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REPRESENTATION OF THE LORENTZ TRANSFORMATIONS

IN 6-DIMENSIONAL SPACE-TIME

KOSTADIN TRENČEVSKI

Abstract. In this paper we consider first the space-time as a principal bundle with
structure group SO(3,C) over the base B = R3. From this viewpoint the 4-vector of
velocity is replaced now by a 3× 3 orthogonal Hermitian matrix. Starting from the
structure group SO(3,C) the Lorentz transformations are written in 6 dimensions.
Further it is considered a more sophisticated model of space-time with the same
structural group SO(3,C) over the base SO(3,R). In this model there are only
rotations, but no translations. So the Lorentz transformations are also converted
for this bundle.

1. Introduction

When we consider parallel transport of a 4-vector of velocity on a curved 4-

dimensional space, the displaced 4-vector is again a 4-vector of velocity. But if we

consider the 4-vector of velocity as a Lorentz boost, i.e. Lorentz transformation with-

out space rotation, then its parallel displacement may not be a boost, because may

contain a space rotation, and can simultaneously give information for both the ve-

locity and space rotation of the considered body. The change of the angular velocity

is studied by parallel displacement of the spin vector separately from the velocity

vector. This is the main motivation for the present paper, where we research a model

of 3-dimensional time. The evidence of the 3-dimensional time appears also in the

quantum mechanics, where besides the three spatial coordinate operators appear 3

impulse coordinates, and the last three coordinates indeed correspond to temporal
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coordinates. We consider in this paper only linear transformations as in the Special

Relativity. The study of gravitation where the mentioned anomaly disappears, is left

for a forthcoming paper. The matrices of the group O↑
+(1, 3) will be considered for

imaginary time coordinate ict.

Albert Einstein and Henri Poincare many years ago thought about 3-dimensional

time, such that the space and time would be of the same dimension. At present time

most of the authors in the papers [1], [2], [3], [4], [5], [7], [8], [9] and [10] propose

multidimensional time in order to give better explanation of the quantum mechanics

and the spin. In [6] it is also proposed 3-dimensional time and replacement of the

Lorentz transformation with vector Lorentz transformations.

2. Basic results

Let us denote by x, y, and z the coordinates in our 3-dimensional space. Having

in mind that the unit component O↑
+(1, 3) of the Lorentz group is isomorphic to

SO(3,C), we assume that in a chosen moment the set of all moving frames can be

considered as a principal bundle over R3 with structural Lie group SO(3,C), i.e.

R3 × SO(3,C). This bundle will be called space-time bundle. If we consider another

moment, the same frames will be rearranged, but they will also form the same set.

The space-time bundle can be parameterized by the following 9 coordinates {x, y, z},
{xs, ys, zs}, {xt, yt, zt}, such that the first 6 coordinates parameterize the subbundle

with the fiber SO(3,R). So this approach in the Special Relativity will be called

3+3+3-dimensional model. Indeed, to each body are related 3 coordinates for the

position, 3 coordinates for the space rotation and 3 coordinates to its velocity.

Firstly, we consider the analog of the Lorentz boosts from the 3+1-dimensional

space-time. The next few assumptions are in accordance with the structure of the

group SO(3,C). The coordinates xs, ys, zs, xt, yt, zt are functions of x, y, and z, and

assume that the Jacobi matrices

(2.1) V =




∂xs

∂x

∂xs

∂y

∂xs

∂z

∂ys

∂x

∂ys

∂y
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∂zs
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and V ∗ =
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are respectively symmetric and antisymmetric. Further, let us denote X = xs + ixt,

Y = ys + iyt, Z = zs + izt, such that the Jacobi matrix V =
[

∂(X,Y,Z)
∂(x,y,z)

]
is Hermitian

and V = V + iV ∗.

The antisymmetric matrix V ∗ depends on 3 variables and its general form can be

written as

(2.2) V ∗ =
−1

c
√

1− v2

c2




0 vz −vy

−vz 0 vx

vy −vx 0


 .

From (2.2) we can join to V ∗ a 3-vector ~v = (vx, vy, vz), which transforms as a 3-

vector. Namely, let we choose an orthogonal 3 × 3 matrix P , which determines a

space rotation on the base B = R3, applying to the coordinates x, y, z. Then this

transformation should also be applied to both sets of coordinates {xs, ys, zs} and

{xt, yt, zt}. Hence the matrix V ∗ maps into PV ∗P−1 = PV ∗P T , which corresponds

to the 3-vector P · ~v. Thus ~v 7→ P · ~v, and ~v is a 3-vector.

It is natural to assume that V should be presented in the form

V = eiA = cos A + i sin A.

Assume that A is an antisymmetric real matrix, which is given by

A =




0 −k cos γ k cos β
k cos γ 0 −k cos α
−k cos β k cos α 0


 ,

where ~v = c(cos α, cos β, cos γ) tanh(k) and (cos α, cos β, cos γ) is a unit vector of the

velocity vector. As a consequence we obtain

(2.3) sin A =
−1

c
√

1− v2

c2




0 vz −vy

−vz 0 vx

vy −vx 0


 ,

i.e. that V ∗ = sin A is given by (2.2), while the symmetric 3× 3 matrix cos A is given

by

(2.4) (cos A)ij = V4δij +
1

1 + V4

ViVj,

where (V1, V2, V3, V4) = 1

ic

√
1− v2

c2

(vx, vy, vz, ic).

From (2.1) and (2.2) the time vector in this special case is given by

(2.5) (xt, yt, zt) =
~v

c
√

1− v2

c2

× (x, y, z) + (x0
t , y

0
t , z

0
t ),
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where (x0
t , y

0
t , z

0
t ) does not depend on the basic coordinates. The coordinates xt, yt, zt

are independent and they cover the Euclidean space R3 or an open subset of it. But

the Jacobi matrix
[

∂(xt,yt,zt)
∂(x,y,z)

]
is a singular matrix as antisymmetric matrix of order 3,

where the 3-vector of velocity maps into zero vector. So the quantity (xt, yt, zt)·~v does

not depend on the basic coordinates and so we assume that it is proportional to the

1-dimensional time parameter t, measured from the basic coordinates. Further, one

can verify that (1− v2

c2
)−1/2(~v × (x, y, z)) = (1− v2

c2
)−1/2(~v × (cos A)−1(xs, ys, zs)

T ) =

~v × (xs, ys, zs) for simultaneous points in basic coordinates. So the formula (2.5)

becomes

(2.6) (xt, yt, zt) =
~v

c
× (xs, ys, zs) + ~c ·∆t,

where ~c is the velocity of light, which has the same direction as ~v, i.e. ~c = ~v
v
·c. Notice

that for two points which rest (v = 0) and which are considered at the same moment,

i.e. ∆t = 0 in the basic coordinates, it is xt = yt = zt = 0.

3. Isomorphism between O↑
+(1, 3) and SO(3,C)

Let us consider the following mapping F : O↑
+(1, 3) → SO(3,C) given by

(3.1)

[
M 0
0 1

]
·




1− 1
1+V4

V 2
1 − 1

1+V4
V1V2 − 1

1+V4
V1V3 V1

− 1
1+V4

V2V1 1− 1
1+V4

V 2
2 − 1

1+V4
V2V3 V2

− 1
1+V4

V3V1 − 1
1+V4

V3V2 1− 1
1+V4

V 2
3 V3

−V1 −V2 −V3 V4



7→ M · (cos A + i sin A),

where cos A and sin A are given by (2.4) and (2.3). This is well defined because the

decomposition of any matrix from O↑
+(1, 3) as product of space rotation and a boost

is unique. Moreover, it is a bijection. Although it is known that the groups O↑
+(1, 3)

and SO(3,C) are isomorphic, in the following theorem is constructed effectively such

an isomorphism [11].

Theorem 3.1. The mapping (3.1) defines (local) isomorphism between the groups

O↑
+(1, 3) and SO(3,C).

Indeed, the mapping



0 c −b ix
−c 0 a iy
b −a 0 iz
−ix −iy −iz 0


 7→




0 c + iz −b− iy
−c− iz 0 a + ix
b + iy −a− ix 0
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defines an isomorphism between the Lie algebras o(1, 3) and o(3,C). This isomor-

phism induces local isomorphism between O↑
+(1, 3) and SO(3,C), which is indeed an

isomorphism. Further it is proved ([11]) that this (local) isomorphism is given by

(3.1).

If we want to find the composition of two space-time transformations which deter-

mine space rotations and velocities, there are two possibilities which lead to the same

result: to multiply the corresponding two matrices from SO(3,C) or from O↑
+(1, 3).

Since the result is the same, the three dimensionality of the time is difficult to detect,

and we feel like the time is 1-dimensional. The essential difference in using these two

methods is the following. The Lorentz transformations give relationship between the

coordinates of a 4-vector with respect to two different inertial coordinate systems as

it is well known. So they show how the coordinates of a considered 4-vector change

by changing the base space. On the other side, the matrices of the isomorphic group

SO(3,C) show how the space rotation and velocity change between two bodies, using

the chosen base space, by consideration of changes in the fiber. So we have a dual-

ity in the Special Relativity. The use of the group SO(3,C) alone is not sufficient,

because their matrices are only Jacobi matrices free from any motion.

4. Preparation for the Theorem 5.1

(i) In the next section we want to deduce the Lorentz transformations using the

group SO(3,C). We assume that there is no effective motion, i.e. change of the basic

coordinates, but simply rotation for an imaginary angle. Such a transformation will

be called passive motion. The examination of observation of a moving body can easily

be done in the following way.

Let us assume that vx = v, vy = vz = 0. In this case the matrix V = cos A

determined by (2.4) is given by V = cos A = diag
(
1, 1√

1− v2

c2

, 1√
1− v2

c2

)
. Hence there

is no length contraction in the direction of motion (x-direction), while the lengths

in any direction orthogonal to the direction of motion (yz-plane) are observed to be

larger
(
1− v2

c2

)−1/2

times. Notice that if we multiply all these length coefficients by
√

1− v2

c2
we obtain the prediction from the Special Relativity.

If there is an active motion, i.e. there is change of the basic coordinates, we see

from the previous discussion that all of the previously described observed lengths in

any direction additionally should be multiplied by the coefficient
√

1− v2

c2
. Hence the
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observations for lengths for passive and active motions together is in agreement with

the classical known results. Since the previous conclusion is deduced by comparison

with the consequences from the Lorentz transformations, and our goal is to deduce

the Lorentz transformations, we should accept the previous conclusion axiomatically.

(ii) The previous conclusion for the spatial lengths can be supported by the follow-

ing conclusion about time intervals. While the observation of lengths may be done

in different directions, the observation of time flow does not depend on the direction,

but only on velocity. The time observed in a moving system is slower for coeffi-

cient
√

1− v2

c2
for active motions. It is a consequence of the relativistic law of adding

collinear velocities and it is presented by the following theorem, which is proved in

[11].

Theorem 4.1. Assume that the relativistic law of summation of collinear velocities

is satisfied, and assume that the observed time in a moving inertial coordinate system

with velocity v is observed to be multiplied with f(v
c
), where f is a differentiable

function and the first order Taylor development of f does not contain linear summand

of v/c. Then, f must be f(v
c
) =

√
1− v2

c2
.

Since the 1-dimensional time direction is parallel to the velocity vector, there is no

change in the observation of the time vector which corresponds to the passive motion.

So the observed change for the time vector considered in the previous theorem comes

only from the active motion.

Using the Theorem 4.1 and the assumption that the 1-dimensional time is a quo-

tient between the 3-vector of displacement and the 3-vector of velocity, the following

conclusion is deduced in [11]. Let the initial and the end point of a 4-vector ~r′ be si-

multaneous in one coordinate system S ′. Then these two points in another coordinate

system differ for time

(4.1) δt =

~r′~v
c2√

1− v2

c2

,

where ~v is the velocity vector. Notice that (4.1) is also a consequence from the Lorentz

transformations.

(iii) The base manifold R3 is 3-dimensional. It is convenient to consider it as a

subset of C3, consisting of (x, y, z, ctx, cty, ctz), where ctx = cty = ctz = 0 at a chosen

initial moment, and call it complex base. The change of the coordinates can be done
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via the 6×6 real matrix

[
M cos A −M sin A
M sin A M cos A

]
, where M is a space rotation. It acts

on the 6-dimensional vectors (∆x, ∆y, ∆z, 0, 0, 0)T of the introduced complex base.

As a consequence, the simultaneity condition ctx = cty = ctz = 0 in one coordinate

system will no longer be satisfied according to an observer who moves with respect

to the previous coordinate system. Moreover, the pair ((∆x, ∆y, ∆z, 0, 0, 0)T , G) ∈
R6 × SO(3,C) viewed for moving and rotated base space determined by the matrix

P ∈ SO(3,C) is given by (P (∆x, ∆y, ∆z, 0, 0, 0)T , PGP T ) ∈ R6 × SO(3,C).

(iv) Until now we considered mainly the passive motions, while our goal is to con-

sider active motion in the basic coordinates. The active motion is simply translation

in the basic space, caused by the flow of the time. So besides the complex rotations

of SO(3,C) we should consider also translations in C3. Now (∆ctx, ∆cty, ∆ctz) for

the basic coordinates is not more a zero vector. The time which can be measured in

basic coordinates is ∆t =
[
(∆tx)

2 + (∆ty)
2 + (∆tz)

2

]1/2

. In case of motion of a point

with velocity ~v we have translation in the basic coordinates for the vector ~v∆t+ i~c∆t.

The space part ~v∆t is obvious, while the time part ~c∆t follows from (2.6). An or-

thogonal complex transformation may be applied, if previously the basic coordinates

are translated at the considered point.

5. Lorentz transformations on C3

For the sake of simplicity we will omit the symbol ”∆” for change of the coordinates.

So we assume that the initial point of the considered space-time vector has coordinates

equal to zero. Assume that x, y, z are basic coordinates. Let the coordinates xs, ys, zs

are denoted by x′, y′, z′ and let us denote ~r = (x, y, z) and ~r′ = (x′, y′, z′). It is of

interest to see the form of the Lorentz boosts as transformations in C3, while the

space rotations are identical in both cases.

Theorem 5.1. The following transformation in C3

(5.1)
(
1− v2

c2

)−1/2
[

~r′

~ct′ + ~v×~r′
c

]
=

[
cos A − sin A
sin A cos A

] [
~r + ~v(t + δt)

~c(t + δt)

]

via the group SO(3,C) is equivalent to the transformation given by a Lorentz boost

determined by the isomorphism (3.1).

Before we prove the theorem we give the following comments. The coefficient

β = (1 − v2

c2
)−1/2 is caused by the active motion (i). Obviously we have translation
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in the basic coordinates for vector (~v(t + δt),~c(t + δt)), where δt is defined by (4.1).

On the other side, according to (2.6) in the moving system we have the time vector

~v × ~r′/c, which disappears in basic coordinates (~v = 0).

Proof. Notice that if we consider a space rotation P , which applies to all triples, the

system (5.1) remains covariant. Indeed, ~r, ~r′, ~v,~c, ~v × ~r′ transform as vectors, t and

δt, which is defined by (4.1), transform as scalars, while cos A and sin A transform as

tensors of rank 2. Hence, if we multiply both sides of (5.1) from left with

[
P O
O P

]
,

we obtain

β

[
P~r′

P~ct′ + (P~v)×(P ~r′)
c

]
=

[
P cos AP T −P sin AP T

P sin AP T P cos AP T

] [
P~r + P~v(t + δt)

P~c(t + δt)

]

and since P (cos A)P T = cos(PAP T ) and P (sin A)P T = sin(PAP T ), the covariance

of (5.1) is proved. So it is sufficient to apply such a transformation P which maps

vector ~v into (v, 0, 0) and to prove the theorem in this special case.

Notice that both left and right side of (5.1) are linear functions of x, y, z, t, x′, y′, z′, t′,

and so after some transformations it can be simplified. Then the first three equations

of (5.1) reduce to the following three equations respectively

x′ =
x + vt√
1− v2

c2

, y′ = y, z′ = z.

Further, using these three equations, the fourth equation of (5.1) reduces to

t′ =
t + vx

c2√
1− v2

c2

,

while the 5-th and the 6-th equations are identically satisfied. ¤

According to Theorem 5.1 the well known 4-dimensional space-time is not fixed in

6 dimensions, but changes with the direction of velocity. Namely this 4-dimensional

space-time is generated by the basic space vectors and the velocity vector from the

imaginary part of the complex base.

Having in mind the equation (2.6), the Lorentz transformation (5.1) can be written

in the following form

(5.2)
(
1− v2

c2

)−1/2
[

~rs

~rt

]
=

[
cos A − sin A
sin A cos A

] [
~r + ~v(t + δt)

~c(t + δt)

]
.
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The coefficient β = (1 − v2

c2
)−1/2 is caused by the active motion (i). Since the coor-

dinates xs, ys, zs, xt, yt, zt are measured according to the basic coordinates x, y, z, we

know that all of them are observed contracted for coefficient
√

1− v2

c2
so we needed

to multiply them with β = (1 − v2

c2
)−1/2. If we denote again the same coordinates

but now measured from the self coordinate system, then the Lorentz transformation

becomes

(5.3)

[
~rs

~rt

]
=

[
cos A − sin A
sin A cos A

] [
~r + ~v(t + δt)

~c(t + δt)

]
.

Notice that analogous result can be obtained in case if there is simultaneously motion

with a velocity and space rotation, for example determined by a matrix L ∈ O↑
+(1, 3).

In that case the matrix

[
cos A − sin A
sin A cos A

]
should be replaced by the matrix F (L),

where F is the isomorphism (3.1).

6. Cosmology based on the 3+3+3-model

According to (5.3) both vectors

[
~rs

~rt

]
and

[
~r + ~v(t + δt)

~c(t + δt)

]
lie in the same 6-

dimensional space. This is true, if the space-time of the universe globally is Euclidean

space with dimension 6. But, however, this is not in accordance with the temporary

cosmology. Neglecting the time coordinates, it is accepted to be a 3-sphere. We

shall modify this statement, by identifying the antipode points of the 3-sphere, and

hence obtaining the projective space RP 3. This space is homeomorphic with the Lie

group SO(3,R). The local coordinates of SO(3,R) are angles, i.e. real numbers,

but we use length units for our local space coordinates. So for each small angle ϕ of

rotation in a given direction corresponds coordinate length Rϕ in the same direction,

where R is a constant, which can be called radius of the universe. By accepting this

modification of the spatial part of the universe, we do not change anything locally,

because the 3-sphere has locally the group structure of the unit quaternions, and

locally this group is isomorphic with the group SO(3,R). Indeed, the group of unit

quaternions is universal covering of the Lie group SO(3,R). According to this small

modification of the universe it is now natural to assume that the space time of the

universe is isomorphic to SO(3,C). Hence we have the following property of duality:

each space-time point of the base manifold (the universe) can be considered as an

orthogonal transformation of the tangent space at any point of the base manifold

(the universe) and vice versa.
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Notice that analogously as (x+ ictx, y+ icty, z+ ictz) is a local coordinate neighbor-

hood of SO(3,C), i.e. the space-time of the universe, also (xs + ixt, ys + iyt, zs + izt)

is a coordinate neighborhood of the same manifold. These two coordinate systems

can be considered as coordinate neighborhoods of SO(3,C) as a complex manifold,

because according to (5.3) the Cauchy-Riemannian conditions for these two systems

are satisfied.

Let us discuss the space-time dimensionality of the universe. We mentioned at the

beginning of this section that the dimensionality is 6 if the space-time is flat. But now

we have that it is parameterized by the following 9 independent coordinates: x, y, z

coordinates which locally parameterize the spatial part of the universe SO(3,R),

and xs, ys, zs, xt, yt, zt coordinates which parameterize the bundle. Also the partial

derivatives of these coordinates with respect to x, y, z lead to the same manifold, but

now as a group of transformations. So in any case the total space-time of the universe

is homeomorphic to SO(3,R)× SO(3,C), i.e. SO(3,R)×R3 × SO(3,R). Here R3 is

indeed the space of velocities such that |~v| < c. Indeed, the group SO(3,C) as well

as its isomorphic group O↑
+(1, 3) considers only velocities with magnitude less than c.

Notice that if we know the coordinates x, y, z and also xs, ys, zs, xt, yt, zt, then ac-

cording to the Lorentz transformations (5.3), the time coordinates cxt, cyt, czt are

uniquely determined. And conversely, if we know the coordinates xs, ys, zs, and also

x, y, z, ctx, cty, ctz, then the time coordinates xt, yt, zt are uniquely determined. So we

can say that there are 6 spatial and 3 temporal coordinates. Notice that if we consider

that the universe is a set of points, then it is natural to consider it as 6-dimensional.

But, since we consider the universe as a set of orthonormal frames, so it is more

natural to consider it as 9-dimensional.

This 9-dimensional space-time has the following property: From each point of the

space-time, each velocity and each spatial rotation of the observer, the universe seems

to be the same. In other words, there is no privileged space points (assuming that R

is a global constant), no privileged direction and no privileged velocity.

The previous discussion leads to the following diagram,

V ∼= R3

× ×

S ∼= SO(3,R) × SR = SO(3,R)
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consisting of three 3-dimensional sets: velocity (V) which is homeomorphic to R3,

space (S) which is homeomorphic to SO(3,R), and space rotations (SR) which is

equal to SO(3,R). The first set (V) is not a group and must be joined with each of

the other two sets, while the other two sets may exist independently because they are

groups. Further we shall consider three Cartesian products: (i) SR × V , (ii) S × V ,

and (iii) S × SR.

In the first case we almost know that the product SR × V ∼= SO(3,C) can be

considered as a fiber and Lie group of a bundle with base S, which was considered in

the previous sections. Here we want to add that if we want to consider the fiber over a

point B instead of the fiber over a point A, then there is unique matrix P ∈ SO(3,R),

which maps the point A into point B, because both points A and B are matrices.

In this case each matrix M from the fiber SO(3,C) should be replaced with PMP T .

This implies that each 3-vector of velocity ~v should be replaced by P~v and each space

rotation M should be replaced by PMP T . If A and B are relatively close points in

the universe, then P is practically unit matrix, and each matrix in the fiber remains

unchanged. The matrix P is usually interpreted as a translation in flat space-time

as in Minkowski space. This case is close to the methods of the classical mechanics.

Indeed, it is sufficient to study the law of the change of the matrices from the fiber,

i.e. the matrices which consist the informations about the spatial rotation and the

velocity vector of a considered test body. Then it is easy to find the trajectory of

motion of the test body.

Now let us consider the case (ii). Let us choose an arbitrary space rotation. This

may be done by arbitrary 3 orthonormal vectors at one point of the universe consid-

ered as SO(3,R) manifold, and then they can be transfered at each point of SO(3,R),

by using the group structure of SO(3,R). Then the studying of motion of arbitrary

test body means to find how changes the matrix which gives the position of the test

body in the space and its velocity at the chosen moment. The space rotation of the

test body also changes, analogously as the position of the test body in case (i) also

changes, but in case (ii) we are not interesting about it. This is close to the methods

of the quantum mechanics, where the coordinate operators (i.e. space coordinate

operators) and the impulse operators (i.e. the time coordinate operators) have the

main role. If we want to use another space rotation instead of the chosen one, then

there exists a unique matrix P ∈ SO(3,R) which maps the initial space rotation into

the new space rotation. In this case each matrix M ∈ S × V ∼= SO(3,C) should
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be replaced with PMP T . This implies that each 3-vector of velocity ~v should be re-

placed by P~v and each space position, which is given by orthogonal matrix S, should

be replaced by PSP T . Since the radius of the universe is extremely large, practically

for each space position, the matrix S for a close space position is close to the unit

matrix, and approximately can be considered as a vector of translation ~r, and now

this vector should be replaced by P~r.

In the third case (iii) the product S × SR can be considered as a fiber and Lie

group of a principal bundle over the base V . The multiplication over the Lie group

SO(3,R)× SO(3,R) is given by (X1, Y1)(X2, Y2) = (X1X2, Y1Y2). So we obtain that

while the time coordinates do not commutate with the both sets of spatial coordinates,

both sets of spatial coordinates mutually commutate.

7. Modification of the Lorentz transformations

By acceptance of the previous model, as a consequence we do not have any trans-

lations and vectors. So the classical Lorentz transformations have no sense any more.

From this viewpoint, we should modify the Lorentz transformations defined in Eu-

clidean space. The vectors

[
~rs

~rt

]
and

[
~r + ~v(t + δt)

~c(t + δt)

]
should be replaced by two

matrices and the Lorentz transformation will become a matrix equality in the follow-

ing way. Notice that each small neighborhood of the unit matrix in SO(3,C) can

be parameterized by the following 6-dimensional vector (x, y, z, x′, y′, z′), i.e. vector

(z1, z2, z3) ∈ C3, where z1 = x+ ix′, z2 = y + iy′, z3 = z + iz′, by joining the following

matrix in SO(3,C)





1

∆




1 + z2
1 − z2

2 − z2
3 −2z3 + 2z1z2 2z2 + 2z1z3

2z3 + 2z1z2 1− z2
1 + z2

2 − z2
3 −2z1 + 2z2z3

−2z2 + 2z1z3 2z1 + 2z2z3 1− z2
1 − z2

2 + z2
3








1/2

,

where ∆ = 1 + z2
1 + z2

2 + z2
3 . In a special case, if x′ = y′ = z′ = 0, this matrix

represents a spatial rotation in the direction of (x, y, z) = (z1, z2, z3) and the angle

of rotation is ϕ = arctan
√

x2 + y2 + z2. This representation can be extended to the

following special case, which will be used later. If x
x′ = y

y′ = z
z′ = v

c
, then the direction

of rotation is (x, y, z) = v
c
(x′, y′, z′) and the complex angle of rotation satisfies

tan ϕ =
√

(x + ix′)2 + (y + iy′)2 + (z + iz′)2 =
√

x2 + y2 + z2(1 + i
c

v
).
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For example, if ~v = (0, 0, v), then the corresponding orthogonal matrix is given by

(7.1)




cos z
R

− sin z
R

0
sin z

R
cos z

R
0

0 0 1







cosh z′
R

−i sinh z′
R

0

i sinh z′
R

cosh z′
R

0
0 0 1


 =

=




cosh z′
R

−i sinh z′
R

0

i sinh z′
R

cosh z′
R

0
0 0 1







cos z
R

− sin z
R

0
sin z

R
cos z

R
0

0 0 1


 .

The equality (5.3) now can be represented in the following way. First note that

(5.3) can be written in the following form

1

R

[
~rs

~rt

]
=

1

R

[
cos A − sin A
sin A cos A

] [
~r
0

]
+

1

R

[
~v
~c

]
(t + δt).

Both vectors 1
R

[
~rs

~rt

]
and 1

R

[
cos A − sin A
sin A cos A

] [
~r
0

]
should be replaced by two ma-

trices M ′ and M from SO(3,C), while the vector 1
R

[
~v
~c

]
(t + δt) should be replaced

by the following 3× 3 complex orthogonal matrix

L




cos v(t+δt)
R

− sin v(t+δt)
R

0

sin v(t+δt)
R

cos v(t+δt)
R

0
0 0 1







cosh c(t+δt)
R

−i sinh c(t+δt)
R

0

i sinh c(t+δt)
R

cosh c(t+δt)
R

0
0 0 1


 LT ,

which obtains from (7.1) by replacing z = v(t + δt) and z′ = c(t + δt), and where

L ∈ SO(3,R) is arbitrary orthogonal matrix which maps the vector (0, 0, 1)T into the

vector (vx/v, vy/v, vz/v)T . Hence the Lorentz transformation (5.3) takes the following

matrix from

(7.2)

M ′ = ML




cos v(t+δt)
R

− sin v(t+δt)
R

0

sin v(t+δt)
R

cos v(t+δt)
R

0
0 0 1







cosh c(t+δt)
R

−i sinh c(t+δt)
R

0

i sinh c(t+δt)
R

cosh c(t+δt)
R

0
0 0 1


 LT ,

and now there are no translations. Notice that (7.2) is not equivalent to (5.3). But

neglecting the terms of order R−2 and less, which are extremely small, the equalities

(5.3) and (7.2) are equivalent. However, we accept now that (7.2) is exact equality,

while (5.3) is approximative.
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