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THE CONVEXITY GRAPH OF MINIMAL TOTAL DOMINATING
FUNCTIONS OF A GRAPH

S. ARUMUGAM 1 AND SITHARA JERRY 2

Abstract. Let G = (V, E) be a graph without isolated vertices. A function f :
V → [0, 1] is a total dominating function if

∑
u∈N(v)

f(u) ≥ 1 for all v ∈ V . A total

dominating function f is called a minimal total dominating function (MTDF) if
any function g : V → [0, 1] with g < f is not a total dominating function. If
f is an MTDF of G, then Pf = {v ∈ V : f(v) > 0} is the positive set of f
and Bf = {v ∈ V :

∑
u∈N(v)

f(u) = 1} is the boundary set of f . The relation ρ

defined on the set F of all MTDFs of G by fρg if Pf = Pg and Bf = Bg is an
equivalence relation which partitions F into a finite number of equivalence classes
X1, X2, . . . , Xt. The total convexity graph CT (G) of G has {X1, X2, . . . , Xt} as its
vertex set and Xi is adjacent to Xj if there exist f ∈ Xi and g ∈ Xj such that any
convex combination of f and g is an MTDF of G. In this paper we determine the
total convexity graphs of some standard graphs.

1. Introduction

By a graph G = (V,E), we mean a finite undirected graph with neither loops nor
multiple edges. For graph theoretic terminology we refer to Chartrand and Lesniak
[1]. The order and size of G are denoted by n and m respectively.

A dominating set of a graph G = (V, E) is a subset S of V such that every vertex
of V − S is adjacent to a vertex in S. A dominating set S is called a minimal
dominating set if no proper subset of S is a dominating set. Domination and its
variations in graphs are now well studied. A comprehensive study of the fundamentals
of domination is given in the book by Haynes et al. [5]. For surveys of several advanced
topics in domination, we refer to the book edited by Haynes et al. [6].
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Let G = (V,E) be a graph without isolated vertices. A dominating set S of V is
called a total dominating set of G if the induced subgraph 〈S〉 has no isolated vertices.
A total dominating set S is called minimal total dominating set if no proper subset
of S is a total dominating set.

A function f : V → [0, 1] is called a total dominating function (TDF ) if f(N(v)) =∑
u∈N(v)

f(u) ≥ 1 for all v ∈ V , where N(v) is the neighborhood of v. A TDF f

is called a minimal total dominating function (MTDF ) if for all g < f , g is not
a TDF . Let f be a total dominating function. The boundary of f is defined by
Bf = {v ∈ V : f(N(v)) =

∑
u∈N(v)

f(u) = 1}. The positive set of f is defined by

Pf = {v ∈ V : f(v) > 0}.
Let A and B be two subsets of V . We say that B totally dominates A if every

vertex in A is adjacent to at least one vertex in B and in this case we write B →t A.

Theorem 1.1. [3] A TDF f is minimal if and only if Bf →t Pf .

If f and g are two TDFs of G, then its convex combination hλ = λf + (1 − λ)g,
0 < λ < 1, is also a TDF of G. However the convex combination of two MTDFs need
not be an MTDF . The following theorem shows that either all convex combinations
of f and g are MTDFs or no convex combination of f and g is an MTDF .

Theorem 1.2. [3] Let f and g be MTDFs. Then hλ = λf + (1− λ)g is an MTDF
if and only if Bf ∩Bg →t Pf ∪ Pg.

Definition 1.1. [4] A minimal total dominating function f is called universal
(UMTDF ) if the convex combination of f and any other MTDF is also an MTDF .

Definition 1.2. Any vertex of degree 1 in a graph is called a leaf and the unique
vertex which is adjacent to a leaf is called a support vertex.

Theorem 1.3. [3] A graph G has a unique MTDF if and only if every vertex of G
is adjacent to a support vertex.

Cockayne et al. [2] introduced the concept of convexity graph with respect to
minimal dominating functions of a graph. If G is a graph without isolated vertices,
then the definition of convexity graph can be extended to the set of all MTDFs of
G and is given in Reji Kumar [7]. Let FT denote the set of all MTDFs of G. The
equivalence relation ρ defined on FT by fρg if f and g have the same positive set and
same boundary set, gives a partition of FT into a finite number of equivalence classes
Y1, Y2, . . . , Yr. The total convexity graph CT (G) is defined as follows: V (CT (G)) =
{Y1, Y2, . . . , Yr} and Yi is adjacent to Yj if there exist fi ∈ Yi and fj ∈ Yj such that
any convex combination of fi and fj is a minimal total dominating function.

In this paper we determine the total convexity graphs of some standard graphs.
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2. Total convexity graphs of some standard graphs

Each vertex of the total convexity graph of a graph is an equivalence class of MTDFs
of G. Throughout we identify an equivalence class Y with an MTDF f ∈ Y. We start
with the following simple observations.

Observation 2.1. It follows from Theorem 1.3 that CT (G) = K1 if and only if every
vertex of G is adjacent to a support vertex.

Observation 2.2. If v is a support vertex of a graph G, then f(v) = 1 for all MTDF s
f of G and hence Pf contains all support vertices.

Observation 2.3. If f and g are two MTDFs of a graph G, then it follows from
Theorem 1.2 that f and g are adjacent in the total convexity graph CT (G) if and only
if Bf ∩ Bg →t Pf ∪ Pg. Hence if there exists a total dominating set D such that
Bf ⊇ D for all MTDF s f , then CT (G) is complete and in this case every MTDF of
G is a UMTDF .

We now proceed to determine the total convexity graphs of some standard graphs.
We first consider paths. For the path Pn = (v1, v2, . . . , vn), we denote any MTDF f
by (λ1, λ2, . . . , λn), where λi = f(vi).

Observation 2.4. Any MTDF of P3 is of the form (λ, 1, 1 − λ) where 0 ≤ λ ≤ 1.
Hence there exist exactly three equivalence classes of MTDFs, namely, f1 = (1, 1, 0),
f2 = (0, 1, 1) and f3 = (λ, 1, 1 − λ), 0 < λ < 1. Hence CT (P3) = K3. Also the only
MTDF of P4 is (0, 1, 1, 0) and hence CT (P4) = K1.

Theorem 2.1. For the path P5, we have CT (P5) = K3.

Proof. Let P5 = (v1, v2, v3, v4, v5) and let f = (λ1, λ2, λ3, λ4, λ5) be any MTDF of
P5. Clearly λ2 = λ4 = 1, λ1 = f(v1) ≥ 1 − λ3 and λ5 = f(v5) ≥ 1 − λ3. Since f is
minimal, λ1 = λ5 = 1 − λ3. Hence f = (1 − λ3, 1, λ3, 1, 1 − λ3), where 0 ≤ λ3 ≤ 1.
Further any function f of the above form is a TDF with Bf = V −{v3} and since Bf

is a total dominating set of P5, it follows that f is an MTDF of P5. Hence it follows
that CT (P5) = K3. ¤
Theorem 2.2. For the path P6, we have CT (P6) = K9.

Proof. Let P6 = (v1, v2, v3, v4, v5, v6). Let f = (λ1, λ2, λ3, λ4, λ5, λ6) be any MTDF of
P6. Clearly λ2 = λ5 = 1, λ3 = 1− λ1 and λ4 = 1− λ6. Hence f = (λ1, 1, 1− λ1, 1−
λ6, 1, λ6) and the boundary set Bf contains the total dominating set {v1, v2, v5, v6}.
Thus any MTDF of P6 is of the form f = (λ1, 1, 1− λ1, 1− λ6, 1, λ6) where 0 ≤ λ1,
λ6 ≤ 1. Hence there exist exactly nine MTDFs for P6 with distinct positive sets.

For each of the MTDFs f , the positive set Pf uniquely determines the boundary
set Bf and hence the total number of equivalence classes of MTDFs is nine. Since
Bf contains the total dominating set V − {v3, v4} for all MTDFs f , it follows that
CT (P6) = K9. ¤
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Theorem 2.3. For the path P7, we have CT (P7) = K7.

Proof. Let P7 = (v1, v2, v3, v4, v5, v6, v7) and let f = (λ1, λ2, λ3, λ4, λ5, λ6, λ7) be any
MTDF of P7. Clearly λ2 = λ6 = 1, λ3 = 1− λ1, λ5 = 1− λ7 and λ3 + λ5 ≥ 1.

Now, λ3 + λ5 = 2 − (λ1 + λ7) ≥ 1 and hence λ1 + λ7 ≤ 1. Further since f is an
MTDF , we have λ4 = 0. Thus f is of the form f = (λ1, 1, 1 − λ1, 0, 1 − λ7, 1, λ7)
where 0 ≤ λ1, λ7 ≤ 1 and λ1 + λ7 ≤ 1. Further any function f of the above form is a
TDF of P7 and since Bf contains the total dominating set V − {v4}, it follows that
f is an MTDF of P7. Also if 0 < λ1, λ7 < 1, then Pf = V − {v4} and Bf = V or
V − {v4} according as λ1 + λ7 = 1 or λ1 + λ7 < 1. Hence the number of equivalence
classes of MTDFs is seven. Since Bf contains the total dominating set V −{v4} for
all MTDFs f , CT (P7) = K7. ¤

Theorem 2.4. For the path P8, we have CT (P8) = K9.

Proof. Let P8 = (v1, v2, v3, v4, v5, v6, v7, v8) and let f = (λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8)
be any MTDF of P8. Clearly λ2 = 1, λ3 = 1− λ1, λ7 = 1 and λ6 = 1− λ8. Now since
f(N(v4)) = λ3 + λ5 = 1− λ1 + λ5 ≥ 1, we have λ5 ≥ λ1. Also, f(N(v5)) = λ4 + λ6 =
λ4 + 1 − λ8 ≥ 1 and hence λ4 ≥ λ8. By minimality of f, it follows that λ5 = λ1 and
λ4 = λ8. Hence f = (λ1, 1, 1− λ1, λ8, λ1, 1− λ8, 1, λ8).

Further any function of the above form is a TDF and the corresponding boundary
set Bf contains the total dominating set {v1, v2, v4, v5, v7, v8}. Thus an MTDF of
P8 is determined by the two real numbers λ1, λ8 where 0 ≤ λ1, λ8 ≤ 1. Hence the
total number of positive sets is nine and each positive set Pf uniquely determines
the boundary set Bf . Hence the number of equivalence classes of MTDFs is nine
and since Bf contains the total dominating set {v1, v2, v4, v5, v7, v8} for all MTDFs
f, CT (P8) = K9. ¤

Theorem 2.5. For the path P9, we have CT (P9) = K9 + (K12 ∪K12).

Proof. Let P9 = (v1, v2, v3, v4, v5, v6, v7, v8, v9) and let f = (λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8,
λ9) be any MTDF of P9. Clearly λ2 = λ8 = 1, λ3 = 1 − λ1 and λ7 = 1 − λ9. Now,
f(N(v4)) = λ3 + λ5 = 1−λ1 + λ5 ≥ 1 and hence λ5 ≥ λ1. Also f(N(v6)) = λ5 + λ7 =
λ5 + 1− λ9 ≥ 1 and hence λ5 ≥ λ9. Hence λ5 ≥ t1 = max{λ1, λ9} and it follows from
the minimality of f that λ5 = t1.

Now f(N(v5)) = λ4 + λ6 ≥ 1 and hence λ6 ≥ 1 − λ4. Since f is minimal, it
follows that λ6 = 1 − λ4. Hence f = (λ1, 1, 1 − λ1, λ4, t1, 1 − λ4, 1 − λ9, 1, λ9) where
0 ≤ λ1, λ4, λ9 ≤ 1 and t1 = max{λ1, λ9}. Now any function f of above form is a TDF
of P9. Further

Bf ⊇ {v1, v2, v5, v8, v9, v6} if t1 = λ9 and
Bf ⊇ {v1, v2, v5, v8, v9, v4} if t1 = λ1.

Since Bf is a total dominating set of P9, it follows that f is an MTDF of P9. Hence
any MTDF of P9 is determined by the three real numbers λ1, λ4 and λ9, where
0 ≤ λ1, λ4, λ9 ≤ 1 and hence the number of positive sets is twenty seven. Also
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v3 ∈ Bf if λ4 = 0 and v7 ∈ Bf if λ4 = 1. Hence the possible boundary sets are given
by

B1 = {v1, v2, v5, v8, v9, v4, v3},
B2 = {v1, v2, v5, v8, v9, v4, v7},
B3 = {v1, v2, v5, v8, v9, v4},
B4 = {v1, v2, v5, v8, v9, v6, v3},
B5 = {v1, v2, v5, v8, v9, v6, v7},
B6 = {v1, v2, v5, v8, v9, v6},
B7 = {v1, v2, v5, v8, v9, v4, v6, v3},
B8 = {v1, v2, v5, v8, v9, v4, v6, v7} and
B9 = {v1, v2, v5, v8, v9, v4, v6}.

Hence if 0 < λ1 < 1, 0 < λ9 < 1 and 0 < λ4 < 1, then for the corresponding MTDF f
we have Pf = V and the boundary set is any one of the sets B3 or B6 or B9 according
as λ1 > λ9, λ9 > λ1 or λ1 = λ9. Thus we get three equivalence classes of MTDFs,
which are given below.
f1 = (λ1, 1, 1− λ1, λ4, λ1, 1− λ4, 1− λ9, 1, λ9), where 0 < λ1, λ4, λ9 < 1,
Pf1 = V, Bf1 = B3;
f2 = (λ1, 1, 1− λ1, λ4, λ9, 1− λ4, 1− λ9, 1, λ9), where 0 < λ1, λ4, λ9 < 1,
Pf2 = V, Bf2 = B6;
f3 = (λ1, 1, 1− λ1, λ4, λ1, 1− λ4, 1− λ1, 1, λ1), where 0 < λ1, λ4 < 1,
Pf3 = V, Bf3 = B9.

If 0 < λ1 < 1, 0 < λ9 < 1 and λ4 = 0, then Pf = V − {v4} and the boundary set is
any one of the sets B1 or B4 or B7 according as λ1 > λ9, λ9 > λ1 or λ9 = λ1. Thus
we get three equivalence classes of MTDFs, which are given below.
f4 = (λ1, 1, 1− λ1, 0, λ1, 1, 1− λ9, 1, λ9), where 0 < λ1, λ9 < 1,
Pf4 = V − {v4}, Bf4 = B1;
f5 = (λ1, 1, 1− λ1, 0, λ9, 1, 1− λ9, 1, λ9), where 0 < λ1, λ9 < 1,
Pf5 = V − {v4}, Bf5 = B4;
f6 = (λ1, 1, 1− λ1, 0, λ1, 1, 1− λ1, 1, λ1), where 0 < λ1 < 1,
Pf6 = V − {v4}, Bf6 = B7.

Similarly if 0 < λ1 < 1, 0 < λ9 < 1 and λ4 = 1, then Pf = V − {v6} and the
boundary set is any one of the sets B2 or B5 or B8 according as λ1 > λ9, λ9 > λ1 or
λ9 = λ1. Thus we get three equivalence classes of MTDFs, which are given below.
f7 = (λ1, 1, 1− λ1, 1, λ1, 0, 1− λ9, 1, λ9), where 0 < λ1, λ9 < 1,
Pf7 = V − {v6}, Bf7 = B2;
f8 = (λ1, 1, 1− λ1, 1, λ9, 0, 1− λ9, 1, λ9), where 0 < λ1, λ9 < 1,
Pf8 = V − {v6}, Bf8 = B5;
f9 = (λ1, 1, 1− λ1, 1, λ1, 0, 1− λ1, 1, λ1), where 0 < λ1 < 1,
Pf9 = V − {v6}, Bf9 = B8.
In all other cases, the positive set Pf uniquely determines the boundary set Bf . The
MTDFs with various positive sets and the corresponding boundary sets are listed
below.
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f10 = (0, 1, 1, λ4, λ9, 1− λ4, 1− λ9, 1, λ9), where 0 < λ4, λ9 < 1,
Pf10 = V − {v1}, Bf10 = B6;
f11 = (1, 1, 0, λ4, 1, 1− λ4, 1− λ9, 1, λ9), where 0 < λ4, λ9 < 1,
Pf11 = V − {v3}, Bf11 = B3;
f12 = (λ1, 1, 1− λ1, λ4, λ1, 1− λ4, 1, 1, 0), where 0 < λ1, λ4 < 1,
Pf12 = V − {v9}, Bf12 = B3;
f13 = (λ1, 1, 1− λ1, λ4, 1, 1− λ4, 0, 1, 1), where 0 < λ1, λ4 < 1,
Pf13 = V − {v7}, Bf13 = B6;
f14 = (0, 1, 1, 0, λ9, 1, 1− λ9, 1, λ9), where 0 < λ9 < 1,
Pf14 = V − {v1, v4}, Bf14 = B4;
f15 = (0, 1, 1, 1, λ9, 0, 1− λ9, 1, λ9), where 0 < λ9 < 1,
Pf15 = V − {v1, v6}, Bf15 = B5;
f16 = (0, 1, 1, λ4, 0, 1− λ4, 1, 1, 0), where 0 < λ4 < 1,
Pf16 = V − {v1, v5, v9}, Bf16 = B9;
f17 = (0, 1, 1, λ4, 1, 1− λ4, 0, 1, 1), where 0 < λ4 < 1,
Pf17 = V − {v1, v7}, Bf17 = B6;
f18 = (1, 1, 0, 0, 1, 1, 1− λ9, 1, λ9), where 0 < λ9 < 1,
Pf18 = V − {v3, v4}, Bf18 = B1;
f19 = (1, 1, 0, 1, 1, 0, 1− λ9, 1, λ9), where 0 < λ9 < 1,
Pf19 = V − {v3, v6}, Bf19 = B2;
f20 = (1, 1, 0, λ4, 1, 1− λ4, 1, 1, 0), where 0 < λ4 < 1,
Pf20 = V − {v3, v9}, Bf20 = B3;
f21 = (1, 1, 0, λ4, 1, 1− λ4, 0, 1, 1), where 0 < λ4 < 1,
Pf21 = V − {v3, v7}, Bf21 = B9;
f22 = (λ1, 1, 1− λ1, 0, λ1, 1, 1, 1, 0), where 0 < λ1 < 1,
Pf22 = V − {v4, v9}, Bf22 = B1;
f23 = (λ1, 1, 1− λ1, 0, 1, 1, 0, 1, 1), where 0 < λ1 < 1,
Pf23 = V − {v4, v7}, Bf23 = B4;
f24 = (λ1, 1, 1− λ1, 1, λ1, 0, 1, 1, 0), where 0 < λ1 < 1,
Pf24 = V − {v6, v9}, Bf24 = B2;
f25 = (λ1, 1, 1− λ1, 1, 1, 0, 0, 1, 1), where 0 < λ1 < 1,
Pf25 = V − {v6, v7}, Bf25 = B5;
f26 = (0, 1, 1, 0, 0, 1, 1, 1, 0), Pf26 = V − {v1, v4, v9, v5}, Bf26 = B7;
f27 = (0, 1, 1, 0, 1, 1, 0, 1, 1), Pf27 = V − {v1, v4, v7}, Bf27 = B4;
f28 = (0, 1, 1, 1, 0, 0, 1, 1, 0), Pf28 = V − {v1, v6, v9, v5}, Bf28 = B8;
f29 = (0, 1, 1, 1, 1, 0, 0, 1, 1), Pf29 = V − {v1, v6, v7}, Bf29 = B5;
f30 = (1, 1, 0, 0, 1, 1, 1, 1, 0), Pf30 = V − {v3, v4, v9}, Bf30 = B1;
f31 = (1, 1, 0, 0, 1, 1, 0, 1, 1), Pf31 = V − {v3, v4, v7}, Bf31 = B7;
f32 = (1, 1, 0, 1, 1, 0, 1, 1, 0), Pf32 = V − {v3, v6, v9}, Bf32 = B2;
f33 = (1, 1, 0, 1, 1, 0, 0, 1, 1), Pf33 = V − {v3, v6, v7}, Bf33 = B8.
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Hence there exist exactly thirty three equivalence classes of MTDFs for P9. Thus
|V (CT (P9)| = 33.

Now let V1 = {f ∈ V (CT (P9) : Bf = B1 or B2 or B3},
V2 = {f ∈ V (CT (P9) : Bf = B4 or B5 or B6} and

V3 = {f ∈ V (CT (P9) : Bf = B7 or B8 or B9}.
Then |V1| = 12, |V2| = 12 and |V3| = 9.

For any f ∈ V1, the boundary set Bf contains the total dominating set B3 and
hence 〈V1〉 = K12. Similarly 〈V2〉 = K12 and 〈V3〉 = K9. Also B3 ∩ B9 = B3 and
B6 ∩ B9 = B6. Hence every vertex of V1 is adjacent to every vertex of V3 and every
vertex of V2 is adjacent to every vertex of V3. Also if f ∈ V1 and g ∈ V2, then Bf∩Bg =
{v1, v2, v5, v8, v9}. However Pf ∪ Pg contains v5 and v5 is not adjacent to any vertex
in Bf ∩Bg. Hence f and g are not adjacent. Thus CT (P9) = K9 + (K12 ∪K12). ¤
Theorem 2.6. Let G be the total convexity graph of the path P12. Then V (G) can
be partitioned into nine subsets V1, V2, V3, V4, V5, V6, V7, V8 and V9 such that |V1| =
9, |V2| = |V3| = |V5| = |V6| = 16, |V4| = |V7| = |V8| = |V9| = 12, 〈V1 ∪ V2 ∪ V4 ∪ V8〉 =
K49, 〈V1 ∪ V3 ∪ V4 ∪ V9〉 = K49, 〈V1 ∪ V5 ∪ V7 ∪ V8〉 = K49 and 〈V1 ∪ V6 ∪ V7 ∪ V9〉 =
K49.

Proof. Let P12 = (v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12) and let f = (λ1, λ2, λ3,
λ4, λ5, λ6, λ7, λ8, λ9, λ10, λ11, λ12) be any MTDF of P12. Clearly λ2 = λ11 = 1, λ3 =
1 − λ1 and λ10 = 1 − λ12. Now f(N(v5)) = λ4 + λ6 ≥ 1 and hence λ6 ≥ 1 − λ4.
Since f is minimal, it follows that λ6 = 1 − λ4. Now f(N(v7)) = 1 − λ4 + λ8 ≥ 1
and hence λ8 ≥ λ4. Also f(N(v9)) = λ8 + 1 − λ12 ≥ 1 and hence λ8 ≥ λ12. Hence
λ8 ≥ t2 = max(λ4, λ12) and it follows from the minimality of f that λ8 = t2.

Now f(N(v8)) = λ7 + λ9 ≥ 1 and hence λ7 ≥ 1 − λ9. Since f is minimal, it
follows that λ7 = 1 − λ9. Now f(N(v6)) = λ5 + 1 − λ9 ≥ 1 and hence λ5 ≥ λ9. Also
f(N(v4)) = 1− λ1 + λ5 ≥ 1 and hence λ5 ≥ λ1. Hence λ5 ≥ t1 = max{λ1, λ9} and it
follows from minimality of f that λ5 = t1. Hence f = (λ1, 1, 1− λ1, λ4, t1, 1− λ4, 1−
λ9, t2, λ9, 1 − λ12, 1, λ12), where 0 ≤ λ1, λ4, λ9, λ12 ≤ 1. Also any function f of the
above form is a TDF of P12. Further

Bf ⊇ S ∪ {v4, v7} if t1 = λ1 and t2 = λ4,
Bf ⊇ S ∪ {v4, v9} if t1 = λ1 and t2 = λ12,
Bf ⊇ S ∪ {v6, v7} if t1 = λ9 and t2 = λ4

and Bf ⊇ S ∪ {v6, v9} if t1 = λ9 and t2 = λ12, where S = {v1, v2, v5, v8, v11, v12}.
Also v3 ∈ Bf when λ4 = 0 and v10 ∈ Bf when λ9 = 0. Since Bf is a total dominating

set of P12, it follows that f is an MTDF of P12. Hence any MTDF of P12 is determined
by the four real numbers λ1, λ4, λ9 and λ12, where 0 ≤ λ1, λ4, λ9, λ12 ≤ 1 and hence
the total number of positive sets is eighty one.

If 0 < λ1, λ4, λ9, λ12 < 1, then for the corresponding MTDFs we have Pf =
V and there exist nine possible boundary sets B1, B2, B3, B4, B5, B6, B7, B8 and B9

depending on the values of t1 and t2 as given below.
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If t1 = λ1 and t2 = λ4, then B1 = S ∪ {v4, v7}.
If t1 = λ1 and t2 = λ12, then B2 = S ∪ {v4, v9}.
If t1 = λ1 and t2 = λ4 = λ12, then B3 = S ∪ {v4, v7, v9}.
If t1 = λ9 and t2 = λ4, then B4 = S ∪ {v6, v7}.
If t1 = λ9 and t2 = λ12, then B5 = S ∪ {v6, v9}.
If t1 = λ9 and t2 = λ4 = λ12, then B6 = S ∪ {v6, v7, v9}.
If t1 = λ1 = λ9 and t2 = λ4, then B7 = S ∪ {v4, v6, v7}.
If t1 = λ1 = λ9 and t2 = λ12, then B8 = S ∪ {v4, v6, v9}.

If t1 = λ1 = λ9 and t2 = λ4 = λ12, then B9 = S ∪ {v4, v6, v7, v9}. Thus we get nine
equivalence classes of MTDFs with Pf = V.

If 0 < λ4, λ12 < 1 and at least one of the values λ1, λ9 is equal to zero or one, then
for the corresponding MTDFs we have eight positive sets and there exist exactly
three possible boundary sets for each positive set, according as λ4 > λ12, λ4 < λ12 or
λ4 = λ12. The eight possible positive sets and the corresponding boundary sets are
given below.

If Pf = V − {v3}, then Bf = B1 or B2 or B3.
If Pf = V − {v1}, then Bf = B4 or B5 or B6.
If Pf = V − {v7}, then Bf = B4 or B5 or B6.
If Pf = V − {v9}, then Bf = B1 ∪ {v10} or B2 ∪ {v10} or B3 ∪ {v10}.
If Pf = V − {v1, v7}, then Bf = B4 or B5 or B6.
If Pf = V − {v3, v9}, then Bf = B1 ∪ {v10} or B2 ∪ {v10} or B3 ∪ {v10}.
If Pf = V − {v3, v7}, then Bf = B7 or B8 or B9.
If Pf = V − {v1, v9, v5}, then Bf = B7 ∪ {v10} or B8 ∪ {v10} or B9 ∪ {v10}.

Thus we get 24 equivalence classes of MTDFs.
Similarly if 0 < λ1, λ9 < 1 and at least one of the values λ4, λ12 is equal to zero

or one, then for the corresponding MTDFs we have eight positive sets and three
possible boundary sets for each positive set according as λ1 > λ9, λ1 < λ9 or λ1 = λ9.

For the remaining sixty four positive sets, the positive set uniquely determines the
boundary set. Hence there exist exactly 121 equivalence classes of MTDFs for P12.

Let

V1 = {f ∈ V (CT (P12)) : Bf ⊇ B9},
V2 = {f ∈ V (CT (P12)) : Bf ⊇ B1},
V3 = {f ∈ V (CT (P12)) : Bf ⊇ B2},
V4 = {f ∈ V (CT (P12)) : Bf ⊇ B3},
V5 = {f ∈ V (CT (P12)) : Bf ⊇ B4},
V6 = {f ∈ V (CT (P12)) : Bf ⊇ B5},
V7 = {f ∈ V (CT (P12)) : Bf ⊇ B6},
V8 = {f ∈ V (CT (P12)) : Bf ⊇ B7} and

V9 = {f ∈ V (CT (P12)) : Bf ⊇ B8}.
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Now Bf ⊇ B9 only when t1 = λ1 = λ9 and t2 = λ4 = λ12. Total number of positive
sets when λ1 = λ9 and λ4 = λ12 is 9. Therefore |V1| = 9. Also Bf ⊇ B1 only when
t1 = λ1 and t2 = λ4. Hence λ1 > λ9 and λ4 > λ12. Since λ1 > λ9, we have four possible
choices for the pair (λ1, λ9), namely, (1, 0) (1, λ9), (λ1, 0) and (λ1, λ9). Similarly we
have four possible choices for the pair (λ4, λ12). Hence the total number of positive
sets when λ1 > λ9 and λ4 > λ12 is 16. Therefore |V2| = 16. Similarly |V3| = |V5| =
|V6| = 16. Now, Bf ⊇ B3 only when t1 = λ1 and t2 = λ4 = λ12. Hence λ1 > λ4 and
λ4 = λ12. Since λ4 = λ12, we have three possible choices for he pair (λ4, λ12), namely,
(1, 1), (0, 0) and (λ4, λ12). Hence the total number of positive sets when λ1 > λ9 and
λ4 = λ12 is 12. Therefore |V4| = 12. Similarly |V7| = |V8| = |V9| = 12.

Now the boundary sets of V1, V2, V4 and V8 contain the total dominating set B1 and
hence 〈V1 ∪ V2 ∪ V4 ∪ V8〉 = K49. Also the boundary sets of V1, V3, V4 and V9 contain
the total dominating set B2 and hence 〈V1 ∪ V3 ∪ V4 ∪ V9〉 = K49. The boundary sets
of V1, V5, V7 and V8 contain the total dominating set B4 and hence 〈V1 ∪ V5 ∪ V7 ∪ V8〉 =
K49. The boundary sets of V1, V6, V7 and V9 contain the total dominating set B5 and
hence 〈V1 ∪ V6 ∪ V7 ∪ V9〉 = K49. ¤

Theorem 2.7. The total convexity graph of K3 is the graph with exactly one cut
vertex and having three blocks each isomorphic to K3.

Proof. Let V (K3) = {v1, v2, v3} and let f be any MTDF of K3. Then f(v1)+f(v2) ≥
1, f(v2) + f(v3) ≥ 1 and f(v3) + f(v1) ≥ 1. Adding these inequalities we get |f | ≥ 3

2
.

We claim that |Bf | ≥ 2. Suppose |Bf | = 1 and let Bf = {v1}. Then f(v2)+f(v3) =
1. Since |f | ≥ 3

2
, it follows that v1 ∈ Pf and hence Bf does not totally dominate Pf ,

which is a contradiction. Thus |Bf | ≥ 2.
We now claim that if A ⊆ V (K3) and |A| = 2, then there exist exactly two

equivalence classes of MTDFs with Bf = A. Let A = {v1, v2}. Let f be any MTDF
of K3 with Bf = A. Then f(v2)+f(v3) = 1 and f(v3)+f(v1) = 1. Hence f(v2) = f(v1)
and since |f | ≥ 3

2
, it follows that {v1, v2} ⊆ Pf . Hence Pf = {v1, v2} or {v1, v2, v3}.

Now, f1 = (1, 1, 0) is an MTDF of K3 with Pf1 = {v1, v2} and Bf1 = {v1, v2}. Also
f2 = (3

4
, 3

4
, 1

4
) is an MTDF of K3 with Pf2 = V and Bf2 = {v1, v2}. Thus we have

exactly two equivalence classes of MTDFs with Bf = A.
Also when Bf = V, we have f(v1)+f(v2) = f(v2)+f(v3) = f(v3)+f(v1) = 1. Hence

f(v1) = f(v2) = f(v3), so that Pf = V. Hence there exists exactly one equivalence
class of MTDF with Pf = V. Thus there exist exactly seven equivalence classes of
MTDFs, namely f1, f2, f3, f4, f5, f6 and f7 whose positive sets and boundary sets are
given below.

Pf1 = {v1, v2}, Bf1 = {v1, v2};
Pf2 = V, Bf2 = {v1, v2};
Pf3 = {v2, v3}, Bf3 = {v2, v3};
Pf4 = V, Bf4 = {v2, v3};
Pf5 = {v3, v1}, Bf5 = {v3, v1};
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Pf6 = V, Bf6 = {v3, v1};
Pf7 = V, Bf7 = V respectively.

Let V1 = {f1, f2}, V2 = {f3, f4}, V3 = {f5, f6} and V4 = {f7}.
Clearly each of the induced subgraphs 〈V1〉 , 〈V2〉 and 〈V3〉 is K2 and f7 is adjacent

to all the remaining vertices. Further any element of Vi is not adjacent to any element
of Vj for any i, j with i 6= j, 1 ≤ i, j ≤ 3. ¤

Theorem 2.8. Let G be the total convexity graph of K4. Then G has the following
properties.

(i) |V (G)| = 33.
(ii) The graph G has a unique vertex v with deg v = 32.
(iii) The set V (G)−{v} can be partitioned into seven subsets A, V12, V13, V14, V23, V24

and V34 such that 〈A〉 = K8 and 〈Vij〉 = K4.
(iv) The set A can be partitioned into four subsets A1, A2, A3 and A4 such that |Ai| =

2 for each i and 〈Vij ∪ Ak ∪ Al〉 = K8, where 1 ≤ i < j ≤ 4, 1 ≤ k, l ≤ 4 and
i, j, k, l are all distinct.

Proof. Let V (K4) = {v1, v2, v3, v4} and let f be any MTDF of K4. Then for any vi,
1 ≤ i ≤ 4, we have

∑
u∈N(vi)

f(u) ≥ 1. Adding these four inequalities we get 3|f | ≥ 4

and hence |f | ≥ 4
3
.

We claim that |Bf | ≥ 2. Suppose |Bf | = 1 and let Bf = {v1}. Then f(v2)+f(v3)+
f(v4) = 1. Since |f | ≥ 4

3
, it follows that v1 ∈ Pf and hence Bf does not totally

dominate Pf , which is a contradiction. Thus |Bf | ≥ 2.
We now claim that if X ⊆ V (K4) and |X| = 2, then there exist exactly four

equivalence classes of MTDFs with Bf = X. Let X = {v1, v2}. Let f be any MTDF
with Bf = X. Then f(v2) + f(v3) + f(v4) = 1 and f(v1) + f(v3) + f(v4) = 1. Hence
f(v2) = f(v1) and since |f | ≥ 4

3
, it follows that f(v1) > 0. Thus {v1, v2} ⊆ Pf . Hence

Pf = {v1, v2} or {v1, v2, v3} or {v1, v2, v4} or V. Now,
f1 = (1, 1, 0, 0) is an MTDF with Pf1 = {v1, v2}, Bf1 = {v1, v2}; f2 = (3

4
, 3

4
, 1

4
, 0)

is an MTDF with Pf2 = {v1, v2, v3}, Bf2 = {v1, v2}; f3 = (3
4
, 3

4
, 0, 1

4
) is an MTDF

with Pf3 = {v1, v2, v4}, Bf3 = {v1, v2} and f4 = (3
4
, 3

4
, 1

8
, 1

8
) is an MTDF with Pf4 =

{v1, v2, v3, v4}, Bf4 = {v1, v2}.
Thus for each subset X of V (K4) with |X| = 2, there are exactly four equivalence

classes of MTDFs with boundary set X and hence there exist twenty four such
equivalence classes.

We now claim that if X ⊆ V (K4) and |X| = 3, then there exist exactly two
equivalence classes of MTDFs with Bf = X. Let X = {v1, v2, v3}. Let f be any
MTDF with Bf = X. Then

f(v2) + f(v3) + f(v4) = 1,
f(v1) + f(v3) + f(v4) = 1 and
f(v1) + f(v2) + f(v4) = 1.



THE CONVEXITY GRAPH OF MINIMAL TOTAL DOMINATING FUNCTIONS... 129

Hence f(v2) = f(v1) = f(v3) and Pf contains {v1, v2, v3}. Hence Pf = {v1, v2, v3} or
V.

Now, f5 = (1
2
, 1

2
, 1

2
, 0) is an MTDF with Bf5 = Pf5 = {v1, v2, v3}. Also f6 =

(2
5
, 2

5
, 2

5
, 1

5
) is an MTDF with Bf6 = {v1, v2, v3} and Pf6 = V.

Thus for each subset X of V (K4) with |X| = 3, there are exactly two equivalence
classes of MTDFs with boundary set X and hence there exist eight such equivalence
classes.

Now we claim that when Bf = V, there exists exactly one MTDF f with Pf = V.
Since Bf = V, we have f(N(v1)) = f(N(v2)) = f(N(v3)) = f(N(v4)) = 1. Hence
f(v1) = f(v2) = f(v3) = f(v4) = 1

3
.

Thus we have 24 equivalence classes with |Bf | = 2, 8 equivalence classes with
|Bf | = 3 and 1 equivalence class with |Bf | = 4. Hence we have 33 equivalence classes
of MTDFs for the complete graph K4 and |V (G)| = 33.

Now for any subset {vi, vj} ⊆ {v1, v2, v3, v4} with i < j, let Vij denote the set of
all equivalence classes of MTDFs of K4 with boundary set {vi, vj}. Then |Vij| = 4
and since boundary set Bf of any MTDF f ∈ Vij contains the total dominating set
{vi, vj}, it follows from Observation 2.3 that 〈Vij〉 = K4.

Now, let A1, A2, A3 and A4 denote the set of all equivalence classes of MTDFs of
G with boundary set V − {v1}, V − {v2}, V − {v3} and V − {v4} respectively. Then
|Ai| = 2. Let A = A1 ∪ A2 ∪ A3 ∪ A4. If f, g ∈ A then |Bf ∩ Bg| = 2 and Bf ∩ Bg

is a total dominating set of K4. Hence 〈A〉 = K8. Also 〈V12 ∪ A3 ∪ A4〉 is complete
since Bf contains the dominating set {v1, v2} for all f ∈ V12 ∪ A3 ∪ A4. Similarly
〈Vij ∪ Ak ∪ Al〉 where i < j and i, j, k, l are all distinct is a complete graph. Now if f
and g are in two different sets of the form Vij, then Bf∩Bg is either singleton or empty
and hence f and g are not adjacent. Now, the unique MTDF f with Bf = V is
adjacent to any other MTDF g since |Bf ∩Bg| ≥ 2 and Bf ∩Bg is a total dominating
set of K4. This completes the proof of the theorem. ¤

Theorem 2.9. CT (C4) = K9.

Proof. Let C4 = (v1, v2, v3, v4, v1) and let f = (λ1, λ2, λ3, λ4) be any MTDF of C4.
Since f is minimal, λ3 = 1−λ1 and λ2 = 1−λ4. Hence f = (λ1, 1−λ4, 1−λ1, λ4) where
0 ≤ λ1, λ4 ≤ 1. Further any function f of the above form is a TDF with Bf = V.
Thus any MTDF of C4 is of the form (λ1, 1 − λ4, 1 − λ1, λ4) where 0 ≤ λ1, λ4 ≤ 1.
Hence there exist exactly nine MTDFs with distinct positive sets. Since Bf = V for
all MTDFs f, it follows that CT (C4) = K9. ¤

Theorem 2.10. Let H be the 2-corona of a connected graph G of order n, where the
2-corona of G is obtained by attaching a path of length 2 at each vertex of G. Then
CT (H) = K3n .

Proof. Let V (G) = {v1, v2, . . . , vn}, Si = {u1, u2, . . . , un} be the set of all supports of
H and Li = {w1, w2, . . . , wn} be the set of all leaves of H.
Let f be any MTDF of H. Clearly
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f(vi) = λi,
f(ui) = 1 and
f(wi) = 1− λi, where 0 ≤ λi ≤ 1 and 1 ≤ i ≤ n.
If λi = 1, then vi ∈ Pf and wi /∈ Pf .
If λi = 0, then vi /∈ Pf and wi ∈ Pf .
If 0 < λi < 1, then {vi, wi} ⊆ Pf .

Hence if |Pf ∩ V (G)| = r, then Pf = (Pf ∩ V (G)) ∪ {wi : λi < 1} ∪ Si. Hence there
exist 3n MTDFs f having different positive sets.

We now claim that if f and g are two MTDFs of H with Pf = Pg, then Bf = Bg. If
Pf∩V (G) = Pg∩V (G) = ∅, then Bf = Bg = V (H). If Pf∩V (G) = Pg∩V (G) = V (G),
then Bf = Bg = Si ∪ Li. Now, suppose Pf ∩ V (G) is a proper nonempty subset of
V (G). Let v ∈ Bf . If v ∈ Li∪Si, then v ∈ Bg. If v ∈ V (G), then N(v)∩V (G)∩Pf = ∅.
Hence N(v)∩V (G)∩Pg = ∅, so that v ∈ Bg. Thus Bf ⊆ Bg and by a similar argument
we get Bg ⊆ Bf . Hence Bf = Bg.

Thus the number of equivalence classes of MTDFs of H is 3n. Since Bf contains the
total dominating set Si ∪ Li, it follows from Observation 2.3 that CT (H) = K3n . ¤

Theorem 2.11. CT (Kr,s) = K(2r−1)×(2s−1).

Proof. Let V1 = {v1, v2, . . . , vr} and V2 = {u1, u2, . . . , us} be the bipartition of Kr,s.
Let f be any MTDF of Kr,s. Then

f(N(vi)) = f(u1) + f(u2) + f(u3) + · · ·+ f(us) = 1 and
f(N(ui)) = f(v1) + f(v2) + f(v3) + · · ·+ f(vr) = 1, where 0 ≤ f(ui), f(vi) ≤ 1.

Hence Pf = X ∪ Y, where X is any nonempty subset of V1 and Y is any nonempty
subset of V2. Thus the total number of positive sets is (2s − 1) × (2r − 1) and since
Bf = V, for any MTDF f, it follows that CT (Kr,s) is complete. Thus CT (Kr,s) =
K(2r−1)×(2s−1). ¤

3. Conclusion and scope

In this paper we have determined the total convexity graphs of some standard
graphs. Even finding the number of elements in the total convexity graph of Pn for
arbitrary n seems to be a difficult problem. One can also attempt to find the total
convexity graphs of other families of graphs such as cycles Cn where n ≥ 5, Petersen
graph, hypercubes etc. Further one can investigate necessary/sufficient conditions for
a given graph G to be the total convexity graph of some graph H.
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