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In the 19 fifties, Kuffler and Hubel and Wiesel e.a. started to do neurobiological

experiments concerning the activities of retinal and cortical neurons occurring in the

process of vision. In relation with thus obtained findings, some could not resist to

moreover start to phantasise in pretty unscientifical ways about how these factual

activities would actually explain this process. Obviously, any large number N of such

experiments could and can be further experimented and any multiple m(> 1) of N

such phantasies could and can be further phantasised. And ever since and up till now

and like almost everywhere indeed, many eagerly have been involved in precisely such

experiments and phantasies; (see, a.o., [1][2][3][4][5]). In the following, these things

will be put at their proper place in the science of vision. In particular, it will be shown

how “the Mexican ganglion hats” and “the V1 orientation detectors” appear as well

determined compository aspects of the visual perception of contours in images via

the extrinsic curvatures of the visual sensation of these images; (cfr. [6][7][8][9][10]).

In order to do so, from [7], we first recall the definition of human visual sensa-

tion F (x, y) corresponding to a luminosity function I(x, y) of a given image in an

(x, y)–plane R2; the function I(x, y) is usually graphically extended in a z–direction

R as a scalar field on the plane R2, thus yielding a relief surface z = I(x, y) of

the image in the 3D (x, y; z)–space R3 = R2 × R. In accordance with “the hor-

izontal (x)–vertical (y) effect” which is rather significant indeed in human vision,

the scale space of the given image was identified with the family of the smoothings

I(x, y; ah, av) = I(x, y) ∗G0(x, y; ah, av) of the function I(x, y) which result from con-

volutions with elliptical 2D Gaussians G0(x, y; ah, av) = e−[(x/ah)2+(y/av)2]/2πahav of

axes ah < av; this constitutes a natural anisotropical retouch to the studies on the

nature of observation as these were done under the hypothesis of isotropy of the visual

field by Koenderink and van Doorn [11][12], (and, eventually, whenever such degree of

sophistication would be needed, one could in addition also deal with the inhomogene-

ity of the visual field, e.g. in a way based on experiments as the one discussed in [13]).

Then, by the Law of Fechner, for appropriate apertures (ah, av), the human visual sen-

sation of the given image is defined as F (x, y) = S(x, y; ah, av) = k. ln I(x, y; ah, av),

whereby k is a suitable constant; thus, graphically, the visual sensation implied by

the given image essentially is the surface M2 with Cartesian equation z = F (x, y) in

R3. By way of examples, from [7], in Figures 2, 3 and 4 are reproduced the graphs

of the functions I(x, y), I(x, y; ah, av) and F (x, y), respectively, corresponding to the
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brightness illusion of Helmholtz which is reproduced in Figure 1, (for more precise

informations on concrete numerical values, see [7]).

Figure 1. The illusion of Helmholtz, (the numbers on the axes repre-
sent distances in some arbitrary unit).

Figure 2. The relief of the function I(x, y) for the illusion of Helmholtz.
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Figure 3. The relief of the function I(x, y; ah, av) for the illusion of Helmholtz.

Figure 4. The relief of the function F (x, y) for the illusion of Helmholtz.

Next, from [8][9][10][6][7], we recall that the contours that we perceive in early vision

when looking at a given image, basically, are lines of extremal values of the Casorati

curvature of the sensation surface M2 of this image in R3. The Casorati curvature C

of a surface M2 in R3 may well be considered as, for our senses, the most intuitive,

and, for mathematics, the most simple curvature among all extrinsic curvatures of

surfaces M2 in R3, since it vanishes identically, i.e. it is zero at all points of such

a surface, if and only if this surface is a plane, i.e. if and only if M2 is the only

kind of surface in R3 which is not curved at all in the sense of our kind’s natural

experiences, and, since, in terms of the so–called principal curvatures k1 and k2 of a
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surface M2 in R3, essentially C is their first elementary symmetric function which

has this property, namely k2
1 +k2

2; (as general references about principal and Casorati

curvatures and about the notion of curvature in general, see [14][15][16][17][18]). By

way of examples, from [7], in Figure 6 are shown the sides of the “squares” of Figure

1 as they are determined as such by extremal values of this curvature, the curvature

surfaces with Cartesian equation z = C(x, y) in R3 themselves being shown in Figure

5, (for more precise informations on the numerical values involved as well as for some

comments on the fact that the white and black squares of Figure 1 actually are not

perceived as squares but as proper rectangles, the one “standing up” and the other

one “lying down”, respectively, see [7][6]).

Figure 5. The Helmholtz brightness illusion: the Casorati curvature
surfaces z = F 2

xx + F 2
xy + F 2

yx + F 2
yy of the Fechner surfaces z = F (x, y)

corresponding to the given white and black squares.
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Figure 6. The Helmholtz brightness illusion: rectangles determined
by the extrema of the Casorati curvature surfaces z = F 2

xx + F 2
xy +

F 2
yx + F 2

yy of the Fechner surfaces z = F (x, y) corresponding to the
given white and black squares.

Actually, as far as we can see, all optical visual illusions, the static as well as the

dynamic ones, can accurately be well described as such. Besides, several kinds of

similarly “strange” phenomena which manifest themselves in the visual arts and “un-

realistic” psychophysical experiences of luminance intensities in certain images, can

also accurately be described in equally natural and elementary ways associated with

the just recalled general geometrical descriptions of visual sensations and perceptions

as will be reported on in some of our subsequent papers, partly also in co–operation

with A. Kaplarević–Malǐsić.

From the above, we repeat that, for a given image: (i) the corresponding visual

sensation is given by z = F (x, y) = k. ln I(x, y; ah, av) whereby I(x, y; ah, av) stands

for the convolution I(x, y) ∗G0(x, y; ah, av) of the luminosity I = I(x, y) of the image

with a “horizontal–vertical” elliptical Gaussian, say F = k. ln(I ∗ Gauss) for short,

whereby Gauss = G0(x, y; ah, av), and, (ii) the contours that we perceive when looking

at this image are determined by the main geometrical characteristics of the surface M2

which is the graph in R3 of the observation z = F (x, y), i.e. by lines of extremal val-

ues of the Casorati curvature function C of this surface M2 in R3. Now, at this stage,

when properly and concretely dealing with the extrinsic geometry of surfaces M2 in

R3, it is crucial to decide on which geometrical structure would be most appropriate to

be put on R3 in the situation under consideration. Obviously, the standard Euclidean

structure which amounts to put on R3 the Riemannian metric ds2 = dx2 + dy2 + dz2,
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which essentially means to perform the geometrical measurements in R3 itself and

also the geometrical measurements related to surfaces M2 in R3 in accordance with

the Theorem of Pythagoras, for this will not do well, i.e. to study visual sensation

surfaces M2, which are the graphs in R3 of functions F : R2 → R, in the Euclidean

space E3 = (R3, ds2) is theoretically complete out of the question: the co–ordinate

directions x, y on the one hand and the co–ordinate direction z on the other hand

having completely different natures indeed. The most natural geometrical structure

to put on R3 for the study of the extrinsic geometry of the surfaces M2 : z = F (x, y)

may very well be the degenerate Riemannian metric ds2
∗ = dx2 + dy2, as was clearly

motivated by Koenderink and van Doorn in [19]. Hence, further on, we will study the

extrinsic geometry of the surfaces M2 under consideration in R3 as surfaces in the 3D

1–fold isotropical space I3 = (R3, ds2
∗); a basic reference for the geometry of surfaces

M2 in I3 is [20]. For some comments on the comparison in practice of the geometries

of E3 and of I3 in the present context, see [7]. In I3, the Casorati curvature C of

a surface M2 which is the graph of a function F : R2 → R : (x, y) 7→ z = F (x, y)

is given by C = F 2
xx + F 2

xy + F 2
yx + F 2

yy, whereby the indices x and y refer to the

partial differentiations of F with respect to the co–ordinates in the image plane R2.

And, thus, finally one can readily appreciate to what extent that elliptical Gaussian

filterings (cfr. the functioning of cortical orientation detecting neurons) and that Ga-

bor filterings (cfr. the functioning of ON–OFF ganglion cells) of the function I(x, y)

associated with a given image, do actually may play some roles in the process of vi-

sion. Namely, in full generality, in view of the formula for the Casorati curvature for

surfaces M2 in the space I3 and by the rules for differentiations of logarithmic and

of exponential functions and of convolutions of functions and also by the approxima-

tions of goniometrical functions via Taylor–Maclaurin expansion, -the “Gabors” or

Gabor functions involved here resulting from the products of the “Gaussians” with

goniometrical functions - , indeed one can straightforwardly notice how various com-

binations of convolutions I ∗Gauss and I ∗Gabor of the luminance function I(x, y)

with Gaussians and Gabors in some non trivial ways actually do mix together to

compose the curvature function C; (as a basic reference for studying scalings in vi-

sion, see [21]). And, of course, in the particular cases of some very “special” images,

(say, whereby the influence of the Law of Fechner might be not so important, -so

that the convolution of I with the Gaussian in F could then “directly” be differ-

entiated itself, without having to go through the logarithm - , and, say, whereby the



324 BART ONS AND PAUL VERSTRAELEN

luminosity I(x, y) essentially might only depend on one of the variables, -in case of de-

pendance on x only, then identically having Ixy = Iyx = Iyy = 0 -), then the curvature

C could turn out basically to become some very simple combination of smoothings

I ∗Gauss and I ∗Gabor, (say, more precisely for the just scetched special situation,

basically as the square of a linear combination of one convolution I ∗ Gauss with

one convolution I ∗Gabor, both to be considered as functions of x alone, since then

(I ∗ Gauss)′′ = I ∗ (Gauss′′) ≈ c1.(I ∗ Gauss) + c2.(I ∗ Gabor), for some coefficients

c1 and c2, whereby ′′ means second order differentiation with respect to x). In such

cases, one could be tempted to substitute some “theories” on neural activities in place

of the general description of images by curvatures. Yet, even by small perturbations

of such special images, (say, for the cases alluded to before, by a random rotation of

the given image, the corresponding new sensation function I(x, y) would then depend

essentially both on x and y and would then yield as curvature C of this new image

a possibly rather complicated compilation of many convolutions of I with Gaussians

and Gabors), in general, one could not help to realise that these neurobiological “the-

ories” do not “work”, simply by confronting the perceived images with what should

be expected to be seen according to these “theories”, whereas the image description

as given by the curvature C proper remains effective indeed. We will present some

concrete illustrations of these latter comments in our subsequent paper [22].
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