supset X^{f\Lambda} \supset X^f$ and so $X^{\Lambda} \supset X^f$. But always $X^{\Lambda} \subset X^f$. Hence $X^{\Lambda} = X^f$.

Conversely, suppose that $X^{\Lambda} = X^{f}$. But $E^{+} = X^{f\Lambda} = X^{\Lambda\Lambda} \supset X$. Thus, $E^{+} \supset X$ or equivalently, E = X, so that X has sectional analyticity.

Theorem 2.4. Let $A = (a_{k\ell}^{mn})$ is any four dimensional upper triangular matrix, that is $a_{k\ell}^{mn} = 0$ for $k > \ell$ and m > n, then a sufficient condition for $A \in (\chi_r^{2q} : \chi_r^{2q})$ is that the elements should be analytic. Further if, $a_{kk}^{mm} \neq 0$, $\forall k, m$, then A is of type $M(\chi_r^{2q} : \chi_r^{2q})$. *Proof.* Suppose that $|a_{k\ell}^{mn}| \leq K, \forall k, \ell, m, n$. For any given q, we have

(2.1)
$$q^{k\ell} |a_{k\ell}^{mn}| \le q^{mn} K, \quad (k, m \le \ell, n)$$

and if $k, m > \ell, n$ the expression on the left is 0, and thus (2.1) still holds. Thus we have that $A \in (\chi_r^{2q} : \chi_r^{2q})$, since Brown's condition holds with p = q and M = K.

Conversely suppose that

(2.2)
$$\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \alpha_{mn} a_{k\ell}^{mn} = 0, \quad \{\alpha_{mn}\} \in \Lambda^2$$

By induction, $\alpha_{mn} = 0, \forall m, n$. Taking $k, \ell = 0$, since $a_{k\ell}^{mn} = 0$ for $k, m > \ell, n$, the equation (2.1) reduces to $\alpha_{00} (a_{00}^{00}) = 0$. But $(a_{00}^{00}) \neq 0$. Hence $\alpha_{00} = 0$. Now take $m, n \geq 1$ and suppose that

$$\begin{pmatrix} \alpha_{01} & \alpha_{02} & \dots & \alpha_{0n-1} \\ \alpha_{11} & \alpha_{12} & \dots & \alpha_{1n-1} \\ & & \ddots & \\ \alpha_{m1} & \alpha_{m2} & \dots & \alpha_{m-1n-1} \end{pmatrix} = 0.$$

Since $a_{k\ell}^{mn} = 0$ for $k, \ell > m, n$, the equation (2.2) gives

$$\sum_{m=0}^{k} \sum_{n=0}^{\ell} \alpha_{mn} a_{k\ell}^{mn} = 0.$$

By induction hypothesis this reduces to $\alpha_{mm}a_{kk}^{mn} = 0$. But $a_{kk}^{mn} \neq 0$. Hence this gives $\alpha_{mm} = 0$.

Theorem 2.5. Taylor method is of type $M(\chi_r^{2q}:\chi_r^{2q})$.

Proof. This follows from Theorem 2.4.

Theorem 2.6. Let A be a four dimensional triangular matrix which is absolutely regular. Suppose that $M_{mn}(A)$ holds. Then $\left|a_{pp}^{qq}\right| \neq 0$ for all p, q.

Proof. Since A is absolutely regular, we have

(2.3)
$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |a_{k\ell}^{mn}| \text{ is convergent } \forall k, \ell \le m, n.$$

(2.4)
$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |a_{k\ell}^{mn}| = 1, \quad \forall k, \ell \le m, n.$$

Assume that for some positive integer P and Q

(2.5)
$$\sum_{m=1}^{P} \sum_{n=1}^{Q} |a_{k\ell}^{mn}| = 0, \quad \forall k, \ell.$$

Then, for any given $\epsilon > 0$, we have

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |a_{k\ell}^{mn}| \le \sum_{m=1}^{P} \sum_{n=1}^{Q} |a_{k\ell}^{mn}| + \sum_{m=P+1}^{\infty} \sum_{n=Q+1}^{\infty} |a_{k\ell}^{mn}| < \epsilon$$

by (2.3) and (2.5). Hence $\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{k\ell}^{mn} = 0$, $\forall k, \ell$. This contradicts (2.4). This contradiction shows that

(2.6)
$$\sum_{m=1}^{P} \sum_{n=1}^{Q} a_{k\ell}^{mn} \neq 0 \text{ for some positive integer } P \text{ and } Q \text{ and } \forall k, \ell \leq m, n.$$

Since $M_{mn}(A)$ holds, we have

$$\left|\sum_{m=1}^{p}\sum_{n=1}^{q}a_{k\ell}^{mn}x_{mn}\right| \leq K \sup_{i\leq p,\,j\leq q}\left|y_{ij}\right|.$$

Take

$$x_{mn} = \begin{cases} 1, & \text{if } m, n = p, q \\ 0, & \text{otherwise.} \end{cases}$$

Then $\left|a_{kp}^{mq}\right| \leq K \left|a_{pp}^{qq}\right|$. This implies that $\sum_{m=1}^{P} \sum_{n=1}^{Q} \left|a_{kp}^{mq}\right| \leq KPQ \left|a_{pp}^{qq}\right|$. This is turn gives that $\left|a_{pp}^{qq}\right| \neq 0$ by using (2.6).

Problem 2.1. Give an example of a midly double conservative space, which is not semi conservative.

Solution. Let T denote the set of all FK-spaces X with $F^f \subset c^2$. This is more restrictive then supposing that X^f is contained in the space of sequences summable (C, 1). Now cs^2 even belongs to T. But cs^2 is not semi conservative.

To prove this, let $x = \{x_{mn}\} \in cs^2$ write

$$\begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} & 0 \\ x_{21} & x_{22} & \dots & x_{2n} & 0 \\ & & \ddots & & \\ x_{m1} & x_{m2} & \dots & x_{mn} & 0 \end{pmatrix}.$$

The most general linear continuous functional on cs^2 is

$$\sum_{n=1}^{\infty}\sum_{n=1}^{\infty}\lambda_{mn}S_{mn} + \lambda\lim_{mn\to\infty}S_{mn}$$

where $\{\lambda_{mn}\} \in \ell^2$. If $x = \delta^{pq}$, then

$$S_{mn} = \begin{pmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \\ & \ddots & \\ 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \end{pmatrix}, \quad \forall m, n \ge p, q$$

and so that $f(\delta^{pq}) = \sum_{m=p}^{\infty} \sum_{n=q}^{\infty} \lambda_{mn} + \lambda$. It follows easily that $(cs)^f$ is the set of all sequences $\{y_{mn}\}$ such that $\{\Delta y_{mn}\} \in \ell^2$. This implies that $\{y_{mn}\} \in c^2$; but does not imply that $\sum \sum y_{mn}$ converges. Thus $\{y_{mn}\} \in cs^2$.

Acknowledgement: The authors thank the referee for his careful reading of the manuscript and comments that improved the presentation of the paper.

References

- [1] T. Apostol, Mathematical Analysis, Addison-wesley, London, 1978.
- [2] M. Basarir and O. Solancan, On some double sequence spaces, J. Indian Acad. Math., 21 (2) (1999), 193–200.
- [3] C. Bektas and Y. Altin, The sequence space $\ell_M(p,q,s)$ on seminormed spaces, Indian J. Pure Appl. Math., **34** (4) (2003), 529–534.
- [4] T. J. I'A. Bromwich, An introduction to the theory of infinite series, Macmillan and Co.Ltd., New York, 1965.
- [5] G. H. Hardy, On the convergence of certain multiple series, Proc. Camb. Phil. Soc., 19 (1917), 86–95.
- [6] M. A. Krasnoselskii and Y. B. Rutickii, *Convex functions and Orlicz spaces*, Gorningen, Netherlands, 1961.
- [7] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10 (1971), 379–390.
- [8] I. J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Cambridge Philos. Soc, 100 (1) (1986), 161–166.
- [9] F. Moricz, Extentions of the spaces c and c₀ from single to double sequences, Acta. Math. Hung., 57 (1-2), (1991), 129–136.
- [10] F. Moricz and B. E. Rhoades, Almost convergence of double sequences and strong regularity of summability matrices, Math. Proc. Camb. Phil. Soc., 104, (1988), 283–294.
- [11] M. Mursaleen, M. A. Khan and Qamaruddin, Difference sequence spaces defined by Orlicz functions, Demonstratio Math., Vol. XXXII (1999), 145–150.
- [12] H. Nakano, Concave modulars, J. Math. Soc. Japan, 5 (1953), 29–49.
- [13] W. Orlicz, *Über Raume* (L^M) , Bull. Int. Acad. Polon. Sci. A, (1936), 93–107.
- [14] S. D. Parashar and B. Choudhary, Sequence spaces defined by Orlicz functions, Indian J. Pure Appl. Math., 25 (4) (1994), 419-428.
- [15] K. Chandrasekhara Rao and N. Subramanian, The Orlicz space of entire sequences, Int. J. Math. Math. Sci., 68 (2004), 3755–3764.
- [16] W. H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math., 25 (1973), 973–978.
- [17] B. C. Tripathy, On statistically convergent double sequences, Tamkang J. Math., 34 (3), (2003), 231–237.
- [18] B. C. Tripathy, M. Et and Y. Altin, Generalized difference sequence spaces defined by Orlicz function in a locally convex space, J. Anal. Appl., 1 (3) (2003), 175–192.
- [19] A. Turkmenoglu, Matrix transformation between some classes of double sequences, J. Inst. Math. Comp. Sci. Math. Ser., 12 (1), (1999), 23–31.
- [20] P. K. Kamthan and M. Gupta, Sequence spaces and series, Lecture notes, Pure and Applied Mathematics, 65 Marcel Dekker, In c., New York, 1981.
- [21] A. Gökhan and R. Çolak, The double sequence spaces $c_2^P(p)$ and $c_2^{PB}(p)$, Appl. Math. Comput., **157** (2), (2004), 491–501.
- [22] A. Gökhan and R. Çolak, Double sequence spaces ℓ_2^{∞} , ibid., 160 (1), (2005), 147–153.
- [23] M. Zeltser, Investigation of Double Sequence Spaces by Soft and Hard Analitical Methods, Dissertationes Mathematicae Universitatis Tartuensis 25, Tartu University Press, Univ. of Tartu, Faculty of Mathematics and Computer Science, Tartu, 2001.
- [24] M. Mursaleen and O. H. H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl., 288(1), (2003), 223-231.

- [25] M. Mursaleen, Almost strongly regular matrices and a core theorem for double sequences, J. Math. Anal. Appl., 293(2), (2004), 523–531.
- M. Mursaleen and O. H. H. Edely, Almost convergence and a core theorem for double sequences, J. Math. Anal. Appl., 293 (2), (2004), 532–540.
- [27] B. Altay and F. Basar, Some new spaces of double sequences, J. Math. Anal. Appl., 309(1), (2005), 70–90.
- [28] F. Basar and Y. Sever, The space \mathcal{L}_p of double sequences, Math. J. Okayama Univ, **51**, (2009), 149–157.
- [29] N. Subramanian and U. K. Misra, The semi normed space defined by a double gai sequence of modulus function, Fasciculi Math., 46, (2010).
- [30] H. Kizmaz, On certain sequence spaces, Cand. Math. Bull., 24 (2), (1981), 169-176.
- [31] B. Kuttner, Note on strong summability, J. London Math. Soc., **21** (1946), 118–122.
- [32] I. J. Maddox, On strong almost convergence, Math. Proc. Cambridge Philos. Soc., 85 (2), (1979), 345–350.
- [33] J. Cannor, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull., 32 (2), (1989), 194–198.
- [34] A. Pringsheim, Zurtheorie derzweifach unendlichen zahlenfolgen, Math. Ann., 53, (1900), 289– 321.
- [35] H. J. Hamilton, Transformations of multiple sequences, Duke Math. J., 2, (1936), 29–60.
- [36] H. J. Hamilton, A Generalization of multiple sequences transformation, Duke Math. J., 4, (1938), 343–358.
- [37] H. J. Hamilton, Change of Dimension in sequence transformation, Duke Math. J., 4, (1938), 341–342.
- [38] H. J. Hamilton, Preservation of partial Limits in Multiple sequence transformations, Duke Math. J., 4, (1939), 293–297.
- [39] G. M. Robison, Divergent double sequences and series, Amer. Math. Soc. Trans., 28, (1926), 50– 73.
- [40] L. L. Silverman, On the definition of the sum of a divergent series, unpublished thesis, University of Missouri studies, Mathematics series.
- [41] O. Toeplitz, Uber allgenmeine linear mittel bridungen, Prace Matemalyczno Fizyczne (Warsaw), 22, (1911).
- [42] F. Basar and B. Atlay, On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J., 55(1), (2003), 136-147.
- [43] B. Altay and F. Basar, The fine spectrum and the matrix domain of the difference operator Δ on the sequence space ℓ_p , $(0 , Commun. Math. Anal., <math>\mathbf{2(2)}$, (2007), 1-11.
- [44] R. Çolak, M. Et and E. Malkowsky, Some Topics of Sequence Spaces, Lecture Notes in Mathematics, Firat Univ. Elazig, Turkey, 2004, pp. 1–63, Firat Univ. Press, (2004), ISBN: 975-394-0386-6.

¹ DEPARTMENT OF MATHEMATICS, SASTRA UNIVERSITY, THANJAVUR-613 401, INDIA. *E-mail address*: nsmaths@yahoo.com

² DEPARTMENT OF MATHEMATICS AND STATISTICS, BERHAMPUR UNIVERSITY, BERHAMPUR-760 007,ODISSA, INDIA. *E-mail address*: umakanta_misra@yahoo.com