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HOSOYA POLYNOMIAL OF HANOI GRAPHS

KISHORI P. NARAYANKAR 1, LOKESH S. B. 2, VEENA MATHAD 3, AND IVAN GUTMAN 4

Abstract. A recursive method for the calculation of the Hosoya polynomial of
Hanoi graph is designed. This make it possible to compute various distance–based
invariants of Hanoi graphs.

1. Introduction

Let G be a connected graph and V (G) = {v1, v2, . . . , vp} its vertex set. The distance
of the vertices vi and vj, denoted by d(vi, vj|G), is the length of (= number of edges
in) a shortest path that connects vi and vj [2]. If i = j, then d(vi, vj|G) = 0.

A large number of distance–based graph invariants has been studied both in the last
50–60 years and in the recent past (see [4, 5, 3, 1] and the references cited therein).
Of these we mention here the Wiener index (W ), the hyper–Wiener index (WW ), the
Harary index (Ha), the reciprocal Wiener index (RW ), and the distance moments
(Wρ). These are defined as

W = W (G) =
∑

i<j

d(vi, vj|G),

WW = WW (G) =
1

2

∑

i<j

[
d(vi, vj|G)2 + d(vi, vj)

]
,

Ha = Ha(G) =
∑

i<j

1

d(vi, vj|G)2
,

RW = RW (G) =
∑

i<j

1

d(vi, vj|G)
,

Wρ = Wρ(G) =
∑

i<j

d(vi, vj|G)ρ.
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In the study of these and other distance–based graph invariants it is often conve-
nient to work with the numbers d(G, k) which are equal to the number of pairs of
vertices of the graph G that are at distance k. With this notation, we have

W = W (G) =
∑

k≥1

k d(G, k),(1.1)

WW = WW (G) =
1

2

∑

k≥1

(k2 + k) d(G, k),(1.2)

Ha = Ha(G) =
∑

k≥1

1

k2
d(G, k),(1.3)

RW = RW (G) =
∑

k≥1

1

k
d(G, k),(1.4)

Wρ = Wρ(G) =
∑

k≥1

d(G, k) kρ.(1.5)

One of the advantages of the latter formulas is that these can be applied also in
the case of graphs that are not connected.

In the 1980s Hosoya [8] conceived a graph polynomial which he named ”Wiener
polynomial”, but which most contemporary authors call the ”Hosoya polynomial”. It
is defined as

(1.6) H(G; λ) =
∑

k≥1

d(G, k) λk.

The maximal distance between two vertices of the graph G is referred to as the
diameter of G. It will be denoted by d(G). Then d(G, k) > 0 holds for 1 ≥ k ≥ d(G),
whereas d(G, k) = 0 holds for k > d(G). In view of this, we see that H(G; λ) is a
polynomial of degree d(G).

The theory of the Hosoya polynomial is nowadays well elaborated; its details and
additional references can be found in the recent survey [6]. By comparing Eq. (1.6)
with Eqs. (1.1)–(1.5), it should be evident that if one knows the Hosoya polynomial
of a graph, then it is elementary to compute any of its distance–based invariants. The
respective formulas can be found elsewhere [6]. The simplest such formula is

W (G) = H ′(G; 1)

where H ′(G; λ) denotes the first derivative of H(G; λ). This result motivated Hosoya
to call H(G; λ) the Wiener polynomial [8].

2. The Hanoi graph

The tower of Hanoi puzzle, invented in 1883 by the French mathematician, Edouard
Lucas, has become a classic example in the analysis of algorithms and discrete math-
ematics [9, 7].

The puzzle consists of n discs, no two of the same size, stacked on three vertical
pegs, in such a way that no disc lies on top of a smaller disc. A permissible move
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is to take a top disc from one of the pegs and move it to one of the other pegs as
long as it is not placed on top of a smaller disc. The set of configurations of the
puzzle, together with the permissible moves, thus forms a graph in a natural way.
The number of vertices in the n-disc Hanoi graph Hn is 3n and the number of edges
is 3(3n− 1)/2. One can verify that each Hanoi graph has a unique Hamiltonian cycle
and 3n−1 small triangles.

The following figure shows the Hanoi graphs for n = 1, 2, 3.

H H H
1 2 3

Figure 1. The first three Hanoi graphs.

The Hanoi graph Hn can be constructed by taking the vertices to be the odd bino-
mial coefficients of the Pascal triangle, computed on the integers from 0 to 2n−1 and
drawing an edge whenever the coefficients are adjacent diagonally or horizontally [9].
More information on shortest paths in the tower of Hanoi graph and finite automata
can be found in [10].

The main properties of Hanoi graphs are summarized in the following proposition:

Proposition 2.1. [9] For all positive integers n, Hn is a planar 2-connected Hamil-
tonian graph of order 3n and diameter d = 2n−1, with exactly three vertices of degree
2 and all other vertices of degree 3.

In the subsequent section we show how the Hosoya polynomial of the Hanoi graphs
can be recursively evaluated.

3. Hosoya polynomial of Hanoi graphs

The Hosoya polynomial of the Hanoi graph Hn is of the form

H(Hn; λ) = d(Hn, 1) λ + d(Hn, 2) λ2 + · · ·+ d(Hn, d) λd

where d = 2n − 1 is the diameter of Hn.

Theorem 3.1. Let n ≥ 1 and let the ordered (2n−1)-tuple of integers Sn be recursively
defined as:

S1 = {1},
S2 = {1, 2} = {S1, 2S1},(3.1)

S3 = {1, 2, 2, 4} = {S2, 2S2},(3.2)
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S4 = {1, 2, 2, 4, 2, 4, 4, 8} = {S3, 2S3},(3.3)

· · ·
Sn = {Sn−1, 2Sn−1}.(3.4)

Denote the elements of Sn by `i, i = 0, 1, 2, . . . , 2n−1 − 1 so that

Sn = {`0, `1, `2, . . . , `2n−1−1}
and assume that `t = 0 for t < 0 and t > 2n−1 − 1. For k = 1, 2, . . . , 2n − 1 define,

(3.5) b(n, k) =
k∑

i=0

`i `k−i−1.

Then the coefficients of the Hosoya polynomial of the Hanoi graph Hn satisfy the
recursion relation:

(3.6) d(Hn, k) = 3[d(Hn−1, k) + b(n, k)]

for k = 1, 2, . . . , 2n − 1.

Proof. Let Hn be the Hanoi graph with the vertex set V (Hn) partitioned into disjoint
subsets A, B, and C as shown in Figure 2

H H

H

H

n-1 n-1

n

n-1

A B

C

Figure 2. Partitioning of the vertices of the Hanoi graph Hn.

For X,Y = A,B,C, denote by dXY (Hn, k) the number of vertex pairs (vi, vj) of
the Hanoi graph Hn that are at distance k, so that vi ∈ X and vj ∈ Y . Then,

d(Hn, k) = dAA(Hn, k) + dBB(Hn, k) + dCC(Hn, k)

+ dAB(Hn, k) + dAC(Hn, k) + dBC(Hn, k).(3.7)

In view of the notation described in Figure 2,

(3.8) dAA(Hn, k) = dBB(Hn, k) = dCC(Hn, k) = d(Hn−1, k).

In view of the symmetry of the Hanoi graphs (cf. Figures 1 and 2),

dAB(Hn, k) = dAC(Hn, k) = dBC(Hn, k).

Therefore, we only need to compute dAB(Hn, k).
Let GAB be the subgraph induced by the sets A and B as shown in Figure 3.
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Figure 3. The subgraph induced by the vertex sets A and B of the Hanoi graph Hn.

Evidently, dAB(Hn, k) is equal to the number of vertex pairs of GAB whose distance
is k, such that one vertex belongs to A and the other to B. From Fig. 3 we see that
the number of such vertex pairs is equal to the sum over i = 0, 1, . . . , k, of the product
of the number of vertices in A whose distance to vertex uA is i and the number of
vertices in B whose distance to vertex uB is k − i− 1. If these numbers are denoted
by `i and `k−i−1, then we have

(3.9) dAB(Hn, k) =
k∑

i=0

`i `k−i−1 ≡ b(n, k)

as well as

(3.10) dAC(Hn, k) = dBC(Hn, k) = b(n, k).

In order to complete the proof of Theorem 3.1, it only remains to verify that `i

counts the number of vertices in Hn−1 whose distance to vertex uA (or more generally,
to a vertex of degree 2) is equal to i.

That this indeed is the case can be directly checked for H1, H2, and H3, resulting
in the sequences (3.1), (3.2), and (3.3), respectively. That the general form of such a
sequence is (3.4) is now easily proved by induction on n.

Thus Eq. (3.9) is valid, and therefore also Eq. (3.10) holds. Substituting Eqs.
(3.9), (3.10), and (3.8) back into Eq. (3.7), we arrive at the recursive formula (3.6),
by which the proof of Theorem 3.1 is completed. ¤

4. Examples

As illustrative examples of the above result, we compute H(H2; λ) and H(H3; λ),
which are polynomials in λ of degree 22 − 1 = 3 and 23 − 1 = 7, respectively.

As easily seen, H(H1; λ) = 3 λ, i. e., d(H1, 1) = 3 and d(H1, k) = 0 for k ≥ 2.
We first need S2 = {1, 2}, which means that

`0 = 1

`1 = 2

Now, by using formula (3.5),

b(2, 1) = `0 `0 = 1 · 1 = 1,

b(2, 2) = `0 `1 + `1 `0 = 1 · 2 + 2 · 1 = 4,

b(2, 3) = `0 `2 + `1 `1 + `2 `0 = 1 · 0 + 2 · 2 + 0 · 1 = 4.
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From Eq. (3.6) we now get

d(H2, 1) = 3[d(H1, 1) + b(2, 1)] = 3[3 + 1] = 12,

d(H2, 2) = 3[d(H1, 2) + b(2, 2)] = 3[0 + 4] = 12,

d(H2, 3) = 3[d(H1, 3) + b(2, 3)] = 3[0 + 4] = 12

which finally gives

H(H2; λ) = 12 λ + 12 λ2 + 12 λ3.

Repeating the calculation for n = 3, we start with S3 = {1, 2, 2, 4}, which means
that

`0 = 1,

`1 = 2,

`2 = 2,

`3 = 4.

By formula (3.5),

b(3, 1) = `0 `0 = 1 · 1 = 1,

b(3, 2) = `0 `1 + `1 `0 = 1 · 2 + 2 · 1 = 4,

b(3, 3) = `0 `2 + `1 `1 + `2 `0 = 1 · 2 + 2 · 2 + 2 · 1 = 8,

b(3, 4) = `0 `3 + `1 `2 + `2 `1 + `3 `0 = 1 · 4 + 2 · 2 + 2 · 2 + 4 · 1 = 16,

b(3, 5) = `0 `4 + `1 `3 + `2 `2 + `3 `1 + `4 `0 = 1 · 0 + 2 · 4 + 2 · 2 + 4 · 2 + 0 · 1 = 20,

b(3, 6) = `0 `5 + `1 `4 + `2 `3 + `3 `2 + `4 `1 + `5 `0

= 1 · 0 + 2 · 0 + 2 · 4 + 4 · 2 + 0 · 2 + 0 · 1 = 16,

b(3, 7) = `0 `6 + `1 `5 + `2 `4 + `3 `3 + `4 `2 + `5 `1 + `6 `0

= 1 · 0 + 2 · 0 + 2 · 0 + 4 · 4 + 0 · 2 + 0 · 2 + 0 · 1 = 16

which together with Eq. (3.6) yields

d(H3, 1) = 3[d(H2, 1) + b(3, 1)] = 3[12 + 1] = 39,

d(H3, 2) = 3[d(H2, 2) + b(3, 2)] = 3[12 + 4] = 48,

d(H3, 3) = 3[d(H2, 3) + b(3, 3)] = 3[12 + 8] = 60,

d(H3, 4) = 3[d(H2, 4) + b(3, 4)] = 3[0 + 16] = 48,

d(H3, 5) = 3[d(H2, 5) + b(3, 5)] = 3[0 + 20] = 60,

d(H3, 6) = 3[d(H2, 6) + b(3, 6)] = 3[0 + 16] = 48,

d(H3, 7) = 3[d(H2, 7) + b(3, 7)] = 3[0 + 16] = 48

and finally,

H(H3; λ) = 39 λ + 48 λ2 + 60 λ3 + 48 λ4 + 60 λ5 + 48 λ6 + 48 λ7.
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