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ODD MEAN LABELING OF THE GRAPHS P,;, P’ AND P<l’2a)

R. VASUKI * AND A. NAGARAJAN 2

ABSTRACT. Let G(V, E) be a graph with p vertices and ¢ edges. A graph G is
said to be odd mean if there exists a function f : V(G) — {0,1,2,3,...,2¢ — 1}
satisfying f is 1 — 1 and the induced map f*: E(G) — {1,3,5,...,2q — 1} defined
by
M if f(u)+ f(v) is even
JH(uw) =

M if f(u)+ f(v) is odd
is a bijection. If a graph G admits an odd mean labeling then G is called an odd
mean graph. In this paper we study the odd meanness of the class of graphs P, 3, pP?
and P<bza> and we prove that the graphs Por i, Pory1.2m+1, Poys Pgﬂ"{l and Pa, m)
for all values of r and m are odd mean graphs.

1. INTRODUCTION

Throughout this paper, by a graph we mean a finite, undirected, simple graph. Let
G(V, E) be a graph with p vertices and ¢ edges. For notations and terminology we
follow [1].

The concept of mean labeling was first introduced by S. Somasundaram and R.
Ponraj [7]. The concept of odd mean labeling was introduced by K. Manickam and
M. Marudai [5]. They have studied in [5] the odd meanness of many standard graphs.

A graph G with p vertices and ¢ edges is said to be odd mean if there exists a
function f: V(G) — {0,1,2,3,...,2¢ — 1} satisfying f is 1 — 1 and the induced map
f*: E(G) = {1,3,5,...,2q — 1} defined by

{ f(u);f(v) if f(u)+ f(v) is even

O i £(y) 4 f(o) is odd,

[ (uv) =
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is a bijection. If a graph G has an odd mean labeling, then we say that G is an odd
mean graph.
An odd mean labeling of the cube is given in Figure 1.

0
2 8
16 18
22 23
FIGURE 1.

In [2], Kathiresan established that the graph P, o,,+1 is graceful for all values of r
and m and conjectured that P, is graceful except when a = 2r 4+ 1 and b = 4s + 2.
In [6] Sekar proved the conjecture except in one case where a = 4r + 1(r > 1) with
the corresponding b = 4m(m > r). In [3, 4], Ganesan discussed the magic labeling
of the type (1,1,1) and consecutive labeling of the type (1,1,1) of the plane graphs
P, and d-anti magic labeling of the plane graphs P’. Meanness of the graphs P,
and PP are discussed in [8]. Motivated by these works, in this paper, we study the
odd meanness of the class of graphs P, ;, P’ and P<l’2a> and we prove that the graphs

2m—+1
Pory Porg1 oms1, Poy, Pyl and Pg”r) for all values of r and m are odd mean graphs.

2. OpDD MEANNESS OF THE GRAPHS P,

Let u and v be two fixed vertices. We connect v and v by means of b > 2 internally
disjoint paths of length a > 2 each. The resulting graph embedded in a plane is
denoted by P, .

Let vi,vi vl ... vl be the vertices of the i copy of the path of length a where
i =1,2,...,b, vy = u and v, = v for all i. We observe that the graph P,, has
(a — 1)b+ 2 vertices and ab edges.

For example P, 5 is shown in Figure 2.

o<

FIGURE 2.

Theorem 2.1. P, ,, is an odd mean graph for all values of r and m.
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Proof. Let v, vi vi, ... vl be the vertices of the i copy of the path of length 2r
where i = 1,2,...,m, v{ = u and vy, = v for all i. We observe that the number of
vertices of the graph Pa,.,,, has (2r — 1)m + 2 vertices and the number of edges of the
graph is 2rm.
Case(i) When m is odd.

Let m = 2k + 1 for some k € Z7.

Define f on V' (Pyor+1) as follows:

f(u) =0,
f(v) =4rm —1,
ﬂ%ﬁﬁzmm+4ﬁ—li:LZ”wnLj:QLZ“wr—l

(4m +3) +4m(j — 1) +4(i — 1), 1<i<k

and f(vy;) =< 2m+1)+4m(j — 1) +4(i — (k+1), k+1<i<2k+1,
j=1,2,...,r—1.

It can be verified that the label of the edges of the graph are 1,3,5,...,2¢—1. Hence,
Py, ok+1 is an odd mean graph for all values of r and &.
Case(ii) When m is even.

Let m = 2k for some k € Z7.

Define f on V(Py,. o) as follows:

f(u) =0,

f(v) =drm —1,

Ui, :4m+42—272217277m7 ':0’1’2""’?0_1
f(v541) J J

dm +4m(j — 1) +4(i — 1), 1<i<k

and f(vy;) =< 2m+34+4m(j —1)+4(i— (k+1)), k+1<i<2k,
j=1,2,...,r—1

It is easy to check that the label of the edges of the graph are 1,3,5,...,2¢—1. Hence,
Py, o is an odd mean graph. Thus P, is an odd mean graph for all r and m.
For example, odd mean labelings of the graphs Fs 5 and Fs g are shown in Figure 3.
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P6,6
FIGURE 3.

Theorem 2.2. Py, 941 15 an odd mean graph for all values of r and m.

Proof. Let vj,vi, vk, ... vi ., be the vertices of the i copy of the path of length
2r+1 where i =1,2,...,2m+ 1, v} = v and v}, = v for all i. We observe that the
number of vertices of the graph Py, 1.2m+1 18 2r(2m+ 1) + 2 and the number of edges
of the graph is (2r + 1)(2m + 1).

Define f on V' (Psyy12m+1) as follows:

f(u) =0,
flo)y=22r+1)2m+1) -1,
Fhe) =(A@m+ 1) +3)j+4i—3, i=1,2,....2m+1, j=0,1,2,...,(r— 1)

[ (42m+1)+4) +@Cm+1)+3)( - 1)
+4(i — 1), 1<i<m
and f(vh;) =4 (2m+2)+ (42m+1)+3)(j — 1)
+4(i — (m+ 1)), m+1<1i<2m+1,
j=1,2,...,r

\
It can be verified that the label of the edges of the graph are 1,3,5,...,2¢g— 1. Hence,
Py, 11.2m+1 18 an odd mean graph.

For example, an odd mean labeling of the graph Pr 7 is shown in Figure 4. U
1 32 29 60 57 88

P7,7
FIGURE 4.
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3. ODD MEANNESS OF THE GRAPHS P!

Let a and b be integers such that ¢ > 2 and b > 2. Let y1,¥s,...,¥y, be the fixed
vertices. We connect the vertices y; and y; 1 by means of b internally disjoint paths
Pij of length i + 1 ecach, 1 <i<a—1,1 <7 <b. Let y;, @ij1,%ijo2,---,Tiji Yitr1 be
the vertices of the path Pj where 1 <17 <a—1and 1 < j <b. The resulting graph
embedded in a plane is denoted by P?, where

a—1 b
V(P ={yi1<i<apul | {oin: 1<k <i}
i=1 j=1
and
a—1 a=1 b
E(P)) = U{yiaxi,j,l 1<j<biu U U{xi,jﬁkxi,j,kﬂ 1<k<i—1}
=1 i=2 j=1
a—1

U{%j,i?/iﬂ 11 <j<b}
i=1

we observe that the number of vertices of the graph P? is M

b(a—1)(a+2)
=

+ a and the number

of edges is
For example, the plane graph P} is shown in Figure 5.

Xoi

FIGURE 5.

Theorem 3.1. P*™*1 js an odd mean graph for all values of v and m.

Proof. Let yy1,ys, ...,y be the fixed vertices. We connect the vertices y; and ;1 by
means of 2m + 1 internally disjoint paths p{ of length i +1each, 1 <i:<r—1,1<
J < 2m+ 1. Let y;,%i;1,%ij2,-.-,%iji Yi+1 be the vertices of the path Pf, where
1<i<r—1land1l<j <2m+ 1. We observe that the number of vertices of the
graph P?mF1 g w +r and the number of edges is Zmrr=—1r+2)

2
Define f on V(P?™1) as follows:
f(y) =0,
Fly) = flyict) + @m+1)20,2<i <7 —1,
fly)=Cm+1)(r—1)(r+2) -1,
flrrn) =47 —3,1<j<2m+1,
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£ ) flyi) + f(z1,0) +1 if 7 is odd
Tij =
! i) + f(w140) ifiiseven, 2 <i<r—1,

( fly) + (42m+1)+4) +4(G—1), 1<i<m,

flyi) +(22m+1) +2)

+4(i — (m + 1)), m+1<i<2m+1,

ifiiseven, 2<i<r—1

f(wiz2) = , _

fly)) +(42m+1)+3)+4(i—1), 1<i<m

fly) + (2(2m +1) + 1)

+4(i — (m + 1)), m+1<1i<2m+1,

\ ifiisodd, 3<i<r—1
and

£ ) fl@iji)+2(k—1)2m+1), ifkisodd,3<k<rk<i<r-—1
T 5 =
o f(@ij2) +2(k—2)2m+1), ifkiseven, 4 <k<rk<i<r-—1L
It can be verified that the label of the edges of the graph are 1,3,5,...,2(2m+1)(r —

1)(r +2) — 1. Then the resultant graph is an odd mean graph.
For example, an odd mean labeling of P? is shown in Figure 6. 0J

107 110 127 130

158 159 1738 179 198

17 P;
FIGURE 6.

4. ODD MEANNESS OF THE GRAPH P,

Let a and b be integers such that a > 1 and b > 2. Let yy,9s,...,%.+1 be the
fixed vertices. We connect the vertices y; and y;1 by means of b internally disjoint
path P/ of length 2i each, 1 < i < a,1 < j < b. Let y;, Tij1,Tij2,- - Tij2i-1, Yit1

be the vertices of the path Pj, where 1 <i < a and 1 < j < b. The resulting graph
embedded in a plane is denoted by P<ba where

a b
V(Phoy) ={yi:1<i<a+ 13U\ loign: 1<k <201}

i=1j=1
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and

a a b
E(P(bga>) :U{yi'xi’j’l . 1 S] S b} U U U{zi,j,k$i7j,k+1 . 1 S kf S 22 — 2}

=1 i=2 j=1
a

U{xi,j,Qi—lyiJrl 11 <5 <b}
i=1

We observe that the number of vertices of the graph P<l’2a> is a?b + a + 1 and the
number of edges is a(a + 1)b.
For example, the plane graph P@ is shown in Figure 7.

T2.1,1 T2.1,2 T21,3

11,1

T14.1 T2.4.1 X242 X243

FIGURE 7.

Theorem 4.1. P&) is an odd mean graph for all values of r and m.

Proof. Let y1,y2,...,yr+1 be the fixed vertices. We connect the vertices y; and y;44
by means of m internally disjoint paths P/ of length 2i each, 1<i<r,1<j<m.
Let Yi, xi,j,17 ZL}"]"Q, Ce 7xi,j,2i—17 Yir1 be the vertices of the path Bj, where 1 S 7 S r and

1 < j < m. We observe that the number of vertices of the graph P7 _ is r*m+7r+1
and the number of edges is r(r + 1)m
Case(i) When m is odd.

Let m=2t+1,t € Z™.

Define f on V(PZ,..) as follows:

(?Jl)
f(yi)

f(yz 1) +2(2i—2)m,2<i<r,

(yr—i-l): ( ) —1
flr11) =47 —-2,1<j<m,
f(ija) = flyi) + flw151),2 < i<,

B fyi) + (dm +3) + 43 — 1), 1<i<t
TP fyy 4 mr )+ 40— (b +1),  t+1siad12<i<h
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and
f(@ija)+2(k—1)m ifkisodd, 3<k<2r Ll <i<r
Feiin) = { f(@ijo) +2(k—2)m  ifkiseven, 4 <k <2r B2 <i<y
It can be verified that, the label of the edges of the graph are 1,3,5,...,

2r(r + 1)m — 1. Hence Pf;:gl is an odd mean graph for all values of r and ¢.
Case(ii) when m is even.
Let m =2t,t € Z+.
Define f on V(P3!) as follows:
fly) =0,
f (i)
f(Yri1)
)
)

flyiz1) +2(20 — 2)m
2r(r 4+ 1)m — 1,
flr11)=47—-2, 1<j<m,
f(@ija) = flyi) + f(@r1), 2<i<r, 1 <5 <m,
fly) +4m +4(i — 1), 1<i<t
J(@ig2) _{ Fl) + @m+3)+4(i— (t+1), t+1<i<2t

{ (2ij1) (k—1)m ifkisodd,3§k;<2r,%§i§r
ij -

f(@ij2) +2(k—2)m ifk:iseven,4§k<2r,¥§i§r.

It is easy to check that, the label of the edges of the graph are 1,3,5,...,
2r(r + 1)m — 1. Hence Pé’;> is an odd mean graph for all values of r and ¢. Thus
PZ% is an odd mean graph for all values of r and m.

For example, odd mean labelings of the graphs P (8) and P 5y are shown in Figure
8. O
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