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SUPER MEAN NUMBER OF A GRAPH

A. NAGARAJAN 1, R. VASUKI 2, AND S. AROCKIARAJ 3

Abstract. Let G be a graph and let f : V (G) → {1, 2, . . . , n} be a function such

that the label of the edge uv is f(u)+f(v)
2 or f(u)+f(v)+1

2 according as f(u) + f(v) is
even or odd and f(V (G)) ∪ {f∗(e) : e ∈ E(G)} ⊆ {1, 2, . . . , n}. If n is the smallest
positive integer satisfying these conditions together with the condition that all the
vertex and edge labels are distinct and there is no common vertex and edge labels,
then n is called the super mean number of a graph G and it is denoted by Sm(G).
In this paper, we find the bounds for super mean number of some standard graphs.

1. Introduction

Throughout this paper, by a graph we mean a finite, undirected graph (simple
graph) with p ≥ 2 vertices. For notation and terminology, we follow [1].

Path on n vertices is denoted by Pn and a cycle on n vertices is denoted by Cn.
K1,m is called a star and it is denoted by Sm. The union ofm disjoint copies of a graph
G is denoted by mG. The bistar Bm,n is the graph obtained from K2 by identifying
the central vertices of K1,m and K1,n with the end vertices of K2 respectively.

〈Cm, K1,n〉 is the graph obtained from Cm and K1,n by identifying any one of the
vertices of Cm with the central vertex of K1,n.

〈Cm ∗K1,n〉 is the graph obtained from Cm and K1,n by identifying any one of the
vertices of Cm with a pendant vertex of K1,n (that is a non-central vertex of K1,n).

The concept of super mean labeling was introduced by D. Ramya et al. [4]. They
have studied in [4, 3, 2], the super mean labeling of some standard graphs. Further,
some more results on super mean graphs are discussed in [6, 7].

Let V (G) and E(G) be the vertex set and edge set of a graph G, respectively,
and |V (G)| = p, |E(G)| = q (the order and the size of G, respectively). Let f :
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V (G) → {1, 2, . . . , p + q} be injective. For a vertex labeling f , the induced edge
labeling f∗(e = uv) is defined by

f ∗(e) =

{
f(u)+f(v)

2
if f(u) + f(v) is even,

f(u)+f(v)+1
2

if f(u) + f(v) is odd.

Then, f is called super mean labeling if f(V (G))∪{f ∗(e) : e ∈ E(G)} = {1, 2, 3, . . . , p+
q}. A graph that admits a super mean labeling is called a super mean graph.

A super mean labeling of the graph K2,4 is shown in Figure 1.
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Figure 1.

The concept of mean number of a graph was introduced by M. Sundaram and R.
Ponraj [5] and they have found the mean number of some standard graphs. Motivated
by these work, we introduce the concept of super mean number of a graph.

Let f : V (G) → {1, 2, . . . , n} be a function such that the label of the edge uv is
f(u)+f(v)

2
or f(u)+f(v)+1

2
according as f(u)+ f(v) is even or odd and f(V (G))∪{f ∗(e) :

e ∈ E(G)} ⊆ {1, 2, . . . , n}. If n is the smallest positive integer satisfying these
conditions together with the condition that all the vertex and edge labels are distinct
and there is no common vertex and edge labels, then n is called the super mean
number of a graph G and it is denoted by Sm(G).

For example, Sm(K1,4) = 10 is shown in the following Figure 2.

B
B
B
B
B
B
B
B
BB

s

s s s s

5

3
4 6

8

1 2 7 10

Figure 2.

It is observed that Sm(G) ≥ p + q, where p is the order and q is the size of the
graph G. Clearly, the equality holds for a super mean graph.

In this paper, we prove that Sm(G) ≤ 2p − 2 for any graph G. Also, we find
an upper bound of the super mean number of the graphs K1,n, n ≥ 7, tK1,n for
n ≥ 5, t > 1, B(p, n) for p > n+1, n ≥ 1, 〈Cm, K1,n〉 for n ≥ 5,m ≥ 3 and 〈Cm ∗K1,n〉
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for n ≥ 7,m ≥ 3. Further, we obtain the super mean number of the graphs Kp, p ≤ 4,
K1,n for n ≤ 6, tK1,4, t > 1, B(p, n) for p = n, n+ 1 and any cycle Cn.

We use the following results in the subsequent theorems.

Theorem 1.1. [4] A complete graph Kn is a super mean graph if n ≤ 3.

Theorem 1.2. [4] Kn is not a super mean graph if n > 3.

Theorem 1.3. [4] The star K1,n is a super mean graph for n ≤ 3.

Theorem 1.4. [4] K1,n is not a super mean graph for n > 3.

Theorem 1.5. [2] nK1,4, n > 1, is a super mean graph.

Theorem 1.6. [4] The bistar, Bm,n is a super mean graph for m = n or m = n+ 1.

Theorem 1.7. [7] If G is a super mean graph then mG is also a super mean graph.

Theorem 1.8. [4] C2n+1, n ≥ 1, is a super mean graph.

Theorem 1.9. [4] C4 is not a super mean graph.

Theorem 1.10. [6] C2n is a super mean graph for n ≥ 3.

Based on the above theorems, we observe the following:

Observation 1.1. Sm(Kp) =
p(p+1)

2
if p ≤ 3 and Sm(Kp) ≥ p(p+1)

2
+ 1 if p > 3.

A labeling of K4 in Figure 3 shows that the above bound is attained for p = 4 and
Sm(K4) = 11. ss
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Figure 3.

Observation 1.2. Sm(K1,n) = 2n + 1 for n ≤ 3 and Sm(K1,n) ≥ 2n + 2
(n > 3).

Observation 1.3. Sm(tK1,4) = 9t for t > 1.

Observation 1.4. Sm(B(p, n)) = 4n+3 when p = n and Sm(B(p, n)) = 4n+5 when
p = n+ 1.

Observation 1.5. Sm(C2n+1) = 4n+ 2 for n ≥ 1 and Sm(C2n) = 4n for n ≥ 3.

Observation 1.6. Sm(C4) = 9, since C4 is not a super mean graph and from a
labeling of C4 in Figure 4.
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Figure 4.

Observation 1.7. For any super mean graph G, Sm(tG) = t(p+ q), t > 1 where p is
the order and q is the size of the graph G.

2. Super mean number of some standard graphs

The existence of the super mean number for any graph G is guaranteed by the
following theorem.

Theorem 2.1. Sm(G) ≤ 2p − 2.

Proof. It is enough if we prove that Sm(Kp) ≤ 2p−2. Let v1, v2, . . . , vp be the vertices
of Kp.

Define f : V (Kp) → {1, 2, . . . , n} by f(vi) = 2i − 1 for 1 ≤ i ≤ p − 1 and
f(vp) = 2p − 2. Clearly all the vertex labels are distinct. Let us prove the same for
edge labels.

For 1 ≤ i, j, s, t ≤ p− 1, we consider the following two cases.
Suppose f∗(vivj) = f∗(vsvt); then

2i−1+2j−1
2

= 2s−1+2t−1
2

. This implies 2i + 2j =
2s + 2t.
Case(i) Assume that the edges vivj and vsvt have one vertex in common.

Take i = s and j 6= t.
Since j 6= t, we have 2j 6= 2t then 2i + 2j 6= 2s + 2t.
Hence if two edges have one vertex in common their edge values are distinct.

Case(ii) Assume that the edges vivj and vsvt have no vertex in common. Then
i 6= s, i 6= t, j 6= s and j 6= t. Suppose f∗(vivj) = f∗(vsvt).

Without loss of generality, assume that i is the smallest integer.
Let j = i + k1, s = i + k2, t = i + k3, k1, k2, k3 > 0. Then 2i + 2j = 2s + 2t implies

2i+2i+k1 = 2i+k2+2i+k3 . Then 2i(1+2k1) = 2i(2k2+2k3), which gives 1+2k1 = 2k2+2k3 .
This is a contradiction.
Case(iii) Suppose one of the vertices is vp.
Subcase(i) Assume that vivj and vsvt have the common vertex vp.

Without loss of generality, assume that i = s = p and j 6= t.
Suppose f ∗(vpvj) = f∗(vpvt). This implies 2p−2+2j−1+1

2
= 2p−2+2t−1+1

2
, that is 2p +

2j = 2p + 2t. Then 2j = 2t which gives j = t. This is a contradiction.
Subcase(ii) Suppose vivj and vsvt have a common vertex other than vp.
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For 1 ≤ i, s, t ≤ p − 1, take i = s and j = p. Then f ∗(vivp) = f∗(vsvt) implies
2i−1+2p−2+1

2
= 2i−1+2t−1

2
. Then we have 2i + 2p = 2i + 2t, that is 2p = 2t which gives

p = t. This is a contradiction.
Subcase(iii) Suppose the edges vivj and vsvt have no vertex in common.

For 1 ≤ i, s, t ≤ p−1 and j = p f ∗(vivp) = f ∗(vsvt) implies 2i−1+2p−2+1
2

= 2s−1+2t−1
2

i.e. 2i + 2p = 2s + 2t. Then, we get a contradiction as in Case (ii).
Let us prove now that for any v ∈ V (G) and e ∈ E(G), f(v) 6= f ∗(e).
Let us take any edge vivj in Kp, i < j, where i 6= 1 and j 6= p. Now, f∗(vivj) =

2i−1+2j−1
2

= 2i+2j−2
2

= 2i−1 + 2j−1 − 1 = 2i−1(1 + 2j−i) − 1 6= 2k − 1 for any k.
Also f∗(vivj) 6= 2p − 2. This implies that f ∗(vivj) /∈ f(V (G)). If j 6= p and i = 1,

f ∗(vivj) =
1+2j−1

2
= 2j−1 /∈ f(V (G)). If i 6= 1 and j = p, f∗(vivp) =

(2i−1+2p−2)+1
2

=
2i+2p−2

2
= 2i−1 + 2p−1 − 1 6= 2k − 1 for any k. Also f ∗(vivp) 6= 2p − 2. This implies

that f ∗(vivp) /∈ f(V (G)). If i = 1, j = p, f ∗(v1vp) =
(1+2p−2)+1

2
= 2p−1 /∈ f(V (G)).

Thus, all the vertex and edge labels are distinct and no vertex and edge labels are
equal.

Hence Sm(Kp) ≤ 2p − 2. �

Theorem 2.2. Sm(K1,n) = 2n+ 2 for n = 4, 5, 6.

Proof. Let V (K1,n) = {v, v1, v2, . . . , vn} and E(K1,n) = {vvi; 1 ≤ i ≤ n}.
Define f on V (K1,4) and V (K1,5) as follows:
f(v) = 5, f(vi) = i, 1 ≤ i ≤ 2, f(vi) = 7+3(i−3), 3 ≤ i ≤ n−1 and f(vn) = 2n+2,

for n = 4, 5.
The vertex labeling f on V (K1,6) is defined by
f(v) = 5, f(vi) = i, 1 ≤ i ≤ 2, f(v3) = 7, f(v4) = 11, f(v5) = 12 and f(v6) = 14.
Clearly, the vertex labels and the induced edge labels are distinct. Hence, Sm(K1,n)

≤ 2n+ 2 for n = 4, 5, 6. Then by Observation 1.12, the result follows. �

Theorem 2.3. Sm(K1,n) ≤ 4n− 10, n ≥ 7.

Proof. Let V (K1,n) = {v, v1, v2, . . . , vn} and E(K1,n) = {vvi; 1 ≤ i ≤ n}.
Define f on V (K1,n) as follows:
f(v) = 5, f(vi) = i, 1 ≤ i ≤ 2, f(v3) = 7, f(vi) = 2i + 3, 4 ≤ i ≤ 5, f(vi) =

15 + 4(i− 6), 6 ≤ i ≤ n− 1, f(vn) = 4n− 10.
Clearly, the vertex labels and the edge labels are distinct and no vertex and edge

labels are equal. Hence, Sm(K1,n) ≤ 4n− 10 for n ≥ 7. �

Theorem 2.4. Sm(tK1,n) ≤ (2n+ 1)t+ 1 for n = 5, 6 and t > 1.

Proof. Let v0j , vij , 1 ≤ j ≤ t, 1 ≤ i ≤ n be the vertices and v0jvij , 1 ≤ j ≤ t, 1 ≤ i ≤ n
be the edges of tK1,n.

Define f on V (tK1,n), n = 5, 6 as follows:
When t = 1 and n = 5, define f(v01) = 5, f(vi1) = i, 1 ≤ i ≤ 2, f(vi1) =

7 + 3(i− 3), 3 ≤ i ≤ 4, f(v51) = 12.
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When t = 1 and n = 6, define f(v01) = 5, f(vi1) = i, 1 ≤ i ≤ 2, f(v31) = 7, f(v41) =
11, f(v51) = 12 and f(v61) = 14.

For t > 1, label the vertices of tK1,5 and tK1,6 as follows :

f(v0j) = f(v01) + (2n+ 1)(j − 1), 2 ≤ j ≤ t,

f(v12) = f(v11) + 2n,

f(v1j) = f(v12) + (2n+ 1)(j − 2), 3 ≤ j ≤ t and

f(vij) = f(vi1) + (2n+ 1)(j − 1), 2 ≤ j ≤ t, 2 ≤ i ≤ n.

Clearly, the vertex labels are distinct. Also, the vertex labeling f induces distinct
edge labels and f(E(G)) ⊆ {1, 2, 3, . . . , (2n+1)t+1}−f(V (G)). Hence Sm(tK1,n) ≤
(2n+ 1)t+ 1. �

According to Theorem 2.4, in the following Figure 5, the labeling of 5K1,5 shows
that Sm(5K1,5) ≤ 56.
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Figure 5. 5K1,5

Theorem 2.5. When t is an even integer, Sm(tK1,n) ≤ t(2n+ 2)− 1 for n > 6.

Proof. Let v0j , vij , 1 ≤ i ≤ n, 1 ≤ j ≤ t be the vertices and v0jvij , 1 ≤ i ≤ n, 1 ≤ j ≤ t
be the edges of tK1,n.

Define f on V (tK1,n) as follows:

f(v02j+1
) = (4n+ 4)j + 1, 0 ≤ j ≤ t

2
− 1,

f(v02j) = (4n+ 3)j + j − 1, 1 ≤ j ≤ t

2
,

f(vi2j+1
) = (4n+ 4)j + 4i− 1, 0 ≤ j ≤ t

2
− 1, 1 ≤ i ≤ n and

f(vi2j) = (4n+ 4)(j − 1) + 4i+ 1, 1 ≤ j ≤ t

2
, 1 ≤ i ≤ n.

It can be verified that all the vertex and edge labels are distinct and there is no
common vertex and edge labels. Hence, Sm(tK1,n) ≤ t(2n+ 2)− 1 for n > 6 and t is
an even integer. �

Theorem 2.6. When t is an odd integer, Sm(tK1,n) ≤ t(2n+ 2) + 3 for n > 6.

Proof. Let V (tK1,n) = {v0j , vij : 1 ≤ i ≤ n, 1 ≤ j ≤ t} and E(tK1,n) = {v0jvij : 1 ≤
i ≤ n, 1 ≤ j ≤ t}. Let t = 2k + 1 for some k ∈ Z+.

Define f on V (tK1,n) as follows:
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For 1 ≤ j ≤ 2k,

f(v02j+1
) = (4n+ 4)j + 1, 0 ≤ j ≤ k − 1,

f(v02j) = (4n+ 3)j + j − 1, 1 ≤ j ≤ k,

f(vi2j+1
) = (4n+ 4)j + 4i− 1, 0 ≤ j ≤ k − 1, 1 ≤ i ≤ n and

f(vi2j) = (4n+ 4)(j − 1) + 4i+ 1, 1 ≤ j ≤ k, 1 ≤ i ≤ n.

When j = 2k + 1,

f(v02k+1
) = 4 + (2n+ 2)2k,

f(vi2k+1
) = i+ (2n+ 2)2k − 1, 1 ≤ i ≤ 2,

f(v32k+1
) = 6 + (2n+ 2)2k,

f(vi2k+1
) = 2i+ (2n+ 2)2k + 2, 4 ≤ i ≤ 5,

f(vi2k+1
) = 4i+ (2n+ 2)2k − 10, 6 ≤ i ≤ n− 1 and

f(vn2k+1
) = (2n+ 2)2k + 4n− 11.

Clearly, the vertex labels and the induced edge labels are distinct and further
f(V (G))∩ f(E(G)) = ∅. Hence, Sm(tK1,n) ≤ t(2n+ 2) + 3 for n > 6 and t is an odd
integer. �

Theorem 2.7. Sm(B(p, n)) ≤ 4p if p > n+ 1.

Proof. Let V (B(p, n)) = {u, v, ui, vj : 1 ≤ i ≤ p, 1 ≤ j ≤ n} and E(B(p, n)) =
{uv, uui, vvj : 1 ≤ i ≤ p, 1 ≤ j ≤ n}.

Define f on V (B(p, n)) as follows:
f(u) = 3, f(ui) = 4i−3, 1 ≤ i ≤ p, f(v) = 4p and f(vj) = 7+4(j−1), 1 ≤ j ≤ n. It

can be verified that the vertex and edge labels are distinct and f(V (G))∩f(E(G)) = ∅.
Thus, Sm(B(p, n)) ≤ 4p, p > n+ 1. �

Theorem 2.8. 〈Cm, K1,n〉 is a super mean graph for n ≤ 4 and m ≥ 3.

Proof. Let V (〈Cm, K1,n〉) = {u1, u2, . . . , um, v1, v2, . . . , vn, v = u1} andE(〈Cm, K1,n〉) =
{u1u2, u2u3, . . . , umu1, u1vi : 1 ≤ i ≤ n}.

For m = 4, the super mean labeling of the graphs 〈C4, K1,1〉 , 〈C4, K1,2〉, 〈C4, K1,3〉
and 〈C4, K1,4〉 are shown in Figure 6.
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Case(i) n = 1, 2.
Define f on V (〈Cm, K1,n〉), n = 1, 2, m ≥ 3 and m 6= 4 as follows:

Subcase(i) When m is odd.
Let m = 2k + 1, k ∈ Z+.

f(vi) = i, 1 ≤ i ≤ n,

f(u1) = 2n+ 1,

f(uj) = 2n+ 4j − 5, 2 ≤ j ≤ k + 1 and

f(uk+1+j) = 2n+ 4k − 4j + 6, 1 ≤ j ≤ k.

Subcase(ii) When m is even.
Let m = 2k, k ∈ Z+.

f(vi) = i, 1 ≤ i ≤ n,

f(u1) = 2n+ 1,

f(uj) = 2n+ 4j − 5, 2 ≤ j ≤ k,

f(uk+j) = 2n+ 4k − 3(j − 1), 1 ≤ j ≤ 2 and

f(uk+2+j) = 2n+ 4k − 4j − 2, 1 ≤ j ≤ k − 2.

Clearly, f induces distinct edge labels and it can be verified that f induces a super
mean labeling and hence 〈Cm, K1,n〉, n = 1, 2,m ≥ 3 and m 6= 4 is a super mean
graph.
Case (ii) n = 3, 4.

Define f on V (〈Cm, K1,n〉), n = 3, 4,m ≥ 3 and m 6= 4 as follows:
Label the vertices of K1,n, n = 3, 4 as
f(vi) = i, 1 ≤ i ≤ 2, f(v3) = 7 and f(v4) = 11 in the case of n = 4.
Label the vertices of Cm as follows:

Subcase(i) When m is odd.
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Let m = 2k + 1 for some k ∈ Z+.

f(u1) = 5,

f(uj) = 2n+ 4j − 1, 2 ≤ j ≤ k,

f(uk+j) = 2n+ 4k − 4j + 6, 1 ≤ j ≤ k and

f(u2k+1) = 2n+ 4.

Subcase(ii) When m is even.
Let m = 2k for some k ∈ Z+.

f(u1) = 5,

f(uj) = 2n+ 4i− 1, 2 ≤ j ≤ k − 1,

f(uk−1+j) = 2n+ 4k − 3(j − 1), 1 ≤ j ≤ 2,

f(uk+1+j) = 2n+ 4k − 4j − 2, 1 ≤ j ≤ k − 2 and

f(u2k) = 2n+ 4.

Clearly, f induces distinct edge labels and it is easy to check that f generates a
super mean labeling and hence 〈Cm, K1,n〉 , n = 3, 4,m ≥ 3 and m 6= 4 is a super
mean graph. Thus, 〈Cm, K1,n〉 is a super mean graph for n ≤ 4 and m ≥ 3. �

For example, the super mean labelings of 〈C8, K1,3〉 and 〈C9, K1,4〉 are shown in the
following Figure 7. u
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Figure 7.

Corollary 2.1. Sm(〈Cm, K1,n〉) = 2m+ 2n for n ≤ 4 and m ≥ 3.

Theorem 2.9. Sm(〈Cm, K1,n〉) ≤ 2m + 4n − 7 for n ≥ 5,m ≥ 3 and m 6= 4 and
Sm(〈C4, K1,n〉) ≤ 4n+ 2 for n ≥ 5.

Proof. Let V (〈Cm, K1,n〉) = {u1, u2, . . . , um, v1, v2, . . . , vn, v = u1} andE(〈Cm, K1,n〉) =
{u1u2, u2u3, . . . , umu1, u1vi : 1 ≤ i ≤ n}.

Define f on V (〈Cm, K1,n〉) as follows:
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For n ≥ 5, label the vertices of K1,n as follows:

f(v1) = 2m+ 2,

f(vi) = 2m+ 6 + 2(i− 2), 2 ≤ i ≤ 4,

f(vi) = 2m+ 14 + 4(i− 5), 5 ≤ i ≤ n− 1,

f(vn) = 2m+ 4n− 7 and

f(v = u1) = 2m.

Label the vertices of Cm as follows:
Case(i) When m is odd.

Let m = 2k + 1, k ∈ Z+.
The vertex labeling f is given by

f(u1) = 2m,

f(uj) = 2m− 4j + 5, 2 ≤ j ≤ k + 1,

f(uk+2) = 1 and

f(uk+2+j) = 6 + 4(j − 1), 1 ≤ j ≤ k − 1.

Case(ii) When m is even.
Let m = 2k for some k ∈ Z+.

f(u1) = 2m,

f(uj) = 2m− 4j + 3, 2 ≤ j ≤ k,

f(uk+1) = 1,

f(uk+1+j) = 6 + 4(j − 1), 1 ≤ j ≤ k − 2 and

f(u2k) = 2m− 3.

Clearly, the vertex labels and the induced edge labels are distinct and f(E(G)) ⊆
{1, 2, 3, . . . , 2m+ 4n− 7} − f(V (G)).

Hence, Sm(〈Cm, K1,n〉) ≤ 2m+ 4n− 7, n ≥ 5,m ≥ 3 and m 6= 4.
Define f on V (〈C4, K1,n〉), n ≥ 5 as follows:
f(v1) = 11, f(vi) = 15 + 2(i − 2), 2 ≤ i ≤ 4, f(vi) = 23 + 4(i − 5), 5 ≤ i ≤

n − 1, f(vn) = 4n + 2, f(v = u1) = 9, f(u2) = 3, f(u3) = 1 and f(u4) = 7. Clearly,
the vertex labels and the edge labels are distinct and no vertex and edge labels are
equal. Hence, Sm(〈C4, K1,n〉) ≤ 4n+ 2 for n ≥ 5. �

Theorem 2.10. 〈Cm ∗K1,n〉 is a super mean graph for n ≤ 6 and m ≥ 3.

Proof. Let V (〈Cm ∗K1,n〉) = {u1, u2, . . . , um, v1 = u1, v2, . . . , vn, v} andE(〈Cm ∗K1,n〉) =
{u1u2, u2u3, . . . , umu1, u1v, vvi : 1 ≤ i ≤ n− 1}.

For m = 4, the super mean labelings of the graphs 〈C4, K1,n〉, n = 1, 2, 3, 4, 5, 6 are
shown in Figure 8.
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Case (i) n = 1, 2, 3.
Define f on V (〈Cm ∗K1,n〉), n = 1, 2, 3, m ≥ 3 and m 6= 4 as follows:

Subcase(i) When m is odd, say m = 2k + 1, k ∈ Z+.

f(v) = 2n− 1,

f(u1 = v1) = 2n+ 1,

f(vn+1−i) = i, 1 ≤ i ≤ n− 1, n = 2, 3,

f(uj) = 2n+ 4j − 5, 2 ≤ j ≤ k + 1 and

f(uk+1+j) = 2n+ 4k − 4j + 6, 1 ≤ j ≤ k.
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Subcase(ii) When m is even, say m = 2k, k ∈ Z+.

f(v) = 2n− 1,

f(u1 = v1) = 2n+ 1,

f(vn+1−i) = i, 1 ≤ i ≤ n− 1, n = 2, 3

f(uj) = 2n+ 4j − 5, 2 ≤ j ≤ k,

f(uk+j) = 2n+ 4k − 3(j − 1), 1 ≤ j ≤ 2 and

f(uk+2+j) = 2n+ 4k − 4j − 2, 1 ≤ j ≤ k − 2.

Clearly, the vertex labeling f induces distinct edge labels and it is easy to check
that f is a super mean labeling. Hence, 〈Cm ∗K1,n〉 , n = 1, 2, 3,m ≥ 3 and m 6= 4 is
a super mean graph.
Case (ii) n = 4, 5, 6.

Define f on V (〈Cm ∗K1,n〉), n = 4, 5, 6, m ≥ 3 and m 6= 4 as follows:
Label the vertices of K1,n, n = 4, 5, 6 as given below:
For n = 4, 5,

f(v) = 5,

f(v1 = u1) = 2n+ 3 and

f(vn+1−i) =

{
i, 1 ≤ i ≤ 2
7 + 3(i− 3), 3 ≤ i ≤ n− 1.

For n = 6,
f(v) = 5, f(v1 = u1) = 15, f(v2) = 12, f(v3) = 11, f(v4) = 7, f(v5) = 2 and

f(v6) = 1.
Label the vertices of Cm as follows:

Subcase(i) When m is odd, take m = 2k + 1, k ∈ Z+.

f(u1) = 2n+ 3, f(u2) = 2n+ 1,

f(uj) = 2n+ 4j − 6, 3 ≤ j ≤ k + 2 and

f(uk+2+j) = 2n+ 4k − 4j + 3, 1 ≤ j ≤ k − 1.

Subcase(ii) When m is even, take m = 2k, k ∈ Z+

f(u1) = 2n+ 3,

f(u2) = 2n+ 1,

f(uj) = 2n+ 4j − 6, 3 ≤ j ≤ k,

f(uk+j) = 2n+ 4k − 3 + 3(j − 1), 1 ≤ j ≤ 2 and

f(uk+2+j) = 2n+ 4k − 4j − 1, 1 ≤ j ≤ k − 2.

Clearly, the edge labels are distinct. It can be easily verified that f is a super mean
labeling. Hence, 〈Cm ∗K1,n〉 , n = 4, 5, 6,m ≥ 3 and m 6= 4 is a super mean graph.

Thus, 〈Cm ∗K1,n〉 for n ≤ 6,m ≥ 3 is a super mean graph. �
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For example, the super mean labelings of 〈C10 ∗K1,3〉 and 〈C9 ∗K1,6〉 are shown in
the Figure 9.
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Corollary 2.2. Sm(〈Cm ∗K1,n〉) = 2m+ 2n for n ≤ 6 and m ≥ 3.

Theorem 2.11. Sm(〈Cm ∗K1,n〉) ≤ 2m + 4n− 11 for n ≥ 7,m ≥ 3 and m 6= 4 and
Sm(〈C4 ∗K1,n〉) ≤ 4n− 2 for n ≥ 7.

Proof. Let V (〈Cm ∗K1,n〉) = {vi : 1 ≤ i ≤ n, v, u1 = v1, u2, . . . , um} and E(〈Cm ∗K1,n〉 =
{u1u2, u2u3, . . . , umu1, u1v, vvi, 1 ≤ i ≤ n− 1}.

Define f on V (〈Cm ∗K1,n〉) as follows:
For n ≥ 7 label the vertices of K1,n by

f(v1 = u1) = 2m,

f(v2) = 2m+ 1,

f(v3) = 2m+ 6,

f(vi) = 2m+ 10 + 2(i− 4), 4 ≤ i ≤ 6,

f(vi) = 2m+ 18 + 4(i− 7), 7 ≤ i ≤ n− 1 and

f(vn) = 2m+ 4n− 11.

Now label the vertices of Cm as follows:
Case (i) When m is odd, say m = 2k + 1, k ∈ Z+.

f(u1) = 2m,

f(uj) = 2m− 4j + 5, 2 ≤ j ≤ k + 1,

f(uk+2) = 1 and

f(uk+2+j) = 6 + 4(j − 1), 1 ≤ j ≤ k − 1.

Case (ii) When m is even, say m = 2k, k ∈ Z+.

f(u1) = 2m,

f(uj) = 2m− 4j + 3, 2 ≤ j ≤ k,

f(uk+1) = 1,

f(uk+1+j) = 6 + 4(j − 1), 1 ≤ j ≤ k − 2 and

f(u2k) = 2m− 3.
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Clearly, the vertex labels and the induced edge labels are distinct and
f(V (G)) ∩ f(E(G)) = ∅. Hence, Sm(〈Cm ∗K1,n〉) ≤ 2m + 4n − 11 for n ≥ 7,m ≥ 3
and m 6= 4.

Define f on V (〈C4 ∗K1,n〉), n ≥ 7 as follows:
f(v1 = u1) = 9, f(v2) = 10, f(v3) = 15, f(vi) = 19 + 2(i − 4), 4 ≤ i ≤ 6, f(vi) =

27 + 4(i − 7), 7 ≤ i ≤ n − 1, f(vn) = 4n − 2, f(u2) = 3, f(u3) = 1 and f(u4) = 7.
Clearly, the vertex labels and edge labels are distinct and f(E(G)) ⊆ {1, 2, 3, . . . ,
4n− 2} − f(V (G)). Hence, Sm(〈C4 ∗K1,n〉) ≤ 4n− 2 for n ≥ 7. �
Theorem 2.12. For any graph G, if k is a super mean number of the graph G, then
Sm(tG) ≤ kt.

Proof. Let V (G) = {u1, u2, . . . , up} and V (tG) = V (G) ∪ {u1i , u2i , . . . , upi :
2 ≤ i ≤ t}. Let f be the vertex labeling of G which yields k as the super mean
number.

Define g on V (tG) by
g(uj) = f(uj) for 1 ≤ j ≤ p and
g(uji) = f(uj) + (i− 1)k, 1 ≤ j ≤ p, 2 ≤ i ≤ t.

Clearly, g induces distinct edge labels and hence Sm(tG) ≤ kt. �

3. Conclusion

We proved that the graph 〈Cm, K1,n〉 for n ≤ 4,m ≥ 3 and the graph 〈Cm ∗K1,n〉
for n ≤ 6,m ≥ 3 are super mean graphs. We found an upper bound of the super mean
number of the graphs K1,n, n ≥ 7, tK1,n for n ≥ 5, t > 1, B(p, n) for p > n + 1, n ≥
1, 〈Cm, K1,n〉 for n ≥ 5,m ≥ 3 and 〈Cm ∗K1,n〉 for n ≥ 7,m ≥ 3. It is also established
that Sm(G) ≤ 2p − 2 for any graph G. Further, we obtained the super mean number
of the graphs Kp for p ≤ 4, K1,n for n ≤ 6, tK1,4 for t > 1, B(p, n) for p = n, n + 1
and Cn.
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