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ON HYPERSURFACES IN SPACE FORMS SATISFYING

PARTICULAR CURVATURE CONDITIONS

OF TACHIBANA TYPE

R. DESZCZ 1, M. GŁOGOWSKA 2, M. PLAUE 3, K. SAWICZ 4, AND M. SCHERFNER 5

Abstract. We investigate hypersurfaces in space forms satisfying particular cur-
vature conditions which are strongly related to pseudosymmetry. Expressing certain
products of curvature tensors as linear combinations of Tachibana tensors we deduce
several pseudosymmetry-type results.

1. Introduction

A semi-Riemannian manifold (M, g), dim M = n ≥ 3, is said to be locally symmet-
ric if its curvature tensor R is parallel with respect to the Levi–Civita connection ∇,
i. e., ∇R = 0 holds on M . The last equation leads to the integrability condition

R ·R = 0(1.1)

and a semi-Riemannian manifold (M, g), n ≥ 3, is called semisymmetric if (1.1) holds
on M . We refer to Section 2 for precise definitions of the symbols used. Semisymmet-
ric Riemannian manifolds were classified by Z. I. Szabó, locally, in [29] and there are
several important results concerning such manifolds. So for example K. Nomizu con-
jectured in [22] that all complete irreducible semisymmetric Riemannian manifolds
of dimension n ≥ 3 are locally symmetric. This was answered in the negative by H.
Takagi for n = 3 and by K. Sekigawa for n ≥ 3 ([28]).
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Pseudosymmetric manifolds form an essential extension of the class of semisym-
metric manifolds. We present a result that is related to this statement: Hypersurfaces
M of dimension ≥ 3 and of type number two which are isometrically immersed in
a Euclidean space (or more generally, in a semi-Euclidean space) are semisymmet-
ric. This is not true if the ambient space is a space of non-zero constant curvature.
Namely, on hypersurfaces M of type number two that are isometrically immersed in
a semi-Riemannian space of constant curvature Nn+1

s (c) with signature (s, n+1− s),
n ≥ 3, we have ([4])

R ·R =
κ̃

n(n + 1)
Q(g, R).(1.2)

Here, c = κ̃
n(n+1)

and κ̃ are the sectional and scalar curvature of the ambient space,
respectively, and Q(g, R) is the Tachibana tensor of g and R. We note that hyper-
surfaces M in Riemannian spaces of constant curvature Nn+1(c), n ≥ 3, that have at
most two distinct principal curvatures at every point also satisfy a condition of this
kind (see Remark 5.1 (i) of the present paper). More generally, a semi-Riemannian
manifold (M, g), n ≥ 3, is said to be pseudosymmetric (see e.g. [10]) if the condition

R ·R = LR Q(g, R)(1.3)

holds on M , or more precisely, if (1.3) is satisfied on the set UR of all points of M

at which the curvature tensor R is not proportional to the Kulkarni–Nomizu tensor
g ∧ g.

A semi-Riemannian manifold (M, g), n ≥ 3, is said to be Ricci-pseudosymmetric if
R · S = LS Q(g, S) holds on M , i. e., if this condition is satisfied on the set US of all
points of M at which the Ricci tensor S is not proportional to the metric tensor g.
Every pseudosymmetric manifold is Ricci-pseudosymmetric. The converse statement
is not true: For instance, every Cartan hypersurface of dimension n = 6, 12, 24 is
a Ricci-pseudosymmetric but non-pseudosymmetric manifold that satisfies (see e.g.
[15])

R · S =
κ̃

n(n + 1)
Q(g, S).(1.4)

A 3-dimensional Cartan hypersurface satisfies (1.3) with LR = κ̃
12
. Proposition 3.2

and Theorem 4.2 of [4] imply that every hypersurface in a Riemannian space of con-
stant curvature Nn+1(c), n ≥ 5, that has principal curvatures λ > 0, −λ and 0 at
every point with the multiplicities p, p and n− 2p, p ≥ 1, is a Ricci-pseudosymmetric
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but non-pseudosymmetric manifold satisfying (1.4). This has a direct geometrical
meaning, if we regard the so called austerity. It can be formulated as an algebraic
condition on the second fundamental form of a hypersurface and mainly asserts that
the eigenvalues of its second fundamental form, when measured in any normal di-
rection, occur in oppositely signed pairs [2]. Thus, we can state that several austere
hypersurfaces satisfy (1.4).

Pseudosymmetry and Ricci-pseudosymmetry are certain special conditions of pseu-
dosymmetry type. We may consider other conditions of this kind like the following
particular one on hypersurfaces M in Nn+1

s (c), n ≥ 4: the tensor R · R, R · C, C · R
or R · C − C · R may be written as a linear combination of the Tachibana tensors
Q(S,R), Q(g, R), Q(g, g ∧ S) and Q(S, g ∧ S). For instance,

R · C = α1 Q(S,R) + α2 Q(g, R)

+α3 Q(g, g ∧ S) + α4 Q(S, g ∧ S)(1.5)

where α1, . . . α4, are functions and C denotes the Weyl conformal curvature tensor.
In Section 4, we investigate hypersurfaces M in Nn+1(c), n ≥ 4 that satisfy (1.5),
which we call hypersurfaces of Tachibana type. It is obvious that (1.3) implies

R · C = LC Q(g, C).(1.6)

For hypersurfaces M in Nn+1
s (c), n ≥ 4, the converse statement is also true (Remark

5.1 (ii)). We note that from (1.6), by making use of (2.2), it follows that every
pseudosymmetric manifold of dimension ≥ 4 satisfies (1.5). More generally, every
Ricci-pseudosymmetric hypersurface in Nn+1

s (c), n ≥ 4, satisfies (1.5) and is therefore
of Tachibana type (cf. [15], Proposition 5.1 (iv)).

We prove (Theorem 4.1) that on hypersurfaces in space forms satisfying (1.5) we
have

R ·R = Q(g, B)(1.7)

where B is a generalized curvature tensor. We call hypersurfaces satisfying (1.7) of
special Tachibana type.

In the last section, we will further investigate such hypersurfaces, and also other
special conditions of Tachibana type, namely hypersurfaces M in Nn+1

s (c), n ≥ 4,
on which the tensors R · R, R · C, C · R or R · C − C · R may be expressed by the
Tachibana tensor Q(g, B), where B is a generalized curvature tensor.
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We prove (see Theorems 5.1–5.3) that in every case the tensor B may be written
as a linear combination of R and the tensors g ∧ g, g ∧ S, g ∧ S2 and S ∧ S. We also
determine the coefficients of the decomposition (1.5).

2. Preliminaries

Throughout this paper, all manifolds are assumed to be connected paracompact
manifolds of class C∞. Let (M, g) be an n-dimensional, n ≥ 3, semi-Riemannian
manifold, and let ∇ be its Levi–Civita connection and Ξ(M) the Lie algebra of vector
fields on M . We define on M the endomorphisms X ∧A Y and R(X, Y ) of Ξ(M),
respectively, by

(X ∧A Y )Z = A(Y, Z)X − A(X, Z)Y ,

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

where A is a symmetric (0, 2)-tensor on M and X,Y, Z ∈ Ξ(M). The Ricci ten-
sor S, the Ricci operator S and the scalar curvature κ of (M, g) are defined by
S(X,Y ) = tr{Z → R(Z, X)Y }, g(SX, Y ) = S(X, Y ) and κ = tr S, respectively.
The endomorphism C(X, Y ) is defined by

C(X, Y )Z = R(X,Y )Z − 1

n− 2
(X ∧g SY + SX ∧g Y − κ

n− 1
X ∧g Y )Z.

Now the (0, 4)-tensor G, the Riemann–Christoffel curvature tensor R and the Weyl
conformal curvature tensor C of (M, g) are defined by

G(X1, X2, X3, X4) = g((X1 ∧g X2)X3, X4),

R(X1, X2, X3, X4) = g(R(X1, X2)X3, X4),

C(X1, X2, X3, X4) = g(C(X1, X2)X3, X4),

respectively, where X1, X2, . . . ∈ Ξ(M). We define the following subsets of M : UR =

{x ∈ M |R − κ
(n−1)n

G 6= 0 at x}, US = {x ∈ M |S − κ
n

g 6= 0 at x} and UC = {x ∈
M |C 6= 0 at x}. We note that US ∩ UC ⊂ UR.

Let B(X, Y ) be a skew-symmetric endomorphism of Ξ(M) and let B be a (0, 4)-
tensor associated with B(X, Y ) by

B(X1, X2, X3, X4) = g(B(X1, X2)X3, X4) .(2.1)
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The tensor B is said to be a generalized curvature tensor ([23]) if the following con-
ditions are fulfilled: B(X1, X2, X3, X4) = B(X3, X4, X1, X2) and

B(X1, X2, X3, X4) + B(X3, X1, X2, X4) + B(X2, X3, X1, X4) = 0.

Let B(X, Y ) be a skew-symmetric endomorphism of Ξ(M), and let B be the tensor
defined by (2.1). We extend the endomorphism B(X, Y ) to a derivation B(X, Y )· of
the algebra of tensor fields on M , assuming that it commutes with contractions and
B(X, Y ) · f = 0 for any smooth function f on M . Now for a (0, k)-tensor field T ,
k ≥ 1, we can define the (0, k + 2)-tensor B · T by

(B · T )(X1, . . . , Xk, X, Y ) = (B(X,Y ) · T )(X1, . . . , Xk)

= −T (B(X,Y )X1, X2, . . . , Xk)− · · · − T (X1, . . . , Xk−1,B(X,Y )Xk) .

In addition, if A is a symmetric (0, 2)-tensor, we define the (0, k + 2)-tensor Q(A, T )

by

Q(A, T )(X1, . . . , Xk, X, Y ) = (X ∧A Y · T )(X1, . . . , Xk)

= −T ((X ∧A Y )X1, X2, . . . , Xk)− · · · − T (X1, . . . , Xk−1, (X ∧A Y )Xk) .

In this manner we obtain the (0, 6)-tensors B · B and Q(A,B). Substituting B = R

or B = C, T = R or T = C or T = S, A = g or A = S in the above formulas, we get
the tensors R ·R, R · C, C ·R, R · S, Q(g, R), Q(S, R), Q(g, C) and Q(g, S).

For a symmetric (0, 2)-tensor E and a (0, k)-tensor T , k ≥ 2, we define their
Kulkarni–Nomizu product E ∧ T by ([7])

(E ∧ T )(X1, X2, X3, X4; Y3, . . . , Yk)

= E(X1, X4)T (X2, X3, Y3, . . . , Yk) + E(X2, X3)T (X1, X4, Y3, . . . , Yk)

−E(X1, X3)T (X2, X4, Y3, . . . , Yk)− E(X2, X4)T (X1, X3, Y3, . . . , Yk).

The tensor E ∧ T will be called the Kulkarni–Nomizu tensor of E and T . The
following tensors are generalized curvature tensors: R, C and E ∧F , where E and F

are symmetric (0, 2)-tensors. We have G = 1
2
g ∧ g and

C = R− 1

n− 2
g ∧ S +

κ

(n− 2)(n− 1)
G.(2.2)

For symmetric (0, 2)-tensors E and F we have (see e.g. [8], Section 3)

Q(E, E ∧ F ) = −Q(F, E).(2.3)
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We also have (cf. [7], eq. (3))

E ∧Q(E, F ) = −Q(F, E).(2.4)

For a symmetric (0, 2)-tensor A we denote by A the endomorphism related to A

by g(AX,Y ) = A(X, Y ). Now we define the tensor Ap, p ≥ 2, by Ap(X, Y ) =

Ap−1(AX, Y ).
Let A be a symmetric (0, 2)-tensor A and T a (0, p)-tensor, p ≥ 2. Following [18],

we will call the tensor Q(A, T ) the Tachibana tensor of A and T , or the Tachibana
tensor for short. We like to point out that in some papers, Q(g, R) is called the
Tachibana tensor (see e.g. [19], [20], [21], [24] and [30]). By an application of (2.3)
we obtain on M the identities

Q(g, g ∧ S) = −Q(S, G) and Q(S, g ∧ S) = −1

2
Q(g, S ∧ S).

From the tensors g, R and S we define the following (0, 6)-Tachibana tensors: Q(S, R),
Q(g,R), Q(g, g ∧ S) and Q(S, g ∧ S). Using (2.3) we can check that other (0, 6)-
Tachibana tensors that are constructed from g, R and S may be expressed by the
four Tachibana tensors above or vanish identically on M .

Let Bhijk, Thijk and Aij be the local components of the generalized curvature tensors
B and T and a symmetric (0, 2)-tensor A on M , respectively, where Latin indices range
from 1 to n. The local components (B ·T )hijklm and Q(A, T )hijklm of the tensors B ·T
and Q(A, T ) are the following:

(B · T )hijklm = grs(TrijkBshlm + ThrjkBsilm + ThirkBsjlm + ThijrBsklm),

Q(A, T )hijklm = AhlTmijk + AilThmjk + AjlThimk + AklThijm

−AhmTlijk − AimThljk − AjmThilk − AkmThijl.

If we contract the last equation with gij and ghm, we obtain

grsQ(A, T )hrsklm = As
l Tskhm − As

l Tshmk − As
mTskhl + As

mTshlk

+Q(A,Ric(T ))hklm,(2.5)

and

grsQ(A, T )rijkls = −As
iTsljk + As

l Tsijk + As
jTsikl + As

kTsilj

+AlkRic(T )ij − AjlRic(T )ik − grsArsTlijk.(2.6)
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Lemma 2.1. Let (M, g), n ≥ 3, be a semi-Riemannian manifold. Suppose that the
following equation is satisfied at a point of M :

Ss
hRsklm + Ss

l Rskmh + Ss
mRskhl = Ss

kRshml + Ss
l Rshkm + Ss

mRshlk,(2.7)

Then at this point we have

Ss
hRsklm + Ss

l Rskmh + Ss
mRskhl = 0.(2.8)

Proof. Summing (2.7) cyclically in h, l, m we obtain

3 (Ss
hRsklm + Ss

l Rskmh + Ss
mRskhl)

= Ss
h(Rsmkl + Rslmk) + Ss

l (Rshkm + Rsmhk) + Ss
m(Rslkh + Rshlk),(2.9)

which yields

3 (Ss
hRsklm + Ss

l Rskmh + Ss
mRskhl)

= −Ss
hRsklm − Ss

l Rskmh − Ss
mRskhl,(2.10)

completing the proof. ¤

Proposition 2.1. Let (M, g), n ≥ 4, be a semi-Riemannian manifold that satisfies

R ·R = Q(S,R) + LQ(g, C)(2.11)

on UC ⊂ M . Then the condition (2.8) holds on M .

Proof. From the equation

(R ·R)hijklm = Q(S,R)hijklm + LQ(g, C)hijklm,(2.12)

by contraction with gij, we obtain

Ss
hRsklm + Ss

kRshlm = Ss
l Rskhm + Ss

l Rshkm − Ss
mRskhl − Ss

mRshkl,(2.13)

i. e., the equation (2.7). This, together with Lemma 2.1, implies (2.8) on UC . Clearly,
at every point of M \ UC we have

(R ·R)hijklm = Q(S, R)hijklm.

Contracting this with gij, we again obtain (2.7) which by Lemma 2.1 implies (2.8) on
M \ UC ; this completes the proof. ¤

Remark 2.1. The last proposition also is true for every 3-dimensional semi-Riemannian
manifold since on such manifolds we have the identity

R ·R = Q(S, R).
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3. Curvature conditions

Let M be a hypersurface isometrically immersed in Nn+1
s (c), n ≥ 4. We denote by

UH ⊂ M the set of all points at which the tensor H2 is not a linear combination of the
metric tensor g and the second fundamental tensor H. We have UH ⊂ UC ∩US ⊂ M .

Hypersurfaces M in Nn+1
s (c), n ≥ 4, such that at every point of UH the tensor R ·C

is a linear combination of the Tachibana tensors Q(S, R), Q(g, R) and Q(g, g ∧ S)

were investigated in [15]. This condition means that

R · C = α1 Q(S, R) + α2 Q(g,R) + α3 Q(g, g ∧ S)(3.1)

holds on UH ⊂ M , where α1, α2 and α3 are functions on this set. In this paper we will
investigate hypersurfaces M in Nn+1

s (c), n ≥ 4, for which at every point of UH ⊂ M

the tensor R · C may be expressed as a linear combination of the tensors Q(S, R),
Q(g,R), Q(g, g ∧ S) and Q(S, g ∧ S), i. e., (1.5) holds on UH , where α1, α2, α3, α4

are functions on this set and α4 is non-zero. According to [9] (Corollary 4.1), for a
hypersurface M in Nn+1

s (c), n ≥ 4, if at every point of UH ⊂ M one of the tensors
R ·C, C ·R or R ·C−C ·R is a linear combination of the tensor R ·R and a finite sum
of the Tachibana tensors of the form Q(A,B), where A is a symmetric (0, 2)-tensor
and B a generalized curvature tensor, then

H3 = tr(H) H2 + ψ H + ρ g(3.2)

holds on UH , where ψ and ρ are functions. In particular, if (1.5) is satisfied on UH

then (3.2) holds on this set. Conversely, if (3.2) holds on UH ⊂ M for a hypersurface
M in Nn+1

s (c), n ≥ 4, then on this set we have among other results (see e.g. [26],
Theorem 5.1):

R · C = − ρ

n− 2
Q(g, g ∧H)− (n− 2)κ̃

n(n + 1)
Q(g, R)

+Q(S, R) +
(n− 3)κ̃

(n− 2)n(n + 1)
Q(g, g ∧ S),(3.3)

C ·R =
1

n− 2
(

κ

n− 1
+ εψ − (n2 − 3n + 3)κ̃

n(n + 1)
) Q(g, R)

+
n− 3

n− 2
Q(S, R) +

(n− 3)κ̃

(n− 2)n(n + 1)
Q(g, g ∧ S),(3.4)
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R · C − C ·R = − ρ

n− 2
Q(g, g ∧H) +

1

n− 2
Q(S, R)

− 1

n− 2
(

κ

n− 1
+ εψ − (n− 1)κ̃

n(n + 1)
) Q(g, R),(3.5)

and ([25], eqs. (3.7), (3.9))

ρH = S2 + (εψ − 2(n− 1)κ̃

n(n + 1)
) S + λ1 g,(3.6)

R · S =
κ̃

n(n + 1)
Q(g, S) + ρQ(g,H),(3.7)

respectively, where κ is the scalar curvature of M , ε = ±1 and

λ1 = (
(n− 1)κ̃

n(n + 1)
− εψ)

(n− 1)κ̃

n(n + 1)
+ ρ tr(H).

If (3.2) and ρ = 0 hold at a point of UH , i. e. at this point we have

H3 = tr(H) H2 + ψ H,(3.8)

then (3.3), (3.6) and (3.7) turn into (3.1),

S2 = (
2(n− 1)κ̃

n(n + 1)
− εψ) S − λ1 g(3.9)

and (1.4), respectively.
Let Uρ ⊂ UH be the set of all points at which (3.2) with ρ 6= 0 holds. Examples of

hypersurfaces in Euclidean spaces with three distinct principal curvatures that satisfy
(3.2) on Uρ are given in [27]. The curvature tensor R of a hypersurface M in Nn+1

s (c),
n ≥ 4, for which (3.2) holds on Uρ, is expressed by ([25], Theorem 3.2)

2ερ2 (R− κ̃

n(n + 1)
G)

= (S2 − (
2(n− 1)κ̃

n(n + 1)
− εψ) S + ((

(n− 1)κ̃

n(n + 1)
− εψ)

(n− 1)κ̃

n(n + 1)
+ ρ tr(H)) g)

∧(S2 − (
2(n− 1)κ̃

n(n + 1)
− εψ) S + ((

(n− 1)κ̃

n(n + 1)
− εψ)

(n− 1)κ̃

n(n + 1)
+ ρ tr(H)) g),(3.10)

i. e., R may be written on Uρ as a linear combination of the Kulkarni–Nomizu tensors
constructed from the tensors g, S and S2. If the curvature tensor R of a semi-
Riemannian manifold (M, g), n ≥ 4, is given on UC ∩ US as a linear combination of
the Kulkarni–Nomizu tensors g ∧ g, g ∧ S and S ∧ S, then such a manifold is called
a Roter-type manifold. Such manifolds were recently investigated in [12] and [13].
We also refer to [17] for a survey on Roter-type manifolds, as well as on Roter-type
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hypersurfaces. We like to note that the curvature tensor of generalized (κ, µ)-space
forms splits into six terms (see e.g. [3]).

The condition (3.7), via (3.6), turns into

R · S = Q(g, S2 + (εψ − (2n− 3)κ̃

n(n + 1)
) S).(3.11)

Therefore, we can say that on Uρ the tensors S and A = S2 + (εψ − (2n−3)κ̃
n(n+1)

) S are
pseudosymmetrically related ([6]).

In Section 4 we investigate hypersurfaces of Tachibana type, i. e., satisfying (1.5)
on Uρ. The main result of that section (Theorem 4.1) states that in space forms,
such hypersurfaces are special in the sense that R · R = Q(g, B) holds on Uρ for a
generalized curvature tensor B. We also give an explicit formula for B which shows
that R and B are pseudosymmetrically related on Uρ.

In the last section, we further investigate hypersurfaces that satisfy on UH the
equation R · R = Q(g, B) for a generalized curvature tensor B. We prove that the
tensor B can be written as a linear combination of R, S ∧ S, g ∧ S2, g ∧ S and G

(Theorem 5.1).
Moreover, in that section we consider hypersurfaces such that the tensor R · C,

resp. the tensor C · R or the tensor R · C − C · R, is equal to the Tachibana tensor
Q(g,B), where B is a generalized curvature tensor. We prove (Theorem 5.2) that in
every case, the tensor B is a certain linear combination of the curvature tensor R and
the Kulkarni–Nomizu tensors g ∧ g, g ∧ S, g ∧ S2 and S ∧ S.

4. Hypersurfaces in space forms of Tachibana type

On every hypersurface M in Nn+1
s (c), n ≥ 4, we have ([14])

R ·R = Q(S, R)− (n− 2)κ̃

n(n + 1)
Q(g, C).(4.1)

Proposition 2.1 together with (2.6) and (4.1) implies the following lemma:

Lemma 4.1. The following identity holds on every hypersurface M in Nn+1
s (c), n ≥

3:

grsQ(S,R)rijkls = −κRlijk − Ss
i Rsljk + SijSkl − SikSjl.(4.2)

We also note that (4.1), i. e.,

(R ·R)hijklm = Q(S,R)hijklm − (n− 2)κ̃

n(n + 1)
Q(g, C)hijklm,(4.3)
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by contraction with gij, yields

(R · S)hklm = grsQ(S, R)hrsklm.(4.4)

Using results of [15], we can prove:

Lemma 4.2. Let M be a hypersurface in Nn+1
s (c), n ≥ 4, which satisfies the Tachibana-

type condition (1.5) on Uρ ⊂ UH ⊂ M . Then the function α4 is non-zero at every
point of this set.

Proof. Suppose that α4 vanishes at x ∈ Uρ. Evidently, at x the condition (1.5) is
equivalent to (3.1). In addition, if α1 6= 1 at x then in view of Theorem 6.4 of [15],
(1.2) holds at this point. This clearly yields (1.4). Now, (1.4) together with (3.7) give
ρ Q(g,H) = 0, which implies ρ = 0 at x, a contradiction. If α1 = 1 at x, then, using
Theorem 6.2 in [15], we have at this point:

R · C = Q(S, R)− (n− 2)κ̃

n(n + 1)
Q(g, R) +

(n− 3)κ̃

(n− 2)n(n + 1)
Q(g, g ∧ S).

However, considering Theorem 6.1 of [15], this is equivalent to (1.4), which together
with (3.7) gives ρQ(g,H) = 0, and as a consequence: ρ = 0 at x, which is a con-
tradiction. Thus α4 is non-zero at every point of Uρ. The last remark completes the
proof. ¤

Lemma 4.3. Let M be a hypersurface in Nn+1
s (c), n ≥ 4, which satisfies the Tachibana-

type condition (1.5) on Uρ ⊂ UH ⊂ M . Then:

(i) On Uρ we have

α4 = −α1,(4.5)

α3 = − 1

n− 2
(α1(κ + εψ − (2n− 3)κ̃

n(n + 1)
) + α2),(4.6)

(α1 − 1) Q(S,R) + (α2 +
(n− 2)κ̃

n(n + 1)
) Q(g,R)

+
1

n− 2
(εψ − (3n− 5)κ̃

n(n + 1)
− α1(κ + εψ − (2n− 3)κ̃

n(n + 1)
)− α2) Q(g, g ∧ S)

−α1 Q(S, g ∧ S) +
1

n− 2
Q(g, g ∧ S2) = 0.(4.7)
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(ii) At every point of Uρ we have α1 6= 1. Moreover,

Q(S, R) = Q(g, T )(4.8)

holds on Uρ, where the (0, 4)-tensor T is defined by

T = (1− α1)
−1 ((α2 +

(n− 2)κ̃

n(n + 1)
) R +

α1

2
S ∧ S +

1

n− 2
g ∧ S2

+
1

n− 2
(εψ − (3n− 5)κ̃

n(n + 1)
− α1(κ + εψ − (2n− 3)κ̃

n(n + 1)
)− α2) g ∧ S).(4.9)

Proof. (i) Contracting (1.5), i. e.,

(R · C)hijklm = α1 Q(S, R)hijklm + α2 Q(g, R)hijklm

+α3 Q(g, g ∧ S)hijklm + α4 Q(S, g ∧ S)hijklm,(4.10)

with gij and using (2.5) and (4.4), we obtain

−α1 (R · S) = Q(g, α4 S2 + (α2 + (n− 2)α3 − κα4) S).(4.11)

By applying (3.7) to this result we get

−α1ρQ(g,H)

= Q(g, α4 S2 + (
α1κ̃

n(n + 1)
+ α2 + (n− 2)α3 − κα4) S).(4.12)

From the last relation, in view of Lemma 2.4 in [14], it follows that

−α1ρ H = α4 S2 + (
α1κ̃

n(n + 1)
+ α2 + (n− 2)α3 − κα4) S + λ2 g(4.13)

holds on Uρ, where λ2 is a function. Now (4.13), together with (3.6), gives

−(α1 + α4) S2

= (α1(εψ − (2n− 3)κ̃

n(n + 1)
) + α2 + (n− 2)α3 − κα4) S + λ3 g(4.14)

where λ3 = α1 +λ2. Suppose that α1 6= −α4 at x. Thus, at x the tensor S2 is a linear
combination of the tensors S and g , i. e.,

S2 = β1 S + β2 g, β1, β2 ∈ IR,

holds at x. Therefore, (3.10) reduces at x to

R =
β3

2
S ∧ S + β4 g ∧ S + β5 G, β3, β4, β5 ∈ IR.(4.15)

We note that β3 6= 0. In fact, if we had β3 = 0, then – in a standard way – we would
obtain C = 0 from (4.15), a contradiction. Equation (4.15) implies (see e.g. Section 3
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of [17]): R ·R = β6 Q(g, R), hence R ·S = β6 Q(g, S). Since x ∈ UH the last condition
yields β6 = κ̃

n(n+1)
([4], Proposition 3.2 and Theorem 3.1; see also the introduction

of this paper). Now from (3.7) it follows that ρ = 0 at x, a contradiction. Thus we
proved that (4.5) holds at x. Now if we apply (4.5) to (4.14), we obtain (4.6). Finally
(1.5) and (3.3), via (3.6), (4.5) and (4.6), lead to (4.7) – completing the proof of (i).
(ii) Suppose that α1 = 1 holds at x ∈ Uρ. Then, (4.7) is equivalent to

Q(g, (α2 +
(n− 2)κ̃

n(n + 1)
) R +

1

2
S ∧ S

+
1

n− 2
g ∧ (S2 − (

(n− 2)κ̃

n(n + 1)
+ κ) S)) = 0,(4.16)

which in view of Lemma 1.1 (iii) in [5] yields

(α2 +
(n− 2)κ̃

n(n + 1)
) R +

1

2
S ∧ S + g ∧B = 0(4.17)

where B is the (0, 2)-tensor defined by

B =
1

n− 2
(S2 − (

(n− 2)κ̃

n(n + 1)
+ κα2) S + λ4 g), λ4 ∈ IR.(4.18)

Contracting (4.17), i. e.,

(α2 +
(n− 2)κ̃

n(n + 1)
) Rhijk + ShkSij − ShjSik

+ghkBij + gijBhk − ghjBik − gikBhj = 0,(4.19)

with Sh
l we obtain

(α2 +
(n− 2)κ̃

n(n + 1)
) Sr

l Rrijk + S2
lkSij − S2

ljSik

+SlkBij − SljBik + gijDlk − gikDlj = 0(4.20)

where D is the (0, 2)-tensor defined by Dij = BirS
r
j . If we symmetrize (4.20) in l, i,

we get

(α2 +
(n− 2)κ̃

n(n + 1)
) (R · S)lijk + Q(S, S2)lijk

−Q(S, B)lijk + Q(g,D)lijk = 0.(4.21)

We already noted in the introduction that if (1.5) is satisfied on UH , (3.2) holds on
this set. Now, using Proposition 3.2 in [25] (eq. (3.10)), we see that the tensor D is
a linear combination of the tensors g, S and S2. Similarly, we note that from (3.11)
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it follows that the tensor R · S is a linear combination of the tensors Q(g, S) and
Q(g, S2). Using these facts together with (4.18) and (4.21), we can deduce that

Q(S, S2) + β1 Q(g, S) + β2 Q(g, S2) = 0, β1, β2 ∈ IR,(4.22)

holds at x. From the last equation, applying Lemma 2.4 (ii) in [14], it follows that
at x the tensor S2 is a linear combination of the tensors g and S. Therefore, (3.10)
turns into (4.15). But this, in the same way as in the proof of (i), leads to ρ = 0, a
contradiction. Thus α1 6= 1 holds at every point of Uρ. Now (4.8) is an immediate
consequence of (4.7) and the proposition is proved. ¤

Lemma 4.4. Let M be a hypersurface in Nn+1
s (c), n ≥ 4, that satisfies the Tachibana-

type condition (1.5) on Uρ ⊂ UH ⊂ M . Then, on Uρ we have

α1 = −α4 = − 1

n− 2
,(4.23)

α2 =
1

n− 2
(κ + εψ − (n2 − 3n + 3)κ̃

n(n + 1)
),(4.24)

α3 =
(n− 3)κ̃

(n− 2)n(n + 1)
.(4.25)

Proof. Contracting (4.8), i. e.,

Q(S, R)hijklm = Q(g, T )hijklm,(4.26)

with gij and ghm, and using (2.6), (4.2) and (4.4), we obtain

(R · S)hklm = Q(g,Ric(T ))hklm,(4.27)

−κRlijk − Ss
i Rsljk + SijSkl − SikSjl

= −(n− 1) Tlijk + gklRic(T )ij − gjlRic(T )ik,(4.28)

respectively. Furthermore, (4.27), via (3.7), turns into

Q(g,Ric(T )− κ̃

n(n + 1)
S − ρH) = 0(4.29)

which, in view of Lemma 2.4 (i) in [14] and (3.6), implies

Ric(T ) =
κ̃

n(n + 1)
S + ρH + β1 g.(4.30)
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Considering (3.6), this condition turns into

Ric(T ) = S2 + (εψ − (2n− 3)κ̃

n(n + 1)
) S + β2 g(4.31)

where β1 and β2 are functions on Uρ. Now (4.28), via (4.31) and equation (3.6) in
[25], i. e.,

Sirg
rsRsljk = (

(n− 1)κ̃

n(n + 1)
− εψ) (Riljk − κ̃

n(n + 1)
Giljk)

+
κ̃

n(n + 1)
(gjlSik − gklSij)− ρ (gikHjl − gijHkl),(4.32)

yields

(n− 1)(α1 − 1) Tlijk

= (α1 − 1)(κ + εψ − (n− 1)κ̃

n(n + 1)
) Rlijk

−(α1 − 1) (SijSkl − SikSjl) + λ3 Glijk

+(α1 − 1) (εψ − 2(n− 1)κ̃

n(n + 1)
) (gijSkl + gklSij − gjlSik − gikSjl)

+(α1 − 1) (gijS
2
kl + gklS

2
ij − gjlS

2
ik − gikS

2
jl)(4.33)

where λ3 is some function on Uρ. Now (4.9) and (4.33) yield

((α1 − 1)(κ + εψ − (n− 1)κ̃

n(n + 1)
) + (n− 1)(α2 +

(n− 2)κ̃

n(n + 1)
)) Rlijk

+((n− 2)α1 + 1) (SijSkl − SikSlj) + λ3 Glijk

+(α1 +
1

n− 2
) (gijS

2
kl + gklS

2
ij − gjlS

2
ik − gikS

2
jl)

+((α1 − 1) (εψ − 2(n− 1)κ̃

n(n + 1)
) +

n− 1

n− 2
(εψ − (3n− 5)κ̃

n(n + 1)
− α2

−α1(κ + εψ − (2n− 3)κ̃

n(n + 1)
))) (gijSkl + gklSij − gjlSik − gikSjl) = 0.(4.34)

By contracting (4.34) with Sl
m, using the fact that the tensor S3 is a linear combination

of the tensors S2, S and g ([25], eq. (3.10)), and by symmetrizing the resulting
equation in i,m, we get

(α1 +
1

n− 2
) Q(S, S2) + α5 Q(g, S) + α6 Q(g, S2) = 0(4.35)

where α5 and α6 are functions on Uρ. If α1 6= − 1
n−2

at a point x ∈ Uρ, then (4.22)
holds at x. But this, in the same way as in the proof of Proposition 3.1 (i), leads to
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a contradiction. Therefore, (4.23) holds on Uρ. Now (4.34), by making use of (4.23),
reduces to

(n− 1)(α2 − 1

n− 2
(κ + εψ) +

(n2 − 3n + 3)κ̃

(n− 2)n(n + 1)
) Rlijk + λ3 Glijk

−n− 1

n− 2
(α2 − n− 1

n− 2
(κ + εψ) +

(n2 − 3n + 3)κ̃

(n− 2)n(n + 1)
) (gijSkl + gklSij

−gjlSik − gikSjl) = 0.(4.36)

Since at every point of Uρ the Weyl tensor C is non-zero and (4.36) leads to (4.24).
But this, together with (4.6), yields (4.25), which completes the proof. ¤

In summary, Lemmas 4.3 and 4.4, together with (4.1), imply:

Theorem 4.1. Let M be a hypersurface of Tachibana type in Nn+1
s (c), n ≥ 4, i.e.

on Uρ ⊂ UH ⊂ M

R · C = α1Q(S, R) + α2Q(g, R) + α3Q(g, g ∧ S) + α4Q(S, g ∧ S)

holds for some functions α1, . . . , α4. Then we have on Uρ:

α1 = −α4 = − 1

n− 2
,

α2 =
1

n− 2

(
κ + εψ − n2 − 3n + 3

n(n + 1)
κ̃

)
,

α3 =
n− 3

(n− 2)n(n + 1)
κ̃.

Furthermore, on Uρ,

R ·R = Q(g, B)

with

B =

(
1

n− 1
(κ + εψ)− 1

n(n + 1)
κ̃

)
R− (n− 2)

n(n + 1)
κ̃C

− 1

2(n− 1)
S ∧ S +

1

n− 1
g ∧ S2 +

(
1

n− 1
εψ − 2

n(n + 1)
κ̃

)
g ∧ S,

i.e. in space forms, every hypersurface of Tachibana type is special.
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5. Hypersurfaces in space forms satisfying special conditions of

Tachibana type

In the following, we further investigate hypersurfaces that satisfy the equation
R · R = Q(g,B) on UH ⊂ M for a generalized curvature tensor B. In addition, we
investigate hypersurfaces satisfying on UH ⊂ M the similar conditions

R · C = Q(g,B1)

C ·R = Q(g,B2)

R · C − C ·R = Q(g,B3)

for generalized curvature tensors B1, B2, B3.
From (1.7) and (4.1) we obtain

Q(S, R) = Q(g,B +
(n− 2)κ̃

n(n + 1)
R− κ̃

n(n + 1)
g ∧ S).(5.1)

Furthermore, (1.7) by a suitable contraction yields

R · S = Q(g, Ric(B)).(5.2)

Applying this to the identity

R · C = R ·R− 1

n− 2
g ∧ (R · S)

we get

R · C = R ·R− 1

n− 2
g ∧Q(g, Ric(B))

which by (2.4) turns into

R · C = R ·R +
1

n− 2
Q(Ric(B), G).

Considering (4.1) this yields

R · C = Q(S, R)− (n− 2)κ̃

n(n + 1)
Q(g, C) +

1

n− 2
Q(Ric(B), G).(5.3)

In addition, in view of Corollary 4.1 of [9], (3.2) holds on UH . If we now compare the
right-hand sides of (3.7) and (5.2), we get

Q(g, Ric(B)− κ̃

n(n + 1)
S − ρH) = 0(5.4)

which implies via Lemma 2.4 in [14]:

Ric(B) =
κ̃

n(n + 1)
S + ρH + β1 g(5.5)
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where β1 is a function on UH . Furthermore, by applying (3.6) we find

Ric(B) = S2 + (εψ − (2n− 3)κ̃

n(n + 1)
) S + λ2 g(5.6)

where λ2 is a function on UH . If we contract (5.1), i. e.,

Q(S, R)hijklm = Q(g,B +
(n− 2)κ̃

n(n + 1)
R− κ̃

n(n + 1)
g ∧ S)hijklm,

with ghm and use (2.6), (4.2), (4.32) and (5.6), we finally obtain:

Theorem 5.1. Let M be a hypersurface in Nn+1
s (c), n ≥ 4. If a generalized curvature

tensor B satisfies

R ·R = Q(g, B)(5.7)

on UH ⊂ M , then on this set we have

B =
1

n− 1
((κ + εψ − (n− 1)2κ̃

n(n + 1)
) R− 1

2
S ∧ S + g ∧ S2

+(εψ − (n− 1)κ̃

n(n + 1)
) g ∧ S + λG)(5.8)

where λ is some function on UH .

Theorem 5.2. Let M be a hypersurface in Nn+1
s (c), n ≥ 4.

(i) If a generalized curvature tensor B1 satisfies

R · C = Q(g, B1)(5.9)

on UH ⊂ M , then on this set we have

B1 =
1

n− 1
((κ + εψ − (n− 1)2κ̃

n(n + 1)
) R− 1

n− 2
g ∧ S2

−1

2
S ∧ S − 1

n− 2
(εψ − (n− 1)2κ̃

n(n + 1)
) g ∧ S + λG)(5.10)

where λ is some function on UH .
(ii) If a generalized curvature tensor B2 satisfies

C ·R = Q(g, B2)(5.11)

on UH ⊂ M , then on this set we have

B2 = (
κ

n− 1
+

2εψ

n− 1
− κ̃

n + 1
) R + λG

+
n− 3

(n− 2)(n− 1)
((εψ − (n− 1)κ̃

n(n + 1)
)g ∧ S − 1

2
S ∧ S + g ∧ S2)(5.12)
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where λ is a function on UH .
(iii) If a generalized curvature tensor B3 satisfies

R · C − C ·R = Q(g,B3)(5.13)

on UH ⊂ M , then on this set we have

B3 = (− εψ

n− 1
+

κ̃

n(n + 1)
) R + (− εψ

n− 1
+

2κ̃

n(n + 1)
) g ∧ S

− 1

n− 1
g ∧ S2 − 1

2(n− 2)(n− 1)
S ∧ S + λG(5.14)

where λ is a function on UH .

Proof. (i) From (5.9), applying Corollary 4.1 in [9], it follows that (3.2) holds on UH .
As a consequence, we also have (3.3) and (3.6). Thus,

R · C = Q(S, R) + Q(g,B4)(5.15)

on this set, where

B4 = − 1

n− 2
g ∧ (S2 + (εψ − 2(n− 1)κ̃

n(n + 1)
) S + λ1 g)

−(n− 2)κ̃

n(n + 1)
R +

(n− 3)κ̃

(n− 2)n(n + 1)
g ∧ S.(5.16)

Furthermore, (5.9) and (5.16) yield Q(S, R) = Q(g, B1−B4). Applying this to (4.1)
we get

R ·R = Q(g,B1 −B4 − (n− 2)κ̃

n(n + 1)
C).

Now, taking Theorem 5.1 into account, we have

B1 = B4 +
(n− 2)κ̃

n(n + 1)
C +

1

n− 1
((εψ − (n− 1)κ̃

n(n + 1)
) g ∧ S + λG)

+
1

n− 1
((κ + εψ − (n− 1)2κ̃

n(n + 1)
) R− 1

2
S ∧ S + g ∧ S2)

which completes the proof of (i).
(ii) From (5.11), using Corollary 4.1 in [9], it follows that (3.2) holds on UH . As a
consequence, we also have (3.4) and (3.6). Clearly, on UH we can present (3.4) in the
following form:

C ·R =
n− 3

n− 2
Q(S, R) + Q(g, B5)(5.17)
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where

B5 =
1

n− 2
((

κ

n− 1
+ εψ − (n2 − 3n + 3)κ̃

n(n + 1)
) R +

(n− 3)κ̃

n(n + 1)
g ∧ S).(5.18)

Moreover, (5.11) and (5.17) yield (n − 3) Q(S, R) = (n − 2) Q(g, B2 − B5). If we
apply this to (4.1), we get

R ·R = Q(g,
n− 2

n− 3
(B2 −B5)− (n− 2)κ̃

n(n + 1)
C).

Now, using Theorem 5.1, we have

B2 = B5 +
(n− 3)κ̃

n(n + 1)
C +

n− 3

(n− 2)(n− 1)
((εψ − (n− 1)κ̃

n(n + 1)
) g ∧ S + λ1 G)

+
n− 3

(n− 2)(n− 1)
((κ + εψ − (n− 1)2κ̃

n(n + 1)
) R− 1

2
S ∧ S + g ∧ S2))

which completes the proof of (ii).
(iii) From (5.13), applying Corollary 4.1 in [9], it follows that (3.2) holds on UH . As
a consequence, we also have (3.5) and (3.6). Clearly, on UH we can present (3.5) in
the following form:

(n− 2)(R · C − C ·R) = Q(S, R) + Q(g, B6)(5.19)

where

B6 = −(
κ

n− 1
+ εψ − (n− 1)κ̃

n(n + 1)
) R

−g ∧ (S2 + (εψ − 2(n− 1)κ̃

n(n + 1)
) S + λ1 g).(5.20)

Now, (5.13) and (5.19) yield Q(S, R) = Q(g, (n − 2)B3 − B6)). If we apply this to
(4.1), we get

R ·R = Q(g, (n− 2)B3 −B6 − (n− 2)κ̃

n(n + 1)
) C).

Now, in view of Theorem 5.1, we have

(n− 2) B3 = B6 +
(n− 2)κ̃

n(n + 1)
C +

1

n− 1
((εψ − (n− 1)κ̃

n(n + 1)
) g ∧ S + λ1 G)

+
1

n− 1
((κ + εψ − (n− 1)2κ̃

n(n + 1)
) R− 1

2
S ∧ S + g ∧ S2)

which completes the proof of (iii). ¤

We finally consider hypersurfaces already studied in [11] (see Proposition 5.1 (iii)
therein):
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Theorem 5.3. Let M be a hypersurface in Nn+1
s (c), c 6= 0, n ≥ 4, that satisfies on

UH ⊂ M :

(a) rank (H) = 2, (b) rank (H2 − tr(H) H) = 1.(5.21)

Then (5.7), (5.9), (5.11) and (5.13) are satisfied. Precisely, we have on UH :

R ·R = Q(g, B) =
κ

(n− 1)n
Q(g, R),(5.22)

R · C = Q(g, B1)

=
1

n− 1
Q(g,

κ

n
R− 1

2
S ∧ S +

(n− 3)κ

(n− 2)n
g ∧ S),(5.23)

C ·R = Q(g,B2) = 0,(5.24)

R · C − C ·R = Q(g, B3)

=
1

n− 1
Q(g,

κ

n
R− 1

2
S ∧ S +

(n− 3)κ

(n− 2)n
g ∧ S).(5.25)

Proof. First of all, (5.21)(a) implies ([4], Theorem 4.2)

R ·R =
κ̃

n(n + 1)
Q(g, R).(5.26)

Now in view of Proposition 5.1 (iii) of [11] on UH we have (30), (41)(b) and (48) of
[11], i.e.

(a)
κ

n− 1
=

κ̃

n + 1
, (b) rank (S − κ

n
g) = 1,

(c) H3 = tr(H) H2, ψ = 0.(5.27)

Thus (5.26) by (5.27)(a) turns into

R ·R =
κ

(n− 1)n
Q(g,R).(5.28)

Further, we note that (5.27)(b) is equivalent to

0 =
1

2
(S − κ

n
g) ∧ (S − κ

n
g) =

1

2
S ∧ S − κ

n
g ∧ S + (

κ

n
)2 G,

which gives
1

2
Q(g, S ∧ S) =

κ

n
Q(g, g ∧ S).(5.29)

Let B be a generalized curvature tensor defined by (5.8). Using (3.9), (5.27)(a),
(5.27)(c) and (5.29) we can easily check that

Q(g,B) =
κ

(n− 1)n
Q(g, R).
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Therefore (5.28) turns into (5.22). Using (1.4), (2.3), (2.4), (5.8), (5.27)(a)(c) and
(5.10) we find

R · C = R ·R− 1

n− 2
g ∧ (R · S)

= Q(g, B)− κ̃

(n− 2)n(n + 1)
g ∧Q(g, S)

= Q(g, B) +
κ̃

(n− 2)n(n + 1)
Q(S, G)

= Q(g, B − κ

(n− 2)(n− 1)n
g ∧ S)

=
1

n− 1
Q(g,

κ

n
R− 1

2
S ∧ S +

(n− 3)κ

(n− 2)n
g ∧ S),(5.30)

and

Q(g, B1) =
1

n− 1
Q(g,

κ

n
R− 1

2
S ∧ S +

(n− 3)κ

(n− 2)n
g ∧ S).

Therefore (5.23) holds on UH . Applying to (4.1) the relations: (2.2), (5.27)(a) and
(5.28) we obtain

Q(S, R) =
κ

n
Q(g,R)− κ

(n− 1)n
Q(g, g ∧ S).(5.31)

Now (3.4), by making use of (5.27)(a)(c) and (5.31), reduces to C · R = 0. Further,
using (3.9), (5.27)(a)(c) and (5.29), we can check that Q(g,B2) = 0, where the tensor
B2 is defined by (5.12). Thus we see that (5.24) holds on UH .
By an application of (3.9), (5.27)(a)(c), (5.29) and (5.30) we obtain

R · C − C ·R = R · C =
1

n− 1
Q(g,

κ

n
R− κ

(n− 2)n
g ∧ S),

Q(g,B3) =
1

n− 1
Q(g,

κ

n
R− κ

(n− 2)n
g ∧ S),

where the tensor B3 is defined by (5.14). Thus we see that (5.25) holds on UH . ¤

We finish our paper with the following remarks.

Remark 5.1.

(i) Let M be a hypersurface in Nn+1
s (c), n ≥ 4. We recall that UH ⊂ UC∩US ⊂ M .

Let U = UC ∩US \UH . Thus, on this set we have H2 = α H +β g where α and
β are functions on U . The last relation implies on U (see e.g. [16], eq. (17)):

R ·R = (
κ̃

n(n + 1)
− εβ) Q(g, R), ε = ±1.(5.32)
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Let in addition (1.7) be satisfied on U . Now (1.7) and (5.32) yield

Q(g, B − (
κ̃

n(n + 1)
− εβ) R) = 0.

This, using Lemma 1.1 (iii) of [5], implies B = ( κ̃
n(n+1)

− εβ) R + λG where λ

is a function on U .
(ii) Let M be a hypersurface in Nn+1

s (c), n ≥ 4. As we noted in the introduction,
if (1.3) is satisfied on UC ⊂ M , then (1.6) and LC = LR hold on UC . The
converse statement, taking Theorem 3.1 of [1] into account, is also true.

(iii) In Example 5.1 of [11] a particular hypersurface M in a semi-Riemannian space
of constant curvature Nn+1

s (c), c 6= 0, n ≥ 4, was defined. That hypersurface
satisfies (5.21). Now from Theorem 5.3 it follows that all special Tachibana-
type conditions (1.7), (5.9), (5.11) and (5.13) hold on M .

(iv) In [8] (see Examples 4.1 and 5.1) a particular hypersurface M in a semi-
Euclidean space IEn+1

s , n ≥ 4, was defined. On that hypersurface we have:
(5.21), (5.27)(c), κ = 0, rankS = 1 and S2 = 0. Therefore, R ·R, R ·C, C ·R,
Q(g, B), Q(g, B1), Q(g,B2) and Q(g, B3) vanish.

(v) We can also prove that the non-quasi-Einstein hypersurfaces M of type number
two in Nn+1

s (c), n ≥ 4, satisfy all special Tachibana-type conditions investi-
gated in this paper. It will be shown in a subsequent paper of the authors.
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