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THE NUMBER OF SPANNING TREES OF DOUBLE GRAPHS

LIU WU-XIN 1 AND WEI FU-YI 2

Abstract. In this article, we study the number of spanning trees of double graphs
(direct product of a simple graph) and obtain some upper bounds for double graphs,
especially for double tree graphs, double unicyclic graphs and double bicyclic graphs.
The extremal graphs are also determined.

1. Introduction

Let G = (V, E) be a simple graph with vertex set V = {v1, v2, . . . , vn}. For u, v ∈
V (G), u adj v means that u and v are adjacent. Let di be the degree of vi, ∆ =

max1≤i≤n di, and ∆ = min1≤i≤n di. The number of spanning trees of G is denoted by

t(G). Recall that a connected graph with n vertices and n − 1 + c edges is called

c− cyclic. The 0− cyclic graphs are known as trees, and the 1− cyclic and 2− cyclic

graphs are unicyclic graphs and bicyclic graphs, respectively. Let Pn, Cn and Kn be

the path, the cycle and the complete graph with n vertices, respectively.

The direct product of two graphs G and H is the graph G×H with V (G ×H) =

V (G)×V (H) such that (v1, w1) adj (v2, w2) in G×H if and only if v1 adj v2 in G and

w1 adj w2 in H. The graph Ks
2 is obtained from the complete graph K2 by adding a

loop to every vertex.

Munarini et al. [4] defined the double graph of a simple graph G as the graph

D[G] = G×Ks
2 and studied its elementary properties (see Figure 1 for some examples

of double graphs). Das [1] obtained a sharp upper bound for the number of spanning
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Figure 1. A path and its double, a cycle and its double.

trees of connected graphs. In this article we investigate the number of spanning

trees of double graphs, and obtain upper bounds with an emphasis on double graphs,

especially for double trees, double unicyclic graphs and double bicyclic graphs. The

extremal graphs are characterized.

2. Upper bounds for the number of spanning trees of double trees

and double unicyclic graphs

In this section, we give upper bounds for the number of the spanning trees of

double graphs. In particular, we consider the case of double trees and the case of

double unicyclic graphs. For n = 1, G is the graph with one isolated vertex and it

is easy to see that D[G] is the graph with two isolated vertices. In this section, we

always assume n ≥ 2. First, we need some lemmas:

Lemma 2.1. [4] Let G be a simple connected graph on n vertices with degree sequence

d1, d2, . . . , dn. Then

t(D[G]) = 4n−1d1d2 · · · dnt(G).

Lemma 2.2. [1] Let G be a simple connected graph with n vertices, e edges and degree

sequence d1, d2, . . . , dn. Then
n∏

i=1

di ≤
(

2e

n

)n

with equality if and only if d1 = d2 = . . . = dn = 2e
n
.

Next we give our three theorems.

Theorem 2.1. Let G be a simple connected graph with n ≥ 3 vertices. Then

t(D[G]) ≤ 4n−1(n− 1)nnn−2
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with equality if and only if G ∼= Kn.

Proof. If G is a simple graph on n vertices, then di ≤ n − 1 for every vertex. And

since G ⊆ Kn, we also have t(G) ≤ t(Kn) = nn−2. By Lemmas 2.1., we have

t(D[G]) ≤ 4n−1(n− 1)nnn−2

with equality if and only if G ∼= Kn. ¤

Theorem 2.2. Let T be a tree on n ≥ 2 vertices with degree sequence d1, d2, . . . , dn.

Then

t(D[T ]) ≤ 23n−4

with equality if and only if T ∼= Pn.

Proof. The tree T has at least two vertices of degrees one, say dn−1 = dn = 1.

Then e = n − 1 and
∑n−2

i=1 di = 2e − 4. By the Arithmetic-Geometric inequality,
∏n−2

i=1 di ≤ (2e−4
n−2

)n−2 = 2n−2 with equality if and only if d1 = d2 = . . . = dn−2 = 2.

Combining Lemma 2.1 and t(T ) = 1, we have t(D[T ]) = 4n−1d1d2 · · · dnt(T ) ≤ 23n−4

with equality if and only if T ∼= Pn. ¤

Theorem 2.3. Let U l
n be a unicyclic graph with n vertices and cycle length l. Then

t(D[U l
n]) ≤ n23n−2

with equality if and only if U l
n
∼= Cn.

Proof. For e = n, we have t(U l
n) = l. By Lemma 2.1 and Lemma 2.2, we have

t(D[U l
n]) = 4n−1t(U l

n)
n∏

i=1

di = 4n−1l
n∏

i=1

di ≤ 4n−1l
(

2e

n

)n

= l23n−2 ≤ n23n−2.

The first equality holds if and only if d1 = d2 = . . . = dn = 2, and the second equality

holds if and only if l = n. Then both equalities hold if and only if U l
n
∼= Cn. ¤

3. An upper bound for the number of spanning trees of bicyclic

graphs

In this section, we study the number of spanning trees of double bicyclic graphs,

and determine the corresponding extremal graphs. Let Bk be a bicyclic graph with

k (4 ≤ k ≤ n) vertices.

First, we consider the bicyclic graphs Bk such that δ(Bk) > 1 .
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Figure 2. Three classes of graphs B̂k

For convenience, we define some graphs as in [2] and [5]. Let Bk(p, q) be the set

of the bicyclic graphs Bk(p, q) with k vertices obtained from cycles Cp and Cq by

identifying a vertex Cp and a vertex of Cq, where p and q are such that p + q− 1 = k

(k ≥ 5, p ≤ q), see Figure 2. Let Bk(p, l, q) be the set of the bicyclic graphs Bk(p, l, q)

with k vertices obtained from two vertex-disjoint cycles Cp and Cq by adding the

path uv1v2 · · · vl−1v with length l from the vertex u of cycle Cp to vertex v of cycle

Cq, where p, l and q are such that p + q + l − 1 = k (k ≥ 6, p ≤ q, l ≥ 1), see

Figure 2. Let Bk(Pp, Pl, Pq) be the set of the bicyclic graphs Bk(Pp, Pl, Pq) with k

vertices obtained from a cycle xv1v2 · · · vp−1ywq−1 · · ·w2w1x by joining vertices x and

y by a path u1u2 · · ·ul−1 with length l, where p, l, q are such that p + q + l − 1 = k

(k ≥ 4, p ≤ l ≤ q), see Figure 2.

Let B̂k = {Bk : δ(Bk) > 1}, where 4 ≤ k ≤ n. It is well-known that B̂k =

Bk(p, q)
⋃

Bk(p, l, q)
⋃

Bk(Pp, Pl, Pq).

We have the following lemma.

Lemma 3.1. Let G1, G2, . . . , G7 be the bicyclic graphs on k vertices defined in Figure

3.

(a) Let Bk ∈ Bk(p, q):

(i) if k is odd, then t(Bk) ≤ (k+1)2

4
with equality if and only if Bk

∼= G1;

(ii) if k is even, then t(Bk) ≤ k(k+2)
4

with equality if and only if Bk
∼= G2.

(b) Let Bk ∈ Bk(p, l, q):

(i) if k is odd, then t(Bk) ≤ k2−1
4

with equality if and only if Bk
∼= G3;

(ii) if k is even, then t(Bk) ≤ k2

4
with equality if and only if Bk

∼= G4.

(c) Let Bk ∈ Bk(Pp, Pl, Pq):

(i) if k = 0 (mod 3), then t(Bk) ≤ k(k+2)
3

with equality if and only if Bk
∼=

G5;

(ii) if k = 1 (mod 3), then t(Bk) ≤ k(k+2)
3

with equality if and only if Bk
∼=

G6;
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Figure 3. Graphs G1 ∼ G7

(iii) if k = 2 (mod 3), then t(Bk) ≤ (k+2)2

3
with the equality holds if and only

if Bk
∼= G7.

Proof. (a) The number of spanning tree of the Bk in Bk(p, q) is pq. Then t(Bk) =

pq = p(k + 1− p) and p ∈ [3, bk+1
2
c].

(i) If k is odd, then t(Bk) ≤ (k+1)2

4
with equality if and only if p = q = k+1

2
, i.e.,

Bk
∼= G1.

(ii) If k is even, then t(Bk) ≤ k(k+2)
4

with equality if and only if p = k
2

and q = k+2
2

,

i.e., Bk
∼= G2.

(b) Similarly, for Bk ∈ Bk(p, l, q), t(Bk) = pq = p(k + 1− p) and p ∈ [3, bk
2
c].

(i) If k is odd, then t(Bk) ≤ k2−1
4

with equality if and only if l = 1, p = k−1
2

and

q = k+1
2

, i.e., Bk
∼= G3.

(ii) If k is even, then t(Bk) ≤ k2

4
with equality if and only if l = 1 and p = q = k

2
,

i.e.,Bk
∼= G4.

(c) By the theorem in [5], for Bk ∈ Bk(Pp, Pl, Pq), we have t(Bk) = (p+l)(q+l)−l2 =

(p+l)(k+1−p)−l2, where 1 ≤ p ≤ bk+1−l
2
c, 2 ≤ l ≤ bk

2
c and p+q+l−1 = k(k ≥ 4, p ≤

l ≤ q). Let f(x, y) = (x+y)(k+1−x)−y2. It is easy to see that f(x, y) has a unique

maximum value, which is achieved for x = y = k+1
3

. If k+1
3

is not an integer, then by

the linear transformation x =
√

2
2

X+
√

2
2

[Y +
√

2
3

(k+1)], y = −
√

2
2

X+
√

2
2

[Y +
√

2
3

(k+1)],

we can get the function g(X, Y ) = f(x, y) = −1
2
X2 − 3

2
Y 2 + 1

3
(k + 1)2 and its figure

is an elliptic paraboloid. By the figure of this function, we obtain:

(i) If k = 0 (mod 3), then t(Bk) ≤ k(k+2)
3

with equality if and only if p = l = k
3

and

q = k+3
3

, i.e., Bk
∼= G5.

(ii) If k = 1 (mod 3), then t(Bk) ≤ (k−1)(k+3)
3

, which is obtained when p = l = k−1
3

;
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Figure 4. Two kinds of Operation

t(Bk) ≤ k(k+2)
3

, which is obtained when p = k−1
3

and l = k+2
3

. Therefore t(Bk) ≤ k(k+2)
3

with equality if and only if p = k−1
3

, l = k+2
3

and q = k+2
3

, i.e., Bk
∼= G6.

(iii) If k = 2 (mod 3), then t(Bk) ≤ (k+2)2

3
with equality if and only if p = l = q = k+1

3
,

i.e., Bk
∼= G7.

Then we have the lemma. ¤

Now we consider any bicyclic graphs Bn, where δ(Bn) = 1.

We call H ⊂ G if H is a subgraph of G, i.e., the vertex set and the edge set of H

are respectively the subset of vertex set and edge set of G. Define the following three

classes of bicyclic graphs and two transformations.

Let B(1)
n = {Bn : Bk(p, q) ⊂ Bn, 5 ≤ k < n}, B(2)

n = {Bn : Bk(p, l, q) ⊂ Bn, 6 ≤ k <

n} and B(3)
n = {Bn : Bk(Pp, Pl, Pq) ⊂ Bn, 4 ≤ k < n}.

Let Bn be the set of bicyclic graph with n vertices. It is easy to see that

Bn =
(
B(1)

n

⋃
B(2)

n

⋃
B(3)

n

) ⋃
B̂n.

Suppose that G is a bicyclic graph on n vertices. Let T (u1) be a subtree of the

graph G and v be a leaf of T (u1), where u1 is the root vertex.

If vertex u1 lies on a cycle. Let G
′

be the graph obtained from the graph G ∈
B(1)

n

⋃
B(2)

n

⋃
B(3)

n by deleting the edge u1w and adding a new edge wv, where w is a

neighbor of u1 on the cycle. This transformation is denoted by the first Operation

(see Figure 4(a) for an example).

Otherwise vertex u1 lies on the path Puv0 (see Figure 4(b)) and u1 6∈ {u, v0}.
Suppose that edge uw lies on a cycle. Let G

′
be the graph obtained from the graph

G ∈ B(2)
n by deleting the edge uw and adding a new edge wv(see Figure 4(b) for an

example). This transformation is denoted by the second Operation.

It is easy to see that t(G) < t(G
′
), and there are only two vertices with their degrees

changing in the two kinds of Operation. Let dv and du1 be the degree of v and u1.
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Denoted by d(v) = dn and d(u1) = dn−1 (in Figure 4(a)) (or d(u) = dn−1 (In Figure

4(b))), then

before the Operations:
∏n

i=1 di = 3
∏n−2

i=1 di,

after the Operations:
∏n

i=1 di = 4
∏n−2

i=1 di.

Combining Lemma 3.1, we know T (D[G]) < T (D[G
′
]). Suppose that G0 ∈ Bn,

then we can obtain Gm ∈ B̂n from the graph G0 by using the two kinds of Operation

in finite times. Then we have the lemma:

Lemma 3.2. For any graph G0 ∈ Bn, there exits a graph Gm ∈ B̂n such that

T (D[G0]) ≤ T (D[Gm]), where Gm is obtained from the graph G0 by using the two

kinds of Operation in finite times.

The following theorem is our main result in this section.

Theorem 3.1. Let Bn be a bicyclic graph with n vertices, where n ≥ 6. Then

t(D[Bn]) ≤ 12n(n + 2)23n−6 with equality if and only if Bk
∼= G5 for k = 0 (mod 3),

t(D[Bn]) ≤ 12n(n + 2)23n−6 with equality if and only if Bk
∼= G6 for k = 1 (mod 3),

and t(D[Bn]) ≤ 12(n + 1)223n−6 with equality if and only if Bk
∼= G7 for k = 2

(mod 3).

Proof. By Lemmas 2.1, 3.1 and 3.2, we have following results:

For Bn ∈ B(1)
n , if n is odd, then t(D[Bn]) = 4n−1 ∏n

i=1 dit(Bn) ≤ 8(n + 1)223n−6.

Otherwise, t(D[Bn]) ≤ 8n(n + 2)23n−6.

For Bn ∈ B(2)
n , if n is odd, then t(D[Bn]) ≤ 9(n2− 1)23n−6. Otherwise, t(D[Bn]) ≤

9n223n−6.

Let Bn ∈ B(3)
n . If k = 0 (mod 3), then t(D[Bn]) ≤ 12n(n + 2)23n−6 with equality

if and only if Bk
∼= G5; if k = 1 (mod 3), then t(D[Bn]) ≤ 12n(n + 2)23n−6 with

equality if and only if Bk
∼= G6; if k = 2 (mod 3), then t(D[Bn]) ≤ 12(n + 1)2 with

equality if and only if Bk
∼= G7. ¤
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