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SOME CONSIDERATIONS OF MATRIX EQUATIONS USING THE
CONCEPT OF REPRODUCTIVITY

BRANKO MALEŠEVIĆ 1 AND BILJANA RADIČIĆ 2

Abstract. In this paper we analyse Cline’s matrix equation, generalized Penrose’s
matrix system and a matrix system for k-commutative {1}-inverses. We determine
reproductive and non-reproductive general solutions of analysed matrix equation
and analysed matrix systems.

1. Introduction

In this paper we determine general and reproductive general solutions of analysed
matrix equation and analysed matrix systems. We are going to use the concept of re-
productivity in order to prove that certain formulas represent the general solutions of
analysed matrix equation and analysed matrix systems. The concept of reproductive
equations was introduced by S. B. Prešić [2] in 1968.
Let S be a given non-empty set and J be a given unary relation of S. Then an equation
J(x) is consistent if there is at least one element x0 ∈ S, so-called the solution,
such that J(x0) is true. A formula x = φ(t), where φ : S → S is a given function,
represents the general solution [20] of the equation J(x) if and only if

(∀t)J(φ(t)) ∧ (∀x)(J(x) =⇒ (∃t)x = φ(t)).

Let us cite the definition of reproductive equations according by S. B. Prešić [2].

Definition 1.1. The reproductive equations are the equations of the following form:

x = ϕ(x),

where x is a unknown, S is a given set and ϕ : S −→ S is a given function which
satisfies the following condition:

(1.1) ϕ ◦ ϕ = ϕ.
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The condition (1.1) is called the condition of reproductivity [2]. The fundamen-
tal properties of reproductive equations are given by the following two statements
(S. B. Prešić [2]) (see also [5], [6] and [17]).

Theorem 1.1. For any consistent equation J(x) there is an equation of the form
x = ϕ(x), which is equivalent to J(x) being in the same time reproductive as well.

Theorem 1.2. If a certain equation J(x) is equivalent to the reproductive one x = ϕ(x),
the general solution is given by the formula x = ϕ(y), for any value y ∈ S.

Let us remark that a formula x = φ(t), where φ : S → S is a given function, represents
the reproductive general solution [20] of the equation J(x) if and only if

(∀t)J(φ(t)) ∧ (∀t)(J(t) =⇒ t = φ(t)).

Reproductivity of some equations of mathematical analysis was studied by J. D. Kečkić
in [9], [10]. In [15] J. D. Kečkić and S. B. Prešić considered the general applications
of the concept of reproductivity. The general applications of the concept of reproduc-
tivity in various mathematical structures can also be found in [7], [8], [13], [14], [16]
and [17].

2. Main results

Let m,n ∈ N and C is the field of complex numbers. The set of all m × n matrices
over C is denoted by Cm×n. By Cm×n

a we denote the set of all matrices from Cm×n

with a rank a. For A∈Cm×n the rank of A is denoted by rank(A). The unit matrix of
order m is denoted by Im (if the dimension of unit matrix is known from the context,
we omit the index which indicates the dimension and we use designation I). Let
A ∈ Cm×n, then a solution of the matrix equation

AXA = A

is called {1}-inverse of A and it is denoted by A(1). In the general case {1}-inverse
of A is not uniquely determined. The set of all {1}-inverses of A is denoted by A{1}.
It can be shown that A{1} is not empty. {1}-inverse of A is uniquely determined if
A is regular. In that case {1}-inverse A(1) corresponds to A−1 i.e. A{1} = {A−1}.
There are also other types of inverses. More informations about {1}-inverse and
other types of inverses can be found in [18] and [19]. For A ∈ Cm×m the smallest
non-negative integer k such that rank(Ak)=rank(Ak+1) is called the index of A and
it is denoted by Ind(A).

This section of paper is divided into three parts. The first part is devoted to the
matrix equation

(2.1) AmXBn = C,

where A∈Cp×p, B ∈Cq×q, C ∈Cp×q, m ≥ k = ind(A) and n ≥ l = ind(B). In the
second part we consider the matrix system

(2.2) (2.2.1.) AmX = B ∧ (2.2.2.) XDn = E,
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where A ∈ Cp×p, B ∈ Cp×q, D ∈ Cq×q, E ∈ Cp×q, m ≥ Ind(A) and n ≥ Ind(D). A
solution of the matrix system

(2.3) AXA = A ∧ AkX = XAk,

where A∈Cp×p is a singular matrix and k ∈ N, is analysed in the third part of this
section.

2.1. In this part we analyse the matrix equation (2.1). In the paper [3] R. E. Cline
was the first one who considered the matrix equation (2.1). Using Penrose’s condition
for the consistence of the matrix equation AXB = C, R. E. Cline concluded that
the matrix equation (2.1) is consistent if and only if

(2.4) Am(Am)(1)C(Bn)(1)Bn = C.

In the paper [3] it was shown that the matrix equation (2.1) is consistent for any
m > k and any n > l if and only if the matrix equation AkXBl = C is consistent.
Based on the results in the paper [22] the condition of consistence (2.4) for the matrix
equation (2.1) can be also considered in a new form (see Theorem 2.1).

Lemma 2.1. If the matrix equation (2.1) is consistent, the equivalence

AmXBn = C ⇐⇒ X = f(X) = X − (Am)(1)(AmXBn − C)(Bn)(1)

is true.

Proof. =⇒) : Suppose that AmXBn = C. Then, the equality

(Am)(1)AmXBn(Bn)(1) = (Am)(1)C(Bn)(1)

is also true and

X = X − (Am)(1)AmXBn(Bn)(1) + (Am)(1)C(Bn)(1)

= X − (Am)(1)(AmXBn − C)(Bn)(1)

= f(X)

⇐=) : Suppose that X = f(X) = X − (Am)(1)(AmXBn − C)(Bn)(1). Then,

AmXBn = Amf(X)Bn

= Am
(
X − (Am)(1)(AmXBn − C)(Bn)(1)

)
Bn

= AmXBn − Am(Am)(1)Am

︸ ︷︷ ︸
(=Am)

X Bn(Bn)(1)Bn

︸ ︷︷ ︸
(=Bn)

+ Am(Am)(1)C(Bn)(1)Bn

︸ ︷︷ ︸
( =
(2.4)

C)

= AmXBn − AmXBn + C

= C. ¤
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Remark 2.1. It is easy to show that f 2(Y ) = f(Y ) i.e. the function f satisfies the
condition of reproductivity. Therefore, if the matrix equation (2.1) is consistent, it is
equivalent to the reproductive matrix equation X =f(X).

Based on the previous remark and Theorem 1.2 we conclude that the following theo-
rem is true.

Theorem 2.1. If the matrix equation (2.1) is consistent, the general solution of the
matrix equation (2.1) is given by the formula

X = f(Y ) = (Am)(1)C(Bn)(1) + Y − (Am)(1)AmY Bn(Bn)(1),

where Y is an arbitrary matrix corresponding dimensions.

The following theorem is an extension of the previous theorem.

Theorem 2.2. If X0 is a particular solution of the matrix equation (2.1), the general
solution of the matrix equation (2.1) is given by the formula

(2.5) X = g(Y ) = X0 + Y − (Am)(1)AmY Bn(Bn)(1),

where Y is an arbitrary matrix corresponding dimensions.

Proof. It is easy to see that the solution of the matrix equation (2.1) is given by (2.5).
On the contrary, let X be any solution of the matrix equation (2.1), then

X = X − (Am)(1)C(Bn)(1) + (Am)(1)C(Bn)(1)

= X − (Am)(1)AmXBn(Bn)(1) + (Am)(1)AmX0B
n(Bn)(1)

= X − (Am)(1)Am(X −X0)B
n(Bn)(1)

= X0 + (X −X0)− (Am)(1)Am(X −X0)B
n(Bn)(1)

= X0 + Y − (Am)(1)AmY Bn(Bn)(1)

= g(Y ),

where Y = X −X0. From this we see that every solution X of the matrix equation
(2.1) can be represented in the form (2.5). ¤

Remark 2.2. From g2(Y ) = g(Y ) +
(
X0 − (Am)(1)C(Bn)(1)

)
we conclude that the

function g is reproductive if and only if X0 = (Am)(1)C(Bn)(1).

Remark 2.3. Theorem 2.2 is an extension, as we mentioned, of Theorem 2.1 be-
cause there is a matrix equation (2.1) and a particular solution X0 such that X0 6=
(Am)(1)C(Bn)(1) for any choice of {1}-inverses (Am)(1) and (Bn)(1) similar to the cor-
responding example from [21].
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2.2. In this part we analyse the matrix system (2.2), as a special extension of Pen-
rose’s matrix system [1]:

AX = B ∧ XD = E,

using the concept of reproductivity.

Based on the result from [1] we conclude that one common solution of the matrix
system (2.2) is given by

X1 = (Am)(1)B + E(Dn)(1) − (Am)(1)(Am)AE(Dn)(1).

The results which follow are extensions of the results from [18] (pp. 54–55) and [22].

Lemma 2.2. The matrix equations (2.2.1.) and (2.2.2.) have a common solution if
and only if each equation separately has a solution and

AmE = BDn.

Proof. The proof is similar to the proof in [18]. ¤

Lemma 2.3. If the matrix system (2.2) is consistent, the equivalence

(AmX = B ∧ XDn = E) ⇐⇒
X = f(X) = X1 + (I − (Am)(1)Am)X(I −Dn(Dn)(1))

is true.

Proof. The proof is similar to the proof in [22]. ¤

Remark 2.4. It is easy to show that f 2(Y ) = f(Y ) i.e. the function f satisfies the
condition of reproductivity. Therefore, if the matrix system (2.2) is consistent, it is
equivalent to the reproductive matrix equation X =f(X).

Based on the previous remark and Theorem 1.2 we conclude that the following theo-
rem is true.

Theorem 2.3. If the matrix system (2.2) is consistent, the general solution of the
matrix system (2.2) is given by the formula

X = f(Y ) = X1 + (I − (Am)(1)Am)Y (I −Dn(Dn)(1)),

where Y is an arbitrary matrix corresponding dimensions.

The following theorem is an extension of the previous theorem.

Theorem 2.4. If X0 is a particular solution of the matrix system (2.2), the general
solution of the matrix system (2.2)) is given by the formula

X = g(Y ) = X0 + (I − (Am)(1)Am)Y (I −Dn(Dn)(1)),

where Y is an arbitrary matrix corresponding dimensions.
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Proof. The proof is similar to the proof in [22]. ¤

Remark 2.5. From g2(Y ) = g(Y ) + (X0 − X1) we conclude that the function g is
reproductive if and only if X0 = X1.

2.3. In this part we analyse the matrix system (2.3). The second equation of the
matrix system (2.3) determines {5k}-inverse of A. A solution of the matrix system
(2.3) is {1, 5k}-inverse which is called k-commutative {1}-inverse and is denoted by Ā.
k-commutative {1}-inverses were considered in [11], [12] and [16]. It is easy to check

that one solution of the matrix system (2.3) is given by X̂ = ĀAĀ. In [12] J. D. Kečkić
gave the condition for the consistency of the matrix system (2.3). We are going to
represent the formula of the general reproductive solution for the consistent matrix
system (2.3) using the concept of reproductive equations. We need the following three
lemmas.

Lemma 2.4. AkĀk = ĀkAk.

Proof. AkĀk = AkĀ︸ ︷︷ ︸
(=ĀAk)

Āk−1 = ĀAkĀk−1 = ĀAkĀ︸ ︷︷ ︸
(=ĀAk)

Āk−2 = Ā2AkĀk−2 = . . . = ĀkAk. ¤

Lemma 2.5. For any particular solution X0 of the matrix system (2.3) the equalities

X0A
kĀk = AkĀk+1 and ĀkAkX0 = AkĀk+1

are true.

Proof. We are going to prove the first equality.

X0 Ak
︸︷︷︸

(=AkĀkAk)

Āk = X0A
k

︸ ︷︷ ︸
(=AkX0)

ĀkAk
︸ ︷︷ ︸

( =
L.2.4.

AkĀk)

Āk = AkX0A
kĀ2k

= Ak−1 AX0A︸ ︷︷ ︸
(=A)

Ak−1Ā2k = Ak−1AAk−1Ā2k

= A2k−1Ā2k,

Ak
︸︷︷︸

(=AkĀkAk)

Āk+1 = AkĀkAk
︸ ︷︷ ︸

( =
L.2.4.

AkĀk)

Āk+1 = A2kĀ2k+1

= AkAkĀ︸ ︷︷ ︸
(=ĀAk)

Ā2k = AkĀAkĀ2k

= Ak−1 AĀA︸ ︷︷ ︸
(=A)

Ak−1Ā2k = Ak−1AAk−1Ā2k

= A2k−1Ā2k.

Therefore, X0A
kĀk = AkĀk+1. The second equality is proved similarly. ¤
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Lemma 2.6. Let X̂ = ĀAĀ. If the matrix system (2.3) is consistent, the equivalence

AXA = A ∧ AkX = XAk ⇐⇒

X =f(X)=X̂+X−(I−ĀA)XAkĀk−ĀkAkX(I−AĀ)−ĀAXAĀ

is true.

Proof. =⇒) : Suppose that AXA = A ∧ AkX = XAk. Then,

ĀAXAkĀk = Ā AXA︸ ︷︷ ︸
(=A)

Ak−1Āk = ĀAk
︸ ︷︷ ︸

(=AkĀ)

Āk = AkĀĀk = AkĀk+1.

Bearing in mind that XAkĀk = AkĀk+1 (Lemma 2.5.), we conclude that

XAkĀk = ĀAXAkĀk.

In a similar way we get that ĀkAkX = ĀkAkXAĀ.

Therefore,

X = ĀAĀ + X −XAkĀk + ĀAXAkĀk − ĀkAkX + ĀkAkXAĀ− Ā A︸︷︷︸
(=AXA)

Ā

= ĀAĀ + X −XAkĀk + ĀAXAkĀk − ĀkAkX + ĀkAkXAĀ− ĀAXAĀ

= ĀAĀ + X − (I − ĀA)XAkĀk − ĀkAkX(I − AĀ)− ĀAXAĀ

= f(X).

⇐=) : Suppose that X = f(X) = ĀAĀ + X − (I − ĀA)XAkĀk − ĀkAkX(I − AĀ)
−ĀAXAĀ. Then,

AXA = Af(X)A

= A
(
ĀAĀ + X − (I − ĀA)XAkĀk − ĀkAkX(I − AĀ)− ĀAXAĀ

)
A

= AĀA︸ ︷︷ ︸
(=A)

ĀA+AXA−A(I−ĀA)︸ ︷︷ ︸
(=0)

XAkĀkA−AĀkAkX (I−AĀ)A︸ ︷︷ ︸
(=0)

−AĀA︸ ︷︷ ︸
(=A)

X AĀA︸ ︷︷ ︸
(=A)

= AĀA︸ ︷︷ ︸
(=A)

+AXA− AXA

= A,
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AkX = Akf(X)

= Ak
(
ĀAĀ + X − (I − ĀA)XAkĀk − ĀkAkX(I − AĀ)− ĀAXAĀ

)

= AkĀAĀ + AkX−Ak(I−ĀA)XAkĀk−AkĀkAk
︸ ︷︷ ︸

(=Ak)

X(I−AĀ)−AkĀ AXA︸ ︷︷ ︸
(=A)

Ā

= AkĀAĀ + AkX−AkXAkĀk + AkĀAXAkĀk−AkX + AkXAĀ−AkĀAĀ

= −Ak XAkĀk
︸ ︷︷ ︸

( =
L.2.5.

AkĀk+1)

+AkĀ AXA︸ ︷︷ ︸
(=A)

Ak−1Āk + Ak−1 AXA︸ ︷︷ ︸
(=A)

Ā

= −AkAkĀk+1 + AkĀAk
︸ ︷︷ ︸

(=AkĀ)

Āk + AkĀ

= −A2kĀk+1 + AkAkĀĀk + AkĀ

= −A2kĀk+1 + A2kĀk+1 + AkĀ

= AkĀ,

XAk = f(X)Ak

=
(
ĀAĀ + X − (I − ĀA)XAkĀk − ĀkAkX(I − AĀ)− ĀAXAĀ

)
Ak

= ĀAĀAk+XAk−(I−ĀA)X AkĀkAk
︸ ︷︷ ︸

(=Ak)

−ĀkAkX(I−AĀ)Ak−Ā AXA︸ ︷︷ ︸
(=A)

ĀAk

= ĀAĀAk+XAk−XAk+ĀAXAk−ĀkAkXAk+ĀkAkXAĀAk−ĀAĀAk

= Ā AXA︸ ︷︷ ︸
(=A)

Ak−1 − ĀkAkX︸ ︷︷ ︸
( =
L.2.5.

AkĀk+1)

Ak + ĀkAkXAĀAk

= ĀAk − AkĀk+1Ak + ĀkAkXAĀAk

= ĀAk − AkĀk+1Ak + ĀkAk−1 AXA︸ ︷︷ ︸
(=A)

ĀAk

= ĀAk − AkĀk+1Ak + ĀkAk
︸ ︷︷ ︸

( =
L.2.4.

AkĀk)

ĀAk

= ĀAk − AkĀk+1Ak + AkĀk+1Ak

= ĀAk.

From AkĀ = ĀAk we see that AkX = XAk. ¤
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Remark 2.6. It is easy to show that f 2(Y ) = f(Y ) i.e. the function f satisfies the
condition of reproductivity. Therefore, if the matrix system (2.3) is consistent, it is
equivalent to the reproductive matrix equation X =f(X).

Based on the previous remark and Theorem 1.2 we conclude that the following theo-
rem is true.

Theorem 2.5. If the matrix system (2.3) is consistent, the general solution of the
matrix system (2.3) is given by the formula

X = f(Y ) = ĀAĀ + Y − (I−ĀA)YAkĀk − ĀkAkY (I−AĀ)− ĀAYAĀ,

where Y is an arbitrary matrix corresponding dimensions.

In [12] J. D. Kečkić also proved this theorem, but his proof is different from the
previously exposed proof.
The following theorem is an extension of the previous theorem.

Theorem 2.6. If X0 is a particular solution of the matrix equation (2.3), the general
solution of the matrix equation (2.3) is given by the formula

(2.6) X = g(Y ) =X0 + Y − (I−ĀA)YAkĀk − ĀkAkY (I−AĀ)− ĀAYAĀ.

where Y is an arbitrary matrix corresponding dimensions.

Proof. It is easy to see that the solution of the matrix system (2.3) is given by (2.6).
On the contrary, let X be any solution of the matrix equation (2.3), then

X = X − AkĀk+1
︸ ︷︷ ︸

( =
L.2.5.

XAkĀk)

+ AkĀk+1
︸ ︷︷ ︸

( =
L.2.5.

X0AkĀk)

+ ĀAk+1Āk+1 − ĀAk+1Āk+1 − AkĀk+1
︸ ︷︷ ︸

( =
L.2.5.

ĀkAkX)

+ AkĀk+1
︸ ︷︷ ︸

( =
L.2.5.

ĀkAkX)

AĀ + AkĀk+1
︸ ︷︷ ︸

( =
L.2.5.

ĀkAkX0)

−AkĀk+1
︸ ︷︷ ︸

( =
L.2.5.

ĀkAkX0)

AĀ− Ā A︸︷︷︸
(=AXA)

Ā + Ā A︸︷︷︸
(=AX0A)

Ā

= X −XAkĀk + X0A
kĀk + ĀA AkĀk+1

︸ ︷︷ ︸
( =
L.2.5.

XAkĀk)

− ĀA AkĀk+1
︸ ︷︷ ︸

( =
L.2.5.

X0AkĀk)

− ĀkAkX

+ ĀkAkXAĀ + ĀkAkX0 − ĀkAkX0AĀ− ĀAXAĀ + ĀAX0AĀ
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= X0+(X−X0)−(X−X0)A
kĀk+ĀAXAkĀk−ĀAX0A

kĀk−ĀkAk(X−X0)

+ ĀkAk(X −X0)AĀ− ĀA(X −X0)AĀ

= X0 + (X −X0)− (X −X0)A
kĀk + ĀA(X −X0)A

kĀk − ĀkAk(X −X0)

+ ĀkAk(X −X0)AĀ− ĀA(X −X0)AĀ

= X0 + (X −X0)− (I − ĀA)(X −X0)A
kĀk − ĀkAk(X −X0)(I − AĀ)

− ĀA(X −X0)AĀ

= X0 + Y − (I−ĀA)YAkĀk − ĀkAkY (I−AĀ)− ĀAYAĀ

= g(Y ),

where Y = X − X0. From this we see that every solution X of the matrix system
(2.2) can be represented in the form (2.6). ¤

Remark 2.7. From g2(Y ) = g(Y ) + (X0 − X̂) we conclude that the function g is

reproductive if and only if X0 = X̂.

Remark 2.8. The preceding result is an extension of the consideration which is given
in [22] (see Application 2.2)

3. Conclusion

We want to emphasize that there are also other matrix equations and matrix systems
whose solutions can be analysed in the same way as we done with (2.1), (2.2) and
(2.3).
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[4] S. B. Prešić, Une méthode de résolution des éequations dont toutes les solutions appartiennent
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[15] J. D. Kečkić and S. B. Prešić, Reproductivity - A general approach to equations, Facta Univer-
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