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1. “The most vitally characteristic fact about mathematics is, in my opinion, its quite
peculiar relationship to the natural sciences, or, more generally, to any science which
interprets experience on a higher than purely descriptive level.”, as von Neumann
stated in his article entitled “The Mathematician”. And, here follows a quote in this
respect from the foreword of Weber’s edition of Riemann’s lectures on “Die Partiellen
Differentialgleichungen der Mathematischen Physik”: “Alles in Allem haben wir es
hier mit einer Anshauung zu thun, die auch den zu erfreuen geeignet ist, der in der
physikalischen Theorien mehr sught, als die blosse Darstellung oder Beschreibung der
Erscheinungen.”.

In this sense, in the biological theory of growth and form one may consider the
hereafter recalled geometrical model for planar natural growth of D’Arcy Thompson
and its thereafter -as far as we know- firstly formulated natural nD generalisation and
the geometrical forms which these models do characterise: the logarithmic spirals or
the equiangular curves of Descartes amongst the curves in Euclidean planes E2 and
the constant ratio or equiangular submanifolds of Bang-Yen Chen amongst the nD
submanifolds Mn in Euclidean (n+m)D spaces En+m.

The most immediately relevant biological extension of the original E2 model, namely
the case of surfaces M2 in Euclidean spaces E3, in particular, applies to shells, in agree-
ment with the following citation from D’Arcy Thompson’s “On Growth and Form”:
“The surface of any shell, whether discoid or turbinate, may be imagined to be gen-
erated by the revolution about a fixed axis of a closed curve, which, remaining always
geometrically similar to itself, increases its dimension continually; and, since the scale
of the figure increases in geometrical progression while the angle of rotation increases
in arithmetical, and the centre of similitude remains fixed, the curve traced in space
by corresponding points in the generating curve is, in all such cases, an equiangular
spiral. In discoid shells, the generating figure revolves in a plane perpendicular to
the axis, as in the Nautilus, the Argonaut and the Ammonite. In turbinate shells,
it follows a skew path with respect to the axis of revolution, and the curve in space
generated by any given point makes a constant angle to the axis of the enveloping
cone, and partakes, therefore, of the character of a helix, as well as of a logarithmic
spiral; it may be strictly entitled a helico-spiral. When the envelope of the shell is a
right cone -and it is seldom far from being so- then our helico-spiral is a loxodromic
curve. Such turbinate or helico-spiral shells include the snail, the periwinkle and all
the common typical gastropodes.”. Our extended basic principle of growth however is
the same for all dimensions n and for all co–dimensions m, and, besides in biology,
may be applied in other fields of science too, and will be discussed further in following
parts of our paper, also for pseudo-Euclidean ambient spaces.
2. From the 1942 edition of D’Arcy Thompson’s book “On Growth and Form” [17]
(of which book the first version appeared in 1917), we recall the following passage of
the section “The equiangular spiral in its dynamical aspect”.

“In mechanical structures, curvature is essentially a mechanical phenomenon. It
is found in flexible structures as a result of bending, or it may be introduced into
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construction for the purpose of resisting such a bending-moment. But neither shell
nor tooth nor claw are flexible structures; they have not been bent into their peculiar
curvature, they have grown into it.

We may for a moment, however, regard the equiangular or logarithmic spiral of
our shell from the dynamic point of view, by looking at growth itself as the force
concerned. In the growing structure, let growth at a point P be resolved into a force
F acting along the line joining P to a pole O, and a force T acting in a direction
perpendicular to OP ; and let the magnitude of these forces (or of these rates of
growth) remain constant. It follows that the resultant of the forces F and T (as
PQ) makes a constant angle with the radius vector. But a constant angle between
tangent and radius vector is a fundamental property of the “equiangular” spiral: the
very property with which Descartes started his investigation, and that which gives
its alternative name to the curve.

In such a spiral, radial growth and growth in the direction of the curve bear a
constant ratio to one another. For, if we consider a consecutive radius vector OP ′,
whose increment as compared with OP is dr, while ds is the small arc PP ′, then
dr/ds = cosα = constant.

In the growth of a shell, we can conceive no simpler law than this, that it shall
widen and lengthen in the same unvarying proportions: and this simplest of laws is
that which Nature tends to follow. The shell, like the creature within it, grows in
size but does not change its shape; and the existence of this constant relativity of
growth, or constant similarity of form, is of the essence, and may be made the basis
of a definition, of the equiangular spiral.

Such a definition, though not commonly used by mathematicians, has been occa-
sionally employed; and it is one from which the other properties of the curve can be
deduced with great ease and simplicity. In mathematical terms it would run as fol-
lows: “Any [plane] curve proceeding from a fixed point (which is called the pole), and
such that the arc intercepted between any two radii at a given angle to one another
is always similar to itself, is called an equiangular, or logarithmic, spiral.”

In this definition, we have the most fundamental and “intrinsic” property of the
curve, namely the property of the continual similarity, and the very property by
reason of which it is associated with organic growth in such structures as the horn
or the shell. For it is peculiarly characteristic of the spiral shell, for instance, that
it does not alter as it grows; each increment is similar to its predecessor, and the
whole, after every spurt of growth, is just like it was before. We feel no surprise
when the animal which secretes the shell, or any other animal whatsoever, grows by
such symmetrical expansion as to preserve its form unchanged; though even there, as
we have already seen, the unchanging form denotes a nice balance between the rates
of growths in various directions, which is but seldom accurately maintained for long.
But the shell retains its unchanging form in spite of its asymmetrical growth; it grows
at one end only, and so does the horn. And this remarkable property of increasing by
terminal growth, but nevertheless retaining unchanged the form of the entire figure,
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is characteristic of the equiangular spiral, and of no other mathematical curve. It well
deserves the name, by which James Bernoulli was wont to call it, of spira mirabilis.

We may at once illustrate this curious phenomenon by drawing the outline of a
little Nautilus shell within a big one. We know, or we may see at once, that they are
of precisely the same shape; so that, if we look at the little shell through a magnifying
glass, it becomes identical with the big one. But we know, on the other hand, that
the little Nautilus shell grows into the big one, not by growth or magnification in all
parts and directions, as when a boy grows into a man, but by growing at one end
only.”

At the end of this paper, one can find a collection of pictures, photos and drawings
which may be well to look at from time to time while reading the present text. For
example, for Section 2, there one can find the two figures which were printed in D’Arcy
Thompson’s book within the above quoted passage.
3. At this stage, concerning the citation of Section 2, we restrict to the following few
comments.

(i) When considering a [planar] form as a result of growth, the constant ratio between
the resolvents of the force of growth “in length and in width”, or, in other words,
between the radial component of growth and the component of growth in the direction
perpendicular to the radial one, as proposed by D’Arcy Thompson, indeed may well
be considered as one of the most natural laws of natural growth. And, similarly, Bang-
Yen Chen’s constant ratio nD submanifolds Mn in (n+m)D Euclidean spaces En+m

[4, 5, 6, 7, 8] are defined by one of the most natural conditions by which pure geometry
may determine the shape of submanifolds Mn in En+m, namely, by imposing a constant
ratio between the normal and the tangential components of the position vector of
such submanifolds of Euclidean spaces (cfr. [19]). For dimension n = 1 and for
codimension m = 1, that is for curves M1 in a Euclidean plane E2, the constant ratio
between the biological “growths in length and in width”, or, still, the self-similarity
in form, is equivalent, geometrically, to the constant ratio between the magnitudes of
the position vector’s normal and tangential components along these Euclidean planar
curves. By the way, some of us can not let pass the chance, here and now, to refer
to Simon Stevin’s logo and motto as these were shown on the cover of his 1586 book
“The Beghinselen der Weeghconst”, and, moreover, to hereby draw attention to the
fundamental connections between the psychology of our kind’s natural perceptions
and our experience of the gravitational cross, in particular, and the workings of our
minds trying “to understand” forms or shapes and our developments of the so-called
Euclidean and of other natural geometries [2, 14, 20].

(ii) The biological growing at one end after in one or other way having started off
to grow anyway at some pole, is crucial in the above formulated growing process of
“things”, and, equivalently, the description of submanifolds in Euclidean spaces by
means of their position vector is crucial in geometry [9, 3].

(iii) In the above citation of D’Arcy Thompson, the term curvature seems to serve
as an alternative way to speak of form or shape, what, indeed, also in the present
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terminology, at least for curves, in some sense is perfectly all right, thinking of the
congruence theorem of Euclidean planar curves. Some of the following treatment
concerning the geometry of planar curves will be presented at times in a rather rough
way; to compensate for this, we are so free to strongly recommend [12] as likely the
most serious, precise and delicate presentation of this geometry.

(iv) -Off the record-: hopefully D’Arcy Thompson (1860-1948) was spared to see
the abridged editions of his book “On Growth and Form”, since in this respect the
comparison pops up with, say, a deaf-born person reworking, of course “for the benefit
of the people”, the 9th symphony of Beethoven, making several changes here and
there, and, for sure, as crown of his job, dryly, deleting the choral part.
4. In an analytical study of curves Γ in a Euclidean plane E2, when hereby having
some planar biological growth in mind, the choice of polar co-ordinates (ρ, θ) may
be considered to be not so unnatural. Namely, such co-ordinates might lead one
to speculate that one or other kind of thing, somewhile after, in one or other way,
having been originating about a certain point, say, a pole O, depending on directions
as described by polar angles θ, then starts to evolve within a plane, to proper polar
distances ρ(θ) from O, thus yielding polar parametrisations X(θ) = ρ(θ).(cos θ, sin θ),
[(1)], for curves Γ, which, somewhat like this, might be thought of as being traced
out by such thing in the course of its growth in a plane. The position vector field
of a curve Γ in E2 will be denoted by OX or by X alone, for short, and derivatives
with respect to θ will also be denoted by accents, for short, such that, respectively,
X ′ = dX/dθ and X ′′ = d2X/dθ2 are the angular velocity vector field and the angular
acceleration or angular curvature vector field of Γ.

As is well known, the equiangular spirals, i.e. the curves Γ in E2 for which the
angle α = ∠(X,X ′) ∈ [0, π/2] between the tangent direction of the curve and the
direction of its position vector is constant, are the logarithmic spirals ρ(θ) = k.ea θ,
[(2)], whereby a = cotgα and k is any real constant. And, conversely, these spirals
geometrically define the natural logarithmic and exponential functions; in some sense,
most directly, the constant (π/4)-angled spiral with pole O and passing through
the point E = (1, 0) defines the natural exponential and logarithmic functions in
a geometrical way: in particular, this (π/4)-spiral defines the value of the natural
exponential function by its distances ρ(θ) from their pole O for all angles θ ∈ R.

Let T = X ′/‖X ′‖ be the unit tangent vector field of a curve Γ in E2 and let N = T⊥

be the unit normal vector field such that {T,N} is a positively oriented orthonormal
frame field along Γ in E2. Then, of course, for such a curve Γ to have constant
angle α = ∠(T,X) is equivalent to have constant angle α⊥ = ∠(N,X) = (π/2)− α,
and, so, the polar equation (2) of the equiangular spirals with a constant angle α or
equivalently with a constant angle α⊥ can be rewritten as ρ(θ) = k.ea θ, [(3)], whereby
a = tgα⊥.

Since, for a general curve ρ(θ) in E2,X ′(θ) = ρ′(θ).(cos θ, sin θ)+ρ(θ).(− sin θ, cos θ),
[(4)], it follows that the arclength parameter s based at θ = 0, is given by s(θ) =∫ θ

0
‖X ′(θ)‖dθ =

∫ θ

0
[ρ′(θ)2 + ρ(θ)2]

1/2
dθ, [(5)], such that ds(θ)/dθ = (ρ′2 + ρ2)

1/2
(θ),
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[(6)]. Hence dρ(θ)/ds = [dρ(θ)/dθ] . [dθ(s)/ds] =
[
ρ′/ (ρ′2 + ρ2)

1/2
]
(θ), [(7)], which

shows that grad ρ = dρ/ds = constant is a characterisation of the equiangular spirals
in the Euclidean plane, (cfr. also D’Arcy Thompson’s above quotation).

According to the so-called Frenet theory of Euclidean curves : dX/ds = T , [(8)],
d2X/ds2 = dT/ds = κN , [(9)], whereby κ denotes the curvature function of Γ ⊂
E2. And, as asserted by the congruence theorem of Euclidean planar curves, the
magnitude of the second derivative with respect to an arclength parameter s of the
position vector field X of a curve Γ in E2, i.e. the curvature κ of Γ as a function
of s, completely determines the curve -apart of its actual location in the plane-, i.e.
completely determines the form or the shape of the curve Γ in the Euclidean plane E2.
As such, the equiangular spirals are characterised by the property that their radius
of curvature R = 1/κ is a first degree function of their arclength s: R = As + B
for some real constants A and B, (hereby, strictly speaking or maybe by showing
some good will, including the straight lines and the circles as the particular cases of
0-spirals and (π/2)-spirals, respectively).

The Laplace operator of any curve Γ in E2 being given by ∆ = −d2/ds2, by (9),
the curvature vector field or tension field of Γ in E2 satisfies d2X/ds2 = κN =
−∆X. So, the direction of the Laplacian ∆X is automatically fixed by the tangent
direction T = dX/ds of the curve by the Euclidean structure in the plane, -T and
N being mutually orthogonal-, and, so, this direction as such does not contain more
geometrical information about the curve than already given by the tangent direction.
Yet, it may be used to rephrase a previous statement as follows: the equiangular
spirals are characterised by the property to have a constant angle α⊥ = ∠(X,∆X).
5. Returning to parametrisations in polar co–ordinates (ρ, θ) of arbitrary curves
Γ with position vector X in a Euclidean plane E2, the first derivative X ′ = dX/dθ
(of course, still) determines the tangent direction of Γ, but, now, in general, the
direction of the second derivative X ′′ = d2X/dθ2 does offer additional geometrical
information about Γ. The angular curvature vector or angular tension vector X ′′,
when thinking of such curve Γ as associated with some process of planar growth,
may be interpreted as a measure of the tension created in this curve by its form
or shape as these evolve in terms of the polar angle. From (4.4) it follows that
X ′′(θ) = [ρ′′(θ)− ρ(θ)] .(cos θ, sin θ) + 2ρ′(θ).(− sin θ, cos θ), [(1)]. Thus ‖X ′′‖ =

[(ρ′′ − ρ)2 + 4ρ′ 2]
1/2

, or rather its converse, gives a numerical measure for this an-
gular tension.

Next, let us express that the thing Γ grows in such a way that always its posi-
tion vector X(θ) makes a constant angle ϕ with the direction of its angular tension
vector X ′′(θ), i.e. that ϕ = ∠(X,X ′′) is constant, or, equivalently, that cosϕ =
(X · X ′′)/(‖X‖.‖X ′′‖) is constant. Generically, which here means excluding at this
stage the straight lines through the pole O and the circles centered at the pole O
from the immediately following scene, this amounts to the condition ρ′′ − 2Cρ′ −
ρ = 0, [(2)], whereby C = cotgϕ, of which the solutions are given by ρ(θ) =
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eC θ.
(
C1.e

θ/ sinϕ + C2.e
−θ/ sinϕ

)
, [(3)], whereby C1 and C2 are real constants of in-

tegration. From a practical point of view, or, put otherwise, by considering the curves
(3) in approximation, whereby thinking in particular at increasing values of the polar
angle θ, the planar forms which result from the basic principle of growth according to
which the angle ϕ between the position X and the angular tension X ′′ be constant all
along the growing process are the equiangular spirals ρ(θ) = K.e[(1+cosϕ)/ sinϕ]θ, [(4)],
whereby K is a real constant.

The particular cases of “growing in full accordance with the experienced angular
tension”, (i.e.: the case ϕ = 0 or X ‖ X ′′), and of “growing as much as possible
opposing the experienced angular tension”, (i.e.: the case ϕ = π/2 or X ⊥ X ′′), are
determined by the conditions ρ′ = 0, [(5)], and ρ′′ − ρ = 0, [(6)], respectively, and,
so, these growing processes, respectively, do characterise the circles of radius R which
are centered at O, ρ(θ) = R, [(7)], and, in the above sense of approximation, the nat-
ural logarithmic spirals ρ(θ) = K.eθ, [(8)], or, still, the natural spirae mirabilis. And,
similarly as noted above in relation to the equiangular (π/4)–spiral, but now likely
in an even more natural way, at least from the Euclidean geometrical point of view,
having in mind the connection between the gravitational cross and the Theorem of
Pythagoras (cfr. [2, 20]), one may consider the curves originating about a pole and
growing such that their position permanently remains perpendicular to the direction
of their angular tension and which pass through the point E, (the angles θ being mea-
sured with respect to the axis OE), as to geometrically define the natural exponential
function, in that, for each angle θ, the radial distance ρ = d(O,X) determines the
value of eθ.
6. Before presenting the announced extension of D’Arcy Thompson’s basic principle
of planar growth to, in particular, a basic principle of growth of surfaces in space, from
[13, 15, 18], we would prefer first to recall some related observations which essentially
concern the fundamental characteristic of Euclidean isotropy.

A Euclidean plane E2, that is the Riemannian 2D space which is determined on
the standard plane R2, charted with co–ordinates (x, y), by the Euclidean metric,
ds2 = dx2+dy2, (cfr. the Theorem of Pythagoras), besides possessing other exemplary
qualities, is homogeneous and isotropic: “at every point a Euclidean plane looks the
same in all directions and these looks are the same for all points”. However, in many
natural processes and for many natural phenomena, as we may observe them, these
qualities are not at all “realistic”. Above already was commented on the connection
between the pole O of growth as utmost important natural point in a plane, on the
one hand, and the geometry of the position vector X in the Euclidean plane, on
the other. And, as was shown before, in some sense, amongst the most primitive
planar curves which do have a non-trivial tension due to their form, from our most
primitive geometrical point of view, that is, giving preference to what is most special
in Euclidean geometry as far as directions are concerned, are (parts of) the circles
and (parts of) the natural spirae mirabilis, (cfr. (5.7) and (5.8)), since these curves
are characterised by an angular growth which permanently is either parallel with
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or perpendicular to the direction of their angular tension or curvature (X ‖ X ′′ or
X ⊥ X ′′); and, of course, the straight lines are the curves of which the form yields
no tension at all. The circles and the natural logarithmic spirals may be considered
as the most distinguished specimen in the class of all the equiangular curves, i.e.
of the curves for which the angle α between the direction of their position X and
their tangent direction T , or, equivalently, the angle α⊥ between the direction of
their position X and their normal direction N , is constant. And, the equiangular
curves which thus certainly figure amongst the basic Euclidean geometrical forms, so
beautifully model some of nature’s very privileged planar forms, in accordance with
D’Arcy Thompson’s law of planar growth, (cfr. Section 2).

An effective approach geometrically to deal with some of the, say, global anisotropies
in many forms that do occur in nature, and, moreover, with certain kinds of, say,
repeated local deviations from Euclidean perfection in such forms, consists in applying
so-called Gielis transformations to the basic forms that do naturally show up in
Euclidean geometry. What this essentially is all about will next, very briefly, be
illustrated for the planar case, by applying such transformations to the equiangular
curves, in (i)-(iv) hereafter. Yet, in complete analogy, one may equally well carry out
the same programme in the higher dimensional cases too, and, this, in the definite and
also in the indefinite setting for that matter, (cfr. [13, 15, 18] for more information
and for more examples).

(i) The unit circle x2 + y2 = 1, [(1)], may be considered as “the ground figure”
of the Euclidean planar geometry, in that it determines the Euclidean distance from
the origin O to all its points to be equal to 1, hereby expressing the isotropy in
the Euclidean plane, in accordance with the Theorem of Pythagoras, [of which the
infinitesimal version amounts to endowing R2 with the Euclidean line element ds =

(dx2 + dy2)
1/2

].
(ii) The generalised Lamé curves |(x/A)|p + |(y/B)|p = 1, [(2)], whereby A,B, p ∈

R+
0 are some constants, (of which 2 6= p ∈ N for the original Lamé curves), similarly

may be considered as ground figures for a specific class of non-Euclidean planar ge-
ometries, in the way that they determine their distance from 0 to all their points to
be equal to 1, [namely the Minkowski Finsler geometries obtained by endowing R2

with the corresponding line elements ds = (|dx/A|p + |dy/B|p)1/p], which -whenever
“(1)6=(2)”- manifestly is in conflict with our natural sense of measuring lengths. In
the words of Chern [10], these are (amongst the simplest -the authors-) Riemannian
geometries “without the quadratic restriction”, and, in particular, these above geome-
tries’ anisotropies are related to some 4-fold symmetries in the plane. Some examples
of such Lamé curves, for A = B = R and also for A 6= B and for various values of p
(smaller than 1, equal to 1 and greater than 1 and much greater than 1) are shown
below.

(iii) Turning now to polar co-ordinates (ρ, θ) and introducing hereby a coefficient
m/4 to the polar angle θ, (m ∈ N0 orm ∈ R0 for that matter), which allows, whenever
wanted or needed, “to escape” from the quadrants which are inherently present in a
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rectangular (x, y) Cartesian co–ordinate system and which introduces anisotropies re-
lated to m–fold symmetries in the plane, and, moreover, in some sense giving “individ-
ual freedom” to the exponents in the equations, (though for many natural applications,
the upcoming exponents n1 and n2 “remain” equal), from (2) further follows the ex-
tension from the unit circle of the Euclidean planar geometry to the curves with para-

metric polar equations ρ(θ) = {|[cos(mθ/4)] /A|n1 + |[sin(mθ/4)] /B|n2}−1/n3 , [(3)],
whereby A,B ∈ R+

0 and m,n1, n2, n3 ∈ R0, which too may be considered as ground
figures of corresponding planar geometries. For example, up to scale, for A = B and
for (a) [m = 4, n1 = n2 = 15, n3 = 12], (b) [m = 5, n1 = n2 = n3 = 4] and (c)
[m = 7, n1 = n2 = 6, n3 = 10], the resulting curves pretty accurately match the cross
sections of the stems of (a) Scrophalaria nodosa, (b) Equisetum and (c) Raspberry,
respectively, while, for A = B and for (d) [m = 5, n1 = n2 = 7, n3 = 2] and (e)
[m = 5, n1 = n2 = 13, n3 = 2], the resulting curves correspond to profiles of kinds of
starfish, as suggested by the accompanying figures below.

(iv) In our present purpose, rather than viewing such curves as determining their
own geometries, for any choice of values for A,B,m, n1, n2 and n3, we prefer to in-
terpret the curves with equations (3) as being obtained from the unit circle centered
at O, i.e. from the curve with polar equation ρ(θ) = 1, [(4)], by the transforma-
tion given by the right hand side of (3) for these values of A,B,m, n1, n2 and n3.
And similarly, instead of thus transforming the Euclidean unit circle, any planar
curve, say, determined by a polar equation ρ(θ) = f(θ), [(5)], for any given func-
tion f : R → R+, may be transformed into the planar curve with polar equation

ρ(θ) = f(θ). {|[cos(mθ/4)] /A|n1 + |[sin(mθ/4)] /B|n2}−1/n3 , [(6)]. For example, up to
scale, starting from the logarithmic spiral (a), ρ(θ) = f(θ) = e(0.2)θ, by the transfor-
mations (6) with parameter values (b) [A = B,m = 4, n1 = n2 = n3 = 100] and (c)
[A = B,m = 10, n1 = n2 = n3 = 5], one finds the corresponding curves shown further
on.

We end this section by making a remark, on the side, which may emphasise the
remarkable place indeed of “our” Euclidean planar geometry within the set of all
Minkowski Finsler (p)-geometries, i.e. the geometries which are associated with the
ground figures |x|p+|y|p = 1, [(∗p)], for all p ∈ R+

0 , or, still, the geometries determined

on R2 by the line elements dsp = [|dx|p + |dy|p]1/p. Each such (p)-geometry has
its own “pi”, namely π(p) := half the perimeter of its metric ground figure (∗p),
whereby this perimeter is measured making use of the very metric of this (p)-geometry
itself. And, the property alluded to then is the following: the Euclidean geometry is
characterised among all these (p)-geometries by the fact that ∀p 6= 2 : π(p) > π(2) =
π, or, still: the Euclidean geometry is the Minkowski Finsler geometry (R2, dsp) for
which the metric ground figure (∗p) has the smallest perimeter, (cfr. [15]).
7. D’Arcy Thompson’s basic principle or law of planar growth concerns curves Γ with
position vector field X starting from some pole O in a Euclidean plane E2 and states
that the magnitudes of the components Gp and Gp⊥ of a growing force G, which
geometrically amounts to some tangential vector field along Γ, in the direction of the
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position X and in the direction perpendicular to the position X, respectively, have
a constant ratio: ‖Gp‖/‖Gp⊥‖ = tgα⊥ is constant, whereby α⊥ = ∠(Gp⊥, G), (cfr.
the arced rectangular triangle in the drawing corresponding to this situation which
follows later on), hereby maintaining the previous notations α = ∠(G,Gp) = ∠(T,X)
and α⊥ = ∠(Gp⊥, G) = ∠(X,N). Thus, the curves Γ following this law of growth
are precisely the equiangular spirals in E2, (namely, it are the curves Γ which are
characterised by the property that α⊥ is constant, or equivalently, that α is constant),
as already explicited by D’Arcy Thompson right away, (cfr. Section 2). In passing, it
could be remarked that, of course, equivalently, this law could have been formulated as
‖Gp⊥‖/‖Gp‖ = tgα is constant, (cfr. the dotted rectangular triangle in the drawing
corresponding to this situation which follows later on), and that, as very special
particular cases for which α⊥ = 0 or Gp = 0 and α = 0 or Gp⊥ = 0, the concerned
curves are nothing but the circles and the straight lines.

Our extension of this principle of growth, say, firstly focussing on surfaces M2 in
E3, then goes as follows. Hereby, we refer to the related drawing shown further on,
of which “the plane of the paper” is choosen as to be the plane which is determined
by the direction of the position vector X of M2 in E3 and by the normal direction
T⊥
XM of this surface at X, in which direction is also shown a unit normal vector

N . Denoting as before by ρ the polar distance, i.e. ρ = d(O,X) = ‖X‖, one can
then readily observe that for a generic point X on a generic surface M2 in E3, the
change of ρ when moving X along M2 on some infinitesimal distance (suggested by
the radius of the sphere shown in the drawing) is maximal in the tangent direction
to M2 at X in which the tangent plane TXM is cut by the normal plane [X,N ]
spanned by X and N , or, still, that this tangent direction is nothing but the direction
of the vector grad ρ at X. Put otherwise, the plane [X,N ], or, for any non-minimal
surface, equivalently, the plane [X,∆X] whereby ∆ is the Laplace operator of the
surface M2, (since by Beltrami’s formula ∆X = −2HN , whereby H is Germain’s
mean curvature of M2 in E3), contains the vector grad ρ, and so, this plane can also
be determined as the plane [X, grad ρ]; [unless grad ρ = 0, but then M2 is (part of)
a sphere centered at the origin]. Now, consider Euler’s normal section σ of M2 at X
in the direction of grad ρ in this plane [X, grad ρ] = E2, with unit tangent vector T
at X. For any generic surface M2 in E3, speculated about as being one or other kind
of thing, somewhile after in one or other way having been originating in a 3D space
somewhere around a certain pole, taken to be the origin of the ambient space E3,
further having been growing into some 2D form M2 in E3, certainly, for any point X
of this surface M2, this curve σ in this plane [X, grad, ρ] is likely the curve through
X which is most fundamentally associated with the growth of M2 in E3 at X as such.
And, then, finally, we impose as principle of growth for 2D forms in 3D spaces that
these surfaces M2 in E3 should obey, at each of their points X, D’Arcy Thompson’s
above law of planar growth for this curve σ in this plane [X, grad ρ].
So, for 2D surfaces M2 in a Euclidean 3D space E3 with position vector field X, we
propose the following generalised principle of natural growth out of a pole O, the origin
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of E3: the magnitudes of the components Gp and Gp⊥ of a growing force G acting
in the direction which is determined by the gradient of the radial distance function
ρ = d(O,X) = ‖X‖, (that is: the component Gp of G in the direction of the position
X and the component Gp⊥ in the direction perpendicular to the position X in the
plane [X, grad ρ]), have a constant ratio. And, geometrically, just like for the curves
Γ in E2 before, this is equivalent to the fact that the angle α⊥ = ∠(X,N) is constant,
or, still, to the fact that the angle α = ∠(X, grad ρ) is constant.

In complete analogy, from the original law of growth of curves in planes, i.e. from
1D forms in 2D spaces, one comes to the following generalised D’Arcy Thompson law
of natural growth out of a pole O for nD submanifolds Mn with position vector field X
in (n+m)D Euclidean ambient spaces: the magnitudes of the components Gp and Gp⊥

of a growing force G acting in the direction which is determined by the gradient of the
radial distance function ρ = d(O,X) = ‖X‖, (that is: the component Gp of G in the
direction of the position X and the component Gp⊥ in the direction perpendicular to
the position X in the plane [X, grad ρ]), have a constant ratio. And, as above, one
sees that this is equivalent to the geometrical fact that the angle α = ∠(X,TXM)
between the position vector X and the tangent space TXM of Mn at X is constant,
(X being projected onto TXM in the plane [X, grad ρ]), or, still, to the geometrical
fact that the angle α⊥ = ∠(X,T⊥

XM) between the position vector X and the normal
space T⊥

XM of Mn in En+m at X is constant, (X being projected onto T⊥
XM in the

plane [X, grad ρ]). And, hereby following [1], this may well justify to call such Mn in
En+m the equiangular submanifolds of the Euclidean spaces, the equiangular spirals of
Descartes thus being the equiangular 1D submanifolds in the Euclidean plane E2.
8. Thus, what may well be the most straightforward extension of the principle of
planar growth, as this was originally given in terms of the constant ratio of the mag-
nitudes of the orthogonal components of the growing forces with respect to the po-
sition vector field, from 1D to nD and from 1 co–D to m co–D, gives a basic law of
growth for submanifolds Mn of arbitrary dimension n and arbitrary co–dimension m
in Euclidean spaces En+m which characterises these submanifolds Mn in En+m to be
equiareal, i.e. which characterises these submanifolds by a basic property of their po-
sition vector field X, namely, that the angle α⊥ = ∠(X,T⊥

XM) between X and T⊥
XM ,

the normal space of Mn in En+m at X, is constant.
It can not come as a big surprise, then, that this class of submanifolds had been

studied already before, from a purely geometrical point of view. And, indeed, as
part of his general investigations of the geometry of the position vector of subman-
ifolds Mn in (pseudo) Euclidean spaces (p)En+m, in [3, 4, 5, 6, 7, 8, 9], Bang–Yen
Chen already before had introduced these submanifolds, discovered several of their
fundamental properties, obtained their full classification (for all n and for all m) and,
moreover, put their theory in several wider geometrical contexts, (some of which will
also play some roles in following parts of our paper). Essentially, he introduced these
submanifolds as follows [4]: the position vector X of any submanifold Mn in (p)En+m

naturally and canonically orthogonally decomposing into a tangential component X>
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and a normal component X⊥, X = X>+X⊥, he named a submanifoldMn in (p)En+m

a constant ratio submanifold when the ratio ‖X>‖/‖X⊥‖ = tgα⊥ is constant, (or,
for that matter, when X⊥ = 0 or when the ratio ‖X>‖/‖X⊥‖ is a fixed real num-
ber), or, equivalently, when the ratio ‖X⊥‖/‖X>‖ = tgα is constant, (or, for that
matter, when X> = 0 or when the ratio ‖X⊥‖/‖X>‖ is a fixed real number), which,
of course, amounts to, equivalently, when the angle α⊥ = ∠(X,T⊥

XM) between the
position vector X and the normal space T⊥

XM of Mn in (p)En+m at X is constant,
or, still, equivalently, when the angle α = ∠(X,TXM) between the position vector X
and the tangent space TXM of Mn in (p)En+m is constant.

At this stage, from the above mentioned works of Bang–Yen Chen, only two results
will be formulated in this part of our paper, and, herein, these results will even
be limited to the case of Euclidean ambient spaces. Firstly, he generalised a classic
characterisation of the equiangular spirals, which above also was recalled in a quote
out of “On Growth and Form”, as follows.
Theorem 1. [7]. A submanifold Mn of a Euclidean space En+m is a constant ratio
submanifold if and only if ‖grad ρ‖ is constant. �
In view of Theorem 1, we would like to call the extension of D’Arcy Thompson’s
basic law of planar growth which was given in the previous section, when formulated
in the following equivalent, but, at least in our opinion, more simple and more appeal-
ing version, the basic law of D’Arcy Thompson and Bang-Yen Chen for the natural
growth out of a pole of things of arbitrary dimensions and co–dimensions (and, so,
in particular, for 2D things in 3D spaces): the growth is such that the instantaneous
maximal change of its polar distance is constant.

And, secondly, he classified the forms which result from the growths according to
this basic law as follows.
Theorem 2. [7]. A submanifold Mn in a Euclidean space En+m is a submanifold of
constant ratio if and only if: (i) Mn is a cone with vertex O, (ii) Mn is contained
in a hypersphere of the ambient space, centered at O, or, (iii) there exist local co–
ordinate systems (s, u2, . . . , un) on Mn such that the immersion of Mn in En+m is
given by X(s, u2, . . . , un) = b s. Y (s, u2, . . . , un), [(∗)], for some number b ∈]0, 1[, and
whereby Y = Y (s, u2, . . . , un) satisfies the following conditions: (1) ‖Y ‖ = 1, (2) Ys

is perpendicular to Yu2 , . . . , Yun and (3) ‖Ys‖ = (1− b2)1/2/(b s). �
In particular, focussing in (∗) on the case of surfaces M2 in E3, the integral curves of
the vector field grad ρ on equiangular surfaces, in general, are twisted curves, which,
however, certainly in small enough parts, have “the looks” of equiangular spirals, (cfr.
their curvature as determined e.g. in [4]).
9. For equiangular surfacesM2 in E3, an alternative presentation of their classification
was given by M. Munteanu as follows.
Theorem. [16]. A surface M2 in the Euclidean space E3 is equiangular if and only if:
(i) M2 is a cone with vertex at O, (ii) M2 is (part of) a sphere S2

O(r) of radius r cen-
tered at O, or, (iii) M2 can be parametrised as X(u, v) = (sinα⊥)u {[cosφ(u)] .f(v) +
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[sinφ(u)] . [f(v)× f ′(v)]} [(∗∗)], whereby φ(u) = (cotgα⊥) (lnu) and f is a curve on
S2
O(1) with arclength parameter v. �

This parametrisation shows that the non-trivial equiangular surfaces M2 in E3 are
generated by logarithmic α-spirals with poles at O of which the planes are normal to
a curve lying on a sphere centered at O, as described and illustrated in [16]. A later
following figure shows parts of some constant ratio surfaces made according to the
parametrisation (∗∗): in each case one of the spirals going out of the pole to a point
on a spherical curve is emphasised, as is this spherical curve itself, hereafter being a
part of (a) a spherical loxodrome, (b) a sinusoidal curve around the equator, and (c)
a small circle, respectively.
10. When thinking of a surface M2 in E3 as some 2D thing growing or having
been growing out of some pole O in some 3D space, then the use of polar or spher-
ical co-ordinates (ρ, λ, β) for the description of such concrete surfaces seems to be
most natural indeed; hereby ρ are the polar distances and λ, β are the geographi-
cal lengths and widths or geographical longitudes and latitudes, respectively, such that
(cos β. cosλ, cos β. sinλ, sin β) are the rectangular Cartesian co-ordinates of a point P
with geographical co-ordinates (λ, β) on the unit sphere centered at O. And, in terms
of such spherical co–ordinates, K. Boyadzhiev obtained the following classification of
the equiangular surfaces M2 in E3.
Theorem 1. [1]. A surface M2 in E3 is equiangular if and only if: (i) M2 is a cone
with vertex at O, (ii) M2 is (part of) S2

O(r) for some r > 0, or (iii) the polar equation
of M2 is of the form ρ(λ, β) = k.eaλ+h(β), [(∗∗∗)], whereby k ≥ 0 and a are constants,
and, when a = 0: h(β) = (tgα⊥).β, [(1)] and, when a 6= 0: h(β) = a {h1(β)− h2(β)},
[(2)], whereby h1(β) = (1 + c2)1/2.arctg

{[
(1 + c2)1/2.tgβ

]
/(c2 − tg2β)1/2

}
, h2(β) =

arctg
{
(tgβ)/

[
(c2 − tg2β)1/2

]}
, c =

{[
(tgα⊥)/a

]2 − 1
}1/2

and −arctg c ≤ β ≤ arctg c.

�
In particular, (∗∗∗) shows that the parameter lines β = constant, i.e. the intersections
of these surfaces with the vertical cones with vertex at O and of which the rulers make
an angle of β with the (xy)–plane, are loxodromes on these cones, (i.e., the spirals
on cones, having the circular helices -the loxodromes on right circular cylinders- as
limiting cases), which are also called concho-spirals or helico-spirals, while, since,
for small a 6= 0, h(β) ≈ (tgα⊥) β, [(3)], the parameter lines λ = constant, i.e. the
intersections of these surfaces with the vertical planes through O -the meridian planes-
are close to being equiangular spirals with pole O. In any case, in this parametrisation
(∗ ∗ ∗) of the equiangular surfaces M2 in E3 from the point of view of growth, cfr.,
in particular, D’Arcy Thompson and Bang-Yen Chen’s basic law of growth out of a
pole, as such also the helico-spirals naturally show up, corresponding to an earlier
quote from “On Growth and From”. We recall that the concho-spirals in E3 are
characterised by the property that their first and second radii of curvature, R1 and
R2, (i.e.: the inverses of their first and second curvatures κ1 and κ2, or, still, of their
curvature κ = κ1 and their torsion τ = κ2), are both first degree functions of their
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arclengths: R1 = A1s + B1 and R2 = A2s + B2, for some real constants A1, A2, B1

and B2.
For the general equiangular surfaces M2 in E3, as may be plausible from the gen-

eralised D’Arcy Thompson law of natural growth in space, whereas these surfaces
always develop or evolve in a similar way in their grad ρ tangent direction as in their
radial direction, in their tangent directions different from grad ρ they can not be ex-
pected also to grow in a similar way. Thus, in general, equiangular surfaces are not
self-similar, in contrast with the 1D situation where the equiangular curves, that is,
the equiangular spirals, are even to be characterised as thé self-similar curves, (as
their only tangent direction, of course, coincides with their grad ρ direction). In this
respect, when following the terminology of Boyadzhiev in naming self-similar the sur-
faces M2 in E3 for which the polar equation is of the form ρ(λ, β) = k.eaλ.ebβ, [(4)],
for some arbitrary constants a, b and for some constant k ≥ 0, then, related to the
remark made just before, we mention the following.
Theorem 2. [1]. The only self-similar equiangular surfaces M2 in E3 are given by

the polar equations of the form ρ(λ, β) = k.e(tgα⊥)β, [(5)], for some constant k ≥ 0,
i.e. are the surfaces of revolution obtained by rotating an equiangular spiral with pole
O around an axis through the pole. �
In this very particular class (5) of equiangular surfaces, their β-parameter lines, i.e.
the intersections of these surfaces with the planes through the z-axis, their meridians,
are all equiangular α-spirals, while, their λ–parameter lines, i.e. the intersections of
these surfaces with the circular cones with vertex at O and whose rulers make a fixed
angle β with the (xy)–plane, of course, are nothing but the parallel circles of these
surfaces of revolution, to which the former concho-spirals degenerate in this case.
In addition to the illustrations given in [1], in the final figure following below two
further examples of constant ratio surfaces are shown, made according to (∗ ∗ ∗):
first, it concerns the surface (a) for which k = 1 and a = 0, 1 and α⊥ = π/6, with
ranges λ ∈ [0, 3π] and β ∈ [−π/2, π/2], and its part (b), for the range β ∈ [−π/2, π/4],
and, secondly, it concerns the surface of revolution (c) with k = 1 and α⊥ = π/3, with
ranges λ ∈ [0, 2π] and β ∈ [−π/2, π/2], and its part (d) for the range λ ∈ [0, 3π/2].

And, finally, we may not miss to refer to “The Curves of Lives” [11], which book of
1914 very generously expresses T. A. Cook’s general cultural and historical comments
on some of the forms that we have been discussing in this paper.
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1.

Nautilus popilius (Linnaeus) and Littorina scabra angulifera (Lamarck)

2.

Figures from D’Arcy Thompson’s book

3.

Simon Stevin’s logo and motto
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4.

4. 5.
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6.



22 STEFAN HAESEN, ANA IRINA NISTOR, AND LEOPOLD VERSTRAELEN

7.

8.
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9.
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