KRAGUJEVAC JOURNAL OF MATHEMATICS VOLUME 36 NUMBER 1 (2012), PAGES 93–107.

SUPER MEAN NUMBER OF A GRAPH

A. NAGARAJAN ¹, R. VASUKI ², AND S. AROCKIARAJ ³

ABSTRACT. Let G be a graph and let $f: V(G) \to \{1, 2, ..., n\}$ be a function such that the label of the edge uv is $\frac{f(u)+f(v)}{2}$ or $\frac{f(u)+f(v)+1}{2}$ according as f(u) + f(v) is even or odd and $f(V(G)) \cup \{f^*(e) : e \in E(G)\} \subseteq \{1, 2, ..., n\}$. If n is the smallest positive integer satisfying these conditions together with the condition that all the vertex and edge labels are distinct and there is no common vertex and edge labels, then n is called the super mean number of a graph G and it is denoted by $S_m(G)$. In this paper, we find the bounds for super mean number of some standard graphs.

1. INTRODUCTION

Throughout this paper, by a graph we mean a finite, undirected graph (simple graph) with $p \ge 2$ vertices. For notation and terminology, we follow [1].

Path on *n* vertices is denoted by P_n and a cycle on *n* vertices is denoted by C_n . $K_{1,m}$ is called a star and it is denoted by S_m . The union of *m* disjoint copies of a graph *G* is denoted by mG. The bistar $B_{m,n}$ is the graph obtained from K_2 by identifying the central vertices of $K_{1,m}$ and $K_{1,n}$ with the end vertices of K_2 respectively.

 $\langle C_m, K_{1,n} \rangle$ is the graph obtained from C_m and $K_{1,n}$ by identifying any one of the vertices of C_m with the central vertex of $K_{1,n}$.

 $\langle C_m * K_{1,n} \rangle$ is the graph obtained from C_m and $K_{1,n}$ by identifying any one of the vertices of C_m with a pendant vertex of $K_{1,n}$ (that is a non-central vertex of $K_{1,n}$).

The concept of super mean labeling was introduced by D. Ramya et al. [4]. They have studied in [4, 3, 2], the super mean labeling of some standard graphs. Further, some more results on super mean graphs are discussed in [6, 7].

Let V(G) and E(G) be the vertex set and edge set of a graph G, respectively, and |V(G)| = p, |E(G)| = q (the order and the size of G, respectively). Let f:

Key words and phrases. Labeling, super mean graph, super mean number.

²⁰¹⁰ Mathematics Subject Classification. 05C78.

Received: December 20, 2010.

Revised: April 15, 2011.

 $V(G) \to \{1, 2, \dots, p+q\}$ be injective. For a vertex labeling f, the induced edge labeling $f^*(e = uv)$ is defined by

$$f^{*}(e) = \begin{cases} \frac{f(u)+f(v)}{2} & \text{if } f(u) + f(v) \text{ is even,} \\ \frac{f(u)+f(v)+1}{2} & \text{if } f(u) + f(v) \text{ is odd.} \end{cases}$$

Then, f is called super mean labeling if $f(V(G)) \cup \{f^*(e) : e \in E(G)\} = \{1, 2, 3, \dots, p+q\}$. A graph that admits a super mean labeling is called a super mean graph.

A super mean labeling of the graph $K_{2,4}$ is shown in Figure 1.

The concept of mean number of a graph was introduced by M. Sundaram and R. Ponraj [5] and they have found the mean number of some standard graphs. Motivated by these work, we introduce the concept of super mean number of a graph.

Let $f: V(G) \to \{1, 2, ..., n\}$ be a function such that the label of the edge uv is $\frac{f(u)+f(v)}{2}$ or $\frac{f(u)+f(v)+1}{2}$ according as f(u) + f(v) is even or odd and $f(V(G)) \cup \{f^*(e) : e \in E(G)\} \subseteq \{1, 2, ..., n\}$. If n is the smallest positive integer satisfying these conditions together with the condition that all the vertex and edge labels are distinct and there is no common vertex and edge labels, then n is called the super mean number of a graph G and it is denoted by $S_m(G)$.

For example, $S_m(K_{1,4}) = 10$ is shown in the following Figure 2.

It is observed that $S_m(G) \ge p + q$, where p is the order and q is the size of the graph G. Clearly, the equality holds for a super mean graph.

In this paper, we prove that $S_m(G) \leq 2^p - 2$ for any graph G. Also, we find an upper bound of the super mean number of the graphs $K_{1,n}, n \geq 7$, $tK_{1,n}$ for $n \geq 5, t > 1, B(p, n)$ for $p > n+1, n \geq 1, \langle C_m, K_{1,n} \rangle$ for $n \geq 5, m \geq 3$ and $\langle C_m * K_{1,n} \rangle$ for $n \ge 7, m \ge 3$. Further, we obtain the super mean number of the graphs $K_p, p \le 4$, $K_{1,n}$ for $n \le 6, tK_{1,4}, t > 1, B(p, n)$ for p = n, n + 1 and any cycle C_n . We use the following results in the subsequent theorems.

Theorem 1.1. [4] A complete graph K_n is a super mean graph if $n \leq 3$.

Theorem 1.2. [4] K_n is not a super mean graph if n > 3.

Theorem 1.3. [4] The star $K_{1,n}$ is a super mean graph for $n \leq 3$.

Theorem 1.4. [4] $K_{1,n}$ is not a super mean graph for n > 3.

Theorem 1.5. [2] $nK_{1,4}$, n > 1, is a super mean graph.

Theorem 1.6. [4] The bistar, $B_{m,n}$ is a super mean graph for m = n or m = n + 1.

Theorem 1.7. [7] If G is a super mean graph then mG is also a super mean graph.

Theorem 1.8. [4] C_{2n+1} , $n \ge 1$, is a super mean graph.

Theorem 1.9. [4] C_4 is not a super mean graph.

Theorem 1.10. [6] C_{2n} is a super mean graph for $n \geq 3$.

Based on the above theorems, we observe the following:

Observation 1.1. $S_m(K_p) = \frac{p(p+1)}{2}$ if $p \leq 3$ and $S_m(K_p) \geq \frac{p(p+1)}{2} + 1$ if p > 3.

A labeling of K_4 in Figure 3 shows that the above bound is attained for p = 4 and $S_m(K_4) = 11$.

Observation 1.2. $S_m(K_{1,n}) = 2n + 1$ for $n \leq 3$ and $S_m(K_{1,n}) \geq 2n + 2$ (n > 3).

Observation 1.3. $S_m(tK_{1,4}) = 9t \text{ for } t > 1.$

Observation 1.4. $S_m(B(p,n)) = 4n+3$ when p = n and $S_m(B(p,n)) = 4n+5$ when p = n+1.

Observation 1.5. $S_m(C_{2n+1}) = 4n + 2$ for $n \ge 1$ and $S_m(C_{2n}) = 4n$ for $n \ge 3$.

Observation 1.6. $S_m(C_4) = 9$, since C_4 is not a super mean graph and from a labeling of C_4 in Figure 4.

FIGURE 4.

Observation 1.7. For any super mean graph G, $S_m(tG) = t(p+q), t > 1$ where p is the order and q is the size of the graph G.

2. Super mean number of some standard graphs

The existence of the super mean number for any graph G is guaranteed by the following theorem.

Theorem 2.1. $S_m(G) \le 2^p - 2$.

Proof. It is enough if we prove that $S_m(K_p) \leq 2^p - 2$. Let v_1, v_2, \ldots, v_p be the vertices of K_p .

Define $f: V(K_p) \to \{1, 2, ..., n\}$ by $f(v_i) = 2^i - 1$ for $1 \leq i \leq p - 1$ and $f(v_p) = 2^p - 2$. Clearly all the vertex labels are distinct. Let us prove the same for edge labels.

For $1 \le i, j, s, t \le p-1$, we consider the following two cases. Suppose $f^*(v_i v_j) = f^*(v_s v_t)$; then $\frac{2^i - 1 + 2^j - 1}{2} = \frac{2^s - 1 + 2^t - 1}{2}$. This implies $2^i + 2^j =$ $2^{s} + 2^{t}$.

Case(i) Assume that the edges $v_i v_i$ and $v_s v_t$ have one vertex in common.

Take i = s and $j \neq t$.

Since $j \neq t$, we have $2^j \neq 2^t$ then $2^i + 2^j \neq 2^s + 2^t$.

Hence if two edges have one vertex in common their edge values are distinct.

Case(ii) Assume that the edges $v_i v_j$ and $v_s v_t$ have no vertex in common. Then $i \neq s, i \neq t, j \neq s$ and $j \neq t$. Suppose $f^*(v_i v_j) = f^*(v_s v_t)$.

Without loss of generality, assume that i is the smallest integer.

Let $j = i + k_1, s = i + k_2, t = i + k_3, k_1, k_2, k_3 > 0$. Then $2^i + 2^j = 2^s + 2^t$ implies $2^i + 2^{i+k_1} = 2^{i+k_2} + 2^{i+k_3}$. Then $2^i (1+2^{k_1}) = 2^i (2^{k_2} + 2^{k_3})$, which gives $1+2^{k_1} = 2^{k_2} + 2^{k_3}$. This is a contradiction.

Case(iii) Suppose one of the vertices is v_p .

Subcase(i) Assume that $v_i v_j$ and $v_s v_t$ have the common vertex v_p .

Without loss of generality, assume that i = s = p and $j \neq t$.

Suppose $f^*(v_p v_j) = f^*(v_p v_t)$. This implies $\frac{2^p - 2 + 2^j - 1 + 1}{2} = \frac{2^p - 2 + 2^t - 1 + 1}{2}$, that is $2^p + 1$ $2^{j} = 2^{p} + 2^{t}$. Then $2^{j} = 2^{t}$ which gives j = t. This is a contradiction.

Subcase(ii) Suppose $v_i v_j$ and $v_s v_t$ have a common vertex other than v_p .

For $1 \leq i, s, t \leq p-1$, take i = s and j = p. Then $f^*(v_i v_p) = f^*(v_s v_t)$ implies $\frac{2^{i-1+2^p-2+1}}{2} = \frac{2^{i-1+2^t-1}}{2}$. Then we have $2^i + 2^p = 2^i + 2^t$, that is $2^p = 2^t$ which gives p = t. This is a contradiction.

Subcase(iii) Suppose the edges $v_i v_j$ and $v_s v_t$ have no vertex in common.

For $1 \le i, s, t \le p-1$ and $j = p f^*(v_i v_p) = f^*(v_s v_t)$ implies $\frac{2^{i-1+2^p-2+1}}{2} = \frac{2^{s-1+2^t-1}}{2}$ i.e. $2^i + 2^p = 2^s + 2^t$. Then, we get a contradiction as in Case (ii).

Let us prove now that for any $v \in V(G)$ and $e \in E(G)$, $f(v) \neq f^*(e)$.

Let us take any edge $v_i v_j$ in K_p , i < j, where $i \neq 1$ and $j \neq p$. Now, $f^*(v_i v_j) = \frac{2^i - 1 + 2^j - 2}{2} = 2^{i-1} + 2^{j-1} - 1 = 2^{i-1}(1 + 2^{j-i}) - 1 \neq 2^k - 1$ for any k. Also $f^*(v_i v_j) \neq 2^p - 2$. This implies that $f^*(v_i v_j) \notin f(V(G))$. If $j \neq p$ and i = 1, $f^*(v_i v_j) = \frac{1 + 2^j - 1}{2} = 2^{j-1} \notin f(V(G))$. If $i \neq 1$ and j = p, $f^*(v_i v_p) = \frac{(2^i - 1 + 2^p - 2) + 1}{2} = \frac{2^i + 2^p - 2}{2} = 2^{i-1} + 2^{p-1} - 1 \neq 2^k - 1$ for any k. Also $f^*(v_i v_p) \neq 2^p - 2$. This implies that $f^*(v_i v_p) \neq 2^p - 2$. This implies that $f^*(v_i v_p) \neq 2^p - 2$.

Thus, all the vertex and edge labels are distinct and no vertex and edge labels are equal.

Hence
$$S_m(K_p) \le 2^p - 2$$
.

Theorem 2.2. $S_m(K_{1,n}) = 2n + 2$ for n = 4, 5, 6.

Proof. Let $V(K_{1,n}) = \{v, v_1, v_2, \dots, v_n\}$ and $E(K_{1,n}) = \{vv_i; 1 \le i \le n\}$. Define f on $V(K_{1,4})$ and $V(K_{1,5})$ as follows:

 $f(v) = 5, f(v_i) = i, 1 \le i \le 2, f(v_i) = 7+3(i-3), 3 \le i \le n-1 \text{ and } f(v_n) = 2n+2,$ for n = 4, 5.

The vertex labeling f on $V(K_{1,6})$ is defined by

 $f(v) = 5, f(v_i) = i, 1 \le i \le 2, f(v_3) = 7, f(v_4) = 11, f(v_5) = 12$ and $f(v_6) = 14$. Clearly, the vertex labels and the induced edge labels are distinct. Hence, $S_m(K_{1,n}) \le 2n + 2$ for n = 4, 5, 6. Then by Observation 1.12, the result follows.

Theorem 2.3. $S_m(K_{1,n}) \le 4n - 10, n \ge 7.$

Proof. Let $V(K_{1,n}) = \{v, v_1, v_2, \dots, v_n\}$ and $E(K_{1,n}) = \{vv_i; 1 \le i \le n\}$. Define f on $V(K_{1,n})$ as follows:

 $f(v) = 5, f(v_i) = i, 1 \le i \le 2, f(v_3) = 7, f(v_i) = 2i + 3, 4 \le i \le 5, f(v_i) = 15 + 4(i - 6), 6 \le i \le n - 1, f(v_n) = 4n - 10.$

Clearly, the vertex labels and the edge labels are distinct and no vertex and edge labels are equal. Hence, $S_m(K_{1,n}) \leq 4n - 10$ for $n \geq 7$.

Theorem 2.4. $S_m(tK_{1,n}) \le (2n+1)t + 1$ for n = 5, 6 and t > 1.

Proof. Let $v_{0_j}, v_{i_j}, 1 \leq j \leq t, 1 \leq i \leq n$ be the vertices and $v_{0_j}v_{i_j}, 1 \leq j \leq t, 1 \leq i \leq n$ be the edges of $tK_{1,n}$.

Define f on $V(tK_{1,n})$, n = 5, 6 as follows:

When t = 1 and n = 5, define $f(v_{0_1}) = 5$, $f(v_{i_1}) = i$, $1 \le i \le 2$, $f(v_{i_1}) = 7 + 3(i-3)$, $3 \le i \le 4$, $f(v_{5_1}) = 12$.

When t = 1 and n = 6, define $f(v_{0_1}) = 5$, $f(v_{i_1}) = i, 1 \le i \le 2$, $f(v_{3_1}) = 7$, $f(v_{4_1}) = 11$, $f(v_{5_1}) = 12$ and $f(v_{6_1}) = 14$.

For t > 1, label the vertices of $tK_{1,5}$ and $tK_{1,6}$ as follows :

$$f(v_{0_j}) = f(v_{0_1}) + (2n+1)(j-1), 2 \le j \le t,$$

$$f(v_{1_2}) = f(v_{1_1}) + 2n,$$

$$f(v_{1_j}) = f(v_{1_2}) + (2n+1)(j-2), 3 \le j \le t \text{ and}$$

$$f(v_{i_j}) = f(v_{i_1}) + (2n+1)(j-1), 2 \le j \le t, 2 \le i \le n$$

Clearly, the vertex labels are distinct. Also, the vertex labeling f induces distinct edge labels and $f(E(G)) \subseteq \{1, 2, 3, \dots, (2n+1)t+1\} - f(V(G))$. Hence $S_m(tK_{1,n}) \leq (2n+1)t+1$.

According to Theorem 2.4, in the following Figure 5, the labeling of $5K_{1,5}$ shows that $S_m(5K_{1,5}) \leq 56$.

FIGURE 5. $5K_{1,5}$

Theorem 2.5. When t is an even integer, $S_m(tK_{1,n}) \leq t(2n+2) - 1$ for n > 6.

Proof. Let $v_{0_j}, v_{i_j}, 1 \leq i \leq n, 1 \leq j \leq t$ be the vertices and $v_{0_j}v_{i_j}, 1 \leq i \leq n, 1 \leq j \leq t$ be the edges of $tK_{1,n}$.

Define f on $V(tK_{1,n})$ as follows:

$$f(v_{0_{2j+1}}) = (4n+4)j + 1, 0 \le j \le \frac{t}{2} - 1,$$

$$f(v_{0_{2j}}) = (4n+3)j + j - 1, 1 \le j \le \frac{t}{2},$$

$$f(v_{i_{2j+1}}) = (4n+4)j + 4i - 1, 0 \le j \le \frac{t}{2} - 1, 1 \le i \le n \text{ and}$$

$$f(v_{i_{2j}}) = (4n+4)(j-1) + 4i + 1, 1 \le j \le \frac{t}{2}, 1 \le i \le n.$$

It can be verified that all the vertex and edge labels are distinct and there is no common vertex and edge labels. Hence, $S_m(tK_{1,n}) \leq t(2n+2) - 1$ for n > 6 and t is an even integer.

Theorem 2.6. When t is an odd integer, $S_m(tK_{1,n}) \le t(2n+2) + 3$ for n > 6.

Proof. Let $V(tK_{1,n}) = \{v_{0_j}, v_{i_j} : 1 \le i \le n, 1 \le j \le t\}$ and $E(tK_{1,n}) = \{v_{0_j}v_{i_j} : 1 \le i \le n, 1 \le j \le t\}$. Let t = 2k + 1 for some $k \in Z^+$. Define f on $V(tK_{1,n})$ as follows:

For $1 \le j \le 2k$, $\begin{aligned} f(v_{0_{2j+1}}) &= (4n+4)j + 1, 0 \le j \le k - 1, \\ f(v_{0_{2j}}) &= (4n+3)j + j - 1, 1 \le j \le k, \\ f(v_{i_{2j+1}}) &= (4n+4)j + 4i - 1, 0 \le j \le k - 1, 1 \le i \le n \text{ and} \\ f(v_{i_{2j}}) &= (4n+4)(j-1) + 4i + 1, 1 \le j \le k, 1 \le i \le n. \end{aligned}$

When j = 2k + 1,

$$\begin{split} f(v_{0_{2k+1}}) &= 4 + (2n+2)2k, \\ f(v_{i_{2k+1}}) &= i + (2n+2)2k - 1, 1 \le i \le 2, \\ f(v_{3_{2k+1}}) &= 6 + (2n+2)2k, \\ f(v_{i_{2k+1}}) &= 2i + (2n+2)2k + 2, 4 \le i \le 5, \\ f(v_{i_{2k+1}}) &= 4i + (2n+2)2k - 10, 6 \le i \le n-1 \text{ and} \\ f(v_{n_{2k+1}}) &= (2n+2)2k + 4n - 11. \end{split}$$

Clearly, the vertex labels and the induced edge labels are distinct and further $f(V(G)) \cap f(E(G)) = \emptyset$. Hence, $S_m(tK_{1,n}) \leq t(2n+2) + 3$ for n > 6 and t is an odd integer.

Theorem 2.7. $S_m(B(p, n)) \le 4p \text{ if } p > n + 1.$

Proof. Let $V(B(p,n)) = \{u, v, u_i, v_j : 1 \le i \le p, 1 \le j \le n\}$ and $E(B(p,n)) = \{uv, uu_i, vv_j : 1 \le i \le p, 1 \le j \le n\}.$

Define f on V(B(p, n)) as follows:

 $f(u) = 3, f(u_i) = 4i - 3, 1 \le i \le p, f(v) = 4p$ and $f(v_j) = 7 + 4(j-1), 1 \le j \le n$. It can be verified that the vertex and edge labels are distinct and $f(V(G)) \cap f(E(G)) = \emptyset$. Thus, $S_m(B(p,n)) \le 4p, p > n + 1$.

Theorem 2.8. $\langle C_m, K_{1,n} \rangle$ is a super mean graph for $n \leq 4$ and $m \geq 3$.

Proof. Let $V(\langle C_m, K_{1,n} \rangle) = \{u_1, u_2, \dots, u_m, v_1, v_2, \dots, v_n, v = u_1\}$ and $E(\langle C_m, K_{1,n} \rangle) = \{u_1 u_2, u_2 u_3, \dots, u_m u_1, u_1 v_i : 1 \le i \le n\}.$

For m = 4, the super mean labeling of the graphs $\langle C_4, K_{1,1} \rangle$, $\langle C_4, K_{1,2} \rangle$, $\langle C_4, K_{1,3} \rangle$ and $\langle C_4, K_{1,4} \rangle$ are shown in Figure 6.

FIGURE 6.

Case(i) n = 1, 2.Define f on $V(\langle C_m, K_{1,n} \rangle), n = 1, 2, m \ge 3$ and $m \ne 4$ as follows: Subcase(i) When *m* is odd.

Let $m = 2k + 1, k \in Z^+$.

$$f(v_i) = i, 1 \le i \le n,$$

$$f(u_1) = 2n + 1,$$

$$f(u_j) = 2n + 4j - 5, 2 \le j \le k + 1 \text{ and}$$

$$f(u_{k+1+j}) = 2n + 4k - 4j + 6, 1 \le j \le k.$$

Subcase(ii) When m is even.

Let $m = 2k, k \in \mathbb{Z}^+$.

$$f(v_i) = i, 1 \le i \le n,$$

$$f(u_1) = 2n + 1,$$

$$f(u_j) = 2n + 4j - 5, 2 \le j \le k,$$

$$f(u_{k+j}) = 2n + 4k - 3(j-1), 1 \le j \le 2 \text{ and}$$

$$f(u_{k+2+j}) = 2n + 4k - 4j - 2, 1 \le j \le k - 2.$$

Clearly, f induces distinct edge labels and it can be verified that f induces a super mean labeling and hence $\langle C_m, K_{1,n} \rangle$, $n = 1, 2, m \geq 3$ and $m \neq 4$ is a super mean graph.

Case (ii) n = 3, 4.Define f on $V(\langle C_m, K_{1,n} \rangle), n = 3, 4, m \ge 3$ and $m \ne 4$ as follows: Label the vertices of $K_{1,n}$, n = 3, 4 as $f(v_i) = i, 1 \le i \le 2, f(v_3) = 7$ and $f(v_4) = 11$ in the case of n = 4. Label the vertices of C_m as follows:

Let m = 2k + 1 for some $k \in Z^+$.

$$f(u_1) = 5,$$

$$f(u_j) = 2n + 4j - 1, 2 \le j \le k,$$

$$f(u_{k+j}) = 2n + 4k - 4j + 6, 1 \le j \le k \text{ and}$$

$$f(u_{2k+1}) = 2n + 4.$$

Subcase(ii) When m is even.

Let m = 2k for some $k \in Z^+$.

$$f(u_1) = 5,$$

$$f(u_j) = 2n + 4i - 1, 2 \le j \le k - 1,$$

$$f(u_{k-1+j}) = 2n + 4k - 3(j-1), 1 \le j \le 2,$$

$$f(u_{k+1+j}) = 2n + 4k - 4j - 2, 1 \le j \le k - 2 \text{ and}$$

$$f(u_{2k}) = 2n + 4.$$

Clearly, f induces distinct edge labels and it is easy to check that f generates a super mean labeling and hence $\langle C_m, K_{1,n} \rangle$, $n = 3, 4, m \ge 3$ and $m \ne 4$ is a super mean graph. Thus, $\langle C_m, K_{1,n} \rangle$ is a super mean graph for $n \le 4$ and $m \ge 3$. \Box

For example, the super mean labelings of $\langle C_8, K_{1,3} \rangle$ and $\langle C_9, K_{1,4} \rangle$ are shown in the following Figure 7.

Corollary 2.1. $S_m(\langle C_m, K_{1,n} \rangle) = 2m + 2n$ for $n \leq 4$ and $m \geq 3$.

Theorem 2.9. $S_m(\langle C_m, K_{1,n} \rangle) \leq 2m + 4n - 7$ for $n \geq 5, m \geq 3$ and $m \neq 4$ and $S_m(\langle C_4, K_{1,n} \rangle) \leq 4n + 2$ for $n \geq 5$.

Proof. Let $V(\langle C_m, K_{1,n} \rangle) = \{u_1, u_2, \dots, u_m, v_1, v_2, \dots, v_n, v = u_1\}$ and $E(\langle C_m, K_{1,n} \rangle) = \{u_1 u_2, u_2 u_3, \dots, u_m u_1, u_1 v_i : 1 \le i \le n\}.$ Define f on $V(\langle C_m, K_{1,n} \rangle)$ as follows: For $n \geq 5$, label the vertices of $K_{1,n}$ as follows:

$$f(v_1) = 2m + 2,$$

$$f(v_i) = 2m + 6 + 2(i - 2), 2 \le i \le 4,$$

$$f(v_i) = 2m + 14 + 4(i - 5), 5 \le i \le n - 1,$$

$$f(v_n) = 2m + 4n - 7 \text{ and}$$

$$(v = u_1) = 2m.$$

Label the vertices of C_m as follows:

f

Case(i) When m is odd. Let $m = 2k + 1, k \in Z^+$.

The vertex labeling f is given by

$$f(u_1) = 2m,$$

$$f(u_j) = 2m - 4j + 5, 2 \le j \le k + 1,$$

$$f(u_{k+2}) = 1 \text{ and}$$

$$f(u_{k+2+j}) = 6 + 4(j-1), 1 \le j \le k - 1.$$

Case(ii) When m is even. Let m = 2k for some $k \in Z^+$.

$$f(u_1) = 2m,$$

$$f(u_j) = 2m - 4j + 3, 2 \le j \le k,$$

$$f(u_{k+1}) = 1,$$

$$f(u_{k+1+j}) = 6 + 4(j-1), 1 \le j \le k - 2 \text{ and}$$

$$f(u_{2k}) = 2m - 3.$$

Clearly, the vertex labels and the induced edge labels are distinct and $f(E(G)) \subseteq \{1, 2, 3, \dots, 2m + 4n - 7\} - f(V(G)).$

Hence, $S_m(\langle C_m, K_{1,n} \rangle) \le 2m + 4n - 7, n \ge 5, m \ge 3$ and $m \ne 4$. Define f on $V(\langle C_4, K_{1,n} \rangle), n \ge 5$ as follows:

 $f(v_1) = 11, f(v_i) = 15 + 2(i-2), 2 \le i \le 4, f(v_i) = 23 + 4(i-5), 5 \le i \le n-1, f(v_n) = 4n+2, f(v=u_1) = 9, f(u_2) = 3, f(u_3) = 1$ and $f(u_4) = 7$. Clearly, the vertex labels and the edge labels are distinct and no vertex and edge labels are equal. Hence, $S_m(\langle C_4, K_{1,n} \rangle) \le 4n+2$ for $n \ge 5$.

Theorem 2.10. $\langle C_m * K_{1,n} \rangle$ is a super mean graph for $n \leq 6$ and $m \geq 3$.

Proof. Let $V(\langle C_m * K_{1,n} \rangle) = \{u_1, u_2, \dots, u_m, v_1 = u_1, v_2, \dots, v_n, v\}$ and $E(\langle C_m * K_{1,n} \rangle) = \{u_1 u_2, u_2 u_3, \dots, u_m u_1, u_1 v, v v_i : 1 \le i \le n-1\}.$

For m = 4, the super mean labelings of the graphs $\langle C_4, K_{1,n} \rangle$, n = 1, 2, 3, 4, 5, 6 are shown in Figure 8.

FIGURE 8.

Case (i) n = 1, 2, 3.Define f on $V(\langle C_m * K_{1,n} \rangle), n = 1, 2, 3, m \ge 3$ and $m \ne 4$ as follows: Subcase(i) When m is odd, say $m = 2k + 1, k \in Z^+$.

$$f(v) = 2n - 1,$$

$$f(u_1 = v_1) = 2n + 1,$$

$$f(v_{n+1-i}) = i, 1 \le i \le n - 1, n = 2, 3,$$

$$f(u_j) = 2n + 4j - 5, 2 \le j \le k + 1 \text{ and}$$

$$f(u_{k+1+j}) = 2n + 4k - 4j + 6, 1 \le j \le k.$$

When m is even, say $m = 2k, k \in Z^+$. Subcase(ii) f(v) = 2n - 1. $f(u_1 = v_1) = 2n + 1,$ $f(v_{n+1-i}) = i, 1 \le i \le n-1, n=2, 3$ $f(u_i) = 2n + 4j - 5, 2 < j < k,$ $f(u_{k+j}) = 2n + 4k - 3(j-1), 1 \le j \le 2$ and $f(u_{k+2+j}) = 2n + 4k - 4j - 2, 1 \le j \le k - 2.$

Clearly, the vertex labeling f induces distinct edge labels and it is easy to check that f is a super mean labeling. Hence, $\langle C_m * K_{1,n} \rangle$, $n = 1, 2, 3, m \ge 3$ and $m \ne 4$ is a super mean graph.

Case (ii) n = 4, 5, 6.

Define f on $V(\langle C_m * K_{1,n} \rangle), n = 4, 5, 6, m \ge 3$ and $m \ne 4$ as follows: Label the vertices of $K_{1,n}$, n = 4, 5, 6 as given below:

For n = 4, 5,

$$f(v) = 5,$$

$$f(v_1 = u_1) = 2n + 3 \text{ and}$$

$$f(v_{n+1-i}) = \begin{cases} i, & 1 \le i \le 2\\ 7 + 3(i-3), & 3 \le i \le n-1 \end{cases}$$

For n = 6,

 $f(v) = 5, f(v_1 = u_1) = 15, f(v_2) = 12, f(v_3) = 11, f(v_4) = 7, f(v_5) = 2$ and $f(v_6) = 1.$

Label the vertices of C_m as follows:

Subcase(i) When m is odd, take $m = 2k + 1, k \in Z^+$.

$$f(u_1) = 2n + 3, f(u_2) = 2n + 1,$$

$$f(u_j) = 2n + 4j - 6, 3 \le j \le k + 2 \text{ and}$$

$$f(u_{k+2+j}) = 2n + 4k - 4j + 3, 1 \le j \le k - 1.$$

Subcase(ii) When m is even, take $m = 2k, k \in Z^+$

$$f(u_1) = 2n + 3,$$

$$f(u_2) = 2n + 1,$$

$$f(u_j) = 2n + 4j - 6, 3 \le j \le k,$$

$$f(u_{k+j}) = 2n + 4k - 3 + 3(j - 1), 1 \le j \le 2 \text{ and}$$

$$f(u_{k+2+j}) = 2n + 4k - 4j - 1, 1 \le j \le k - 2.$$

Clearly, the edge labels are distinct. It can be easily verified that f is a super mean labeling. Hence, $\langle C_m * K_{1,n} \rangle$, $n = 4, 5, 6, m \ge 3$ and $m \ne 4$ is a super mean graph.

Thus, $\langle C_m * K_{1,n} \rangle$ for $n \leq 6, m \geq 3$ is a super mean graph.

For example, the super mean labelings of $\langle C_{10} * K_{1,3} \rangle$ and $\langle C_9 * K_{1,6} \rangle$ are shown in the Figure 9.

FIGURE 9.

Corollary 2.2. $S_m(\langle C_m * K_{1,n} \rangle) = 2m + 2n \text{ for } n \leq 6 \text{ and } m \geq 3.$

Theorem 2.11. $S_m(\langle C_m * K_{1,n} \rangle) \leq 2m + 4n - 11$ for $n \geq 7, m \geq 3$ and $m \neq 4$ and $S_m(\langle C_4 * K_{1,n} \rangle) \leq 4n - 2$ for $n \geq 7$.

Proof. Let $V(\langle C_m * K_{1,n} \rangle) = \{v_i : 1 \le i \le n, v, u_1 = v_1, u_2, \dots, u_m\}$ and $E(\langle C_m * K_{1,n} \rangle) = \{u_1 u_2, u_2 u_3, \dots, u_m u_1, u_1 v, v v_i, 1 \le i \le n-1\}.$

Define f on $V(\langle C_m * K_{1,n} \rangle)$ as follows:

For $n \ge 7$ label the vertices of $K_{1,n}$ by

$$f(v_1 = u_1) = 2m,$$

$$f(v_2) = 2m + 1,$$

$$f(v_3) = 2m + 6,$$

$$f(v_i) = 2m + 10 + 2(i - 4), 4 \le i \le 6,$$

$$f(v_i) = 2m + 18 + 4(i - 7), 7 \le i \le n - 1 \text{ and}$$

$$f(v_n) = 2m + 4n - 11.$$

Now label the vertices of C_m as follows:

Case (i) When m is odd, say $m = 2k + 1, k \in Z^+$.

$$f(u_1) = 2m,$$

$$f(u_j) = 2m - 4j + 5, 2 \le j \le k + 1,$$

$$f(u_{k+2}) = 1 \text{ and}$$

$$f(u_{k+2+j}) = 6 + 4(j-1), 1 \le j \le k - 1.$$

Case (ii) When m is even, say $m = 2k, k \in Z^+$.

$$f(u_1) = 2m,$$

$$f(u_j) = 2m - 4j + 3, 2 \le j \le k,$$

$$f(u_{k+1}) = 1,$$

$$f(u_{k+1+j}) = 6 + 4(j-1), 1 \le j \le k - 2 \text{ and}$$

$$f(u_{2k}) = 2m - 3.$$

Clearly, the vertex labels and the induced edge labels are distinct and $f(V(G)) \cap f(E(G)) = \emptyset$. Hence, $S_m(\langle C_m * K_{1,n} \rangle) \leq 2m + 4n - 11$ for $n \geq 7, m \geq 3$ and $m \neq 4$.

Define f on $V(\langle C_4 * K_{1,n} \rangle), n \geq 7$ as follows:

 $\begin{aligned} f(v_1 = u_1) &= 9, f(v_2) = 10, f(v_3) = 15, f(v_i) = 19 + 2(i - 4), 4 \le i \le 6, f(v_i) = \\ 27 + 4(i - 7), 7 \le i \le n - 1, f(v_n) = 4n - 2, f(u_2) = 3, f(u_3) = 1 \text{ and } f(u_4) = 7. \\ \end{aligned}$ Clearly, the vertex labels and edge labels are distinct and $f(E(G)) \subseteq \{1, 2, 3, \ldots, 4n - 2\} - f(V(G)).$ Hence, $S_m(\langle C_4 * K_{1,n} \rangle) \le 4n - 2$ for $n \ge 7.$

Theorem 2.12. For any graph G, if k is a super mean number of the graph G, then $S_m(tG) \leq kt$.

Proof. Let $V(G) = \{u_1, u_2, \ldots, u_p\}$ and $V(tG) = V(G) \cup \{u_{1_i}, u_{2_i}, \ldots, u_{p_i} : 2 \le i \le t\}$. Let f be the vertex labeling of G which yields k as the super mean number.

Define g on V(tG) by $g(u_j) = f(u_j)$ for $1 \le j \le p$ and $g(u_{j_i}) = f(u_j) + (i-1)k, 1 \le j \le p, 2 \le i \le t$. Clearly, g induces distinct edge labels and hence $S_m(tG) \le kt$.

3. CONCLUSION

We proved that the graph $\langle C_m, K_{1,n} \rangle$ for $n \leq 4, m \geq 3$ and the graph $\langle C_m * K_{1,n} \rangle$ for $n \leq 6, m \geq 3$ are super mean graphs. We found an upper bound of the super mean number of the graphs $K_{1,n}, n \geq 7, tK_{1,n}$ for $n \geq 5, t > 1, B(p,n)$ for $p > n + 1, n \geq 1, \langle C_m, K_{1,n} \rangle$ for $n \geq 5, m \geq 3$ and $\langle C_m * K_{1,n} \rangle$ for $n \geq 7, m \geq 3$. It is also established that $S_m(G) \leq 2^p - 2$ for any graph G. Further, we obtained the super mean number of the graphs K_p for $p \leq 4, K_{1,n}$ for $n \leq 6, tK_{1,4}$ for t > 1, B(p,n) for p = n, n + 1and C_n .

Acknowledgement: The authors are thankful to the referees for their helpful suggestions which lead to substantial improvement in the presentation of the paper.

References

- [1] F. Harary, Graph Theory, Addison Wesley, Reading Mass., (1972).
- [2] P. Jeyanthi, D. Ramya and P. Thangavelu, On super mean graphs, AKCE Int. J. Graphs. Combin., 6 (1) (2009), 103–112.
- [3] R. Ponraj and D. Ramya, On super mean graphs of order ≤ 5, Bulletin of Pure and Applied Sciences, (Section E Maths and Statistics) 25E (2006), 143–148.
- [4] D. Ramya, R. Ponraj and P. Jeyanthi, Super mean labeling of graphs, Ars Combin., (To appear).
- [5] M. Sundaram and R. Ponraj, *Mean number of a graph*, Pure and Applied Mathematika Sciences, LXV, (1-2) (2007), 93–102.
- [6] R. Vasuki and A. Nagarajan, Some results on super mean graphs, International Journal of Mathematical Combinatorics, 3 (2009), 82–96.
- [7] R. Vasuki and A. Nagarajan, On the construction of new classes of super mean graphs, Journal of Discrete Mathematical Sciences and Cryptography, 13 (3) (2010), 277–290.

¹ DEPARMENT OF MATHEMATICS V.O. CHIDAMBARAM COLLEGE THOOTHUKUDI-628008, TAMIL NADU, INDIA. *E-mail address*: nagarajan.voc@gmail.com

² DEPARTMENT OF MATHEMATICS DR. SIVANTHI ADITANAR COLLEGE OF ENGINEERING TIRUCHENDUR-628 215, TAMIL NADU, INDIA. *E-mail address*: vasukisehar@yahoo.co.in

³ DEPARTMENT OF MATHEMATICS MEPCO SCHLENK ENGINEERING COLLEGE SIVAKASI, TAMIL NADU, INDIA. *E-mail address*: sarockiaraj_77@yahoo.com