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ON THE UPPER BOUNDS FOR THE FIRST ZAGREB INDEX

ALEKSANDAR ILIĆ 1, MILOVAN ILIĆ 2, AND BOLIAN LIU 3

Abstract. The first Zagreb index M1 is one of the oldest and the most famous
topological molecular structure-descriptor, defined as the sum of squares of the
degrees of the vertices. In this paper we analyze and compare various upper bounds
for the first Zagreb index involving the number of vertices, the number of edges
and the maximum and minimum vertex degree. In addition, we propose new upper
bound and correct the equality case in [M. Liu, B. Liu, New sharp upper bounds
for the first Zagreb index, MATCH Commun. Math. Comput. Chem. 62 (2009)
689–698.].

1. Introduction

Let G = (V,E) be a connected simple graph with n = |V | vertices and m = |E|
edges. The degree of a vertex v is denoted as deg(v). Specially, ∆ = ∆(G) and

δ = δ(G) are called the maximum and minimum degree of G, respectively.

The first Zagreb index is one of the oldest and most used molecular structure-

descriptor, defined as the sum of squares of the degrees of the vertices

M1(G) =
∑

v∈V

deg(v)2.

Zagreb index was first introduced in [7] and the survey of properties of M1 is given

in [17], [19]. Recently, there was a vast research on comparing Zagreb indices [1], [8],

[9], [12], establishing various upper and lower bounds [2], [3], [10], [11], [20], [22], and

relations involving other graph invariants [5], [13], [21], [23]. For a survey on the first

Zagreb index see [6].
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In this paper we classify the upper bounds for the first Zagreb index involving n,

m, ∆ and δ. We correct the equality case for Theorem 2.3 and Corollary 2.3 from [10]

in Section 2, and introduce new sharp upper bound in Section 4. In Section 5 we

present the computational results for the four upper bounds, and conclude that the

new upper bound

M1(G) ≤ 2m(∆ + δ)− n∆δ − (n− k)(∆− δ − 1),

where k is the number of vertices having degree equal to ∆ or δ, is the best one.

2. Correction of equality case

We will correct the equality case in Theorem 2.3 from [10], using the Pólya–Szegö

inequality [15].

Theorem 2.1. Let a1, a2, . . . , an and b1, b2, . . . , bn be positive real numbers such that

for 1 ≤ i ≤ n holds a ≤ ai ≤ A and b ≤ bi ≤ B, with a < A and b < B. Then,

(
n∑

i=1

a2
i

)
·
(

n∑

i=1

b2
i

)
≤ 1

4




√
AB

ab
+

√
ab

AB




2

·
(

n∑

i=1

aibi

)2

.

The equality holds if and only if the numbers

p =
A
a

A
a

+ B
b

· n and q =
B
b

A
a

+ B
b

· n

are integers, a1 = a2 = . . . = ap = a, ap+1 = ap+2 = . . . = an = A, b1 = b2 = . . . =

bp = B and bq+1 = bq+2 = . . . = bn = b.

By extending the proof of Theorem 2.1, if we allow a = A or b = B, the equality

holds also if AB = ab, i. e. a1 = a2 = . . . = an = a = A and b1 = b2 = . . . = bn =

b = B.

Bidegreed graph is a graph whose vertices have exactly two degrees ∆ and δ [16].

Theorem 2.2. Let G be a simple graph with n vertices and m edges. Then

M1(G) ≤ (∆ + δ)2

n∆δ
m2,

with equality if and only if G is regular graph, or G is bidegreed graph such that ∆+ δ

divides δn and there are exactly p = δn
∆+δ

vertices of degree ∆ and q = ∆n
∆+δ

vertices

of degree δ.
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Proof. By setting the values ai = 1 and bi = deg(vi) in Theorem 2.2, we have

n∑

i=1

12 ·
n∑

i=1

deg(vi)
2 ≤ (AB + ab)2

4ABab
·
(

n∑

i=1

deg(vi) · 1
)2

.

Since A = a = 1, B = ∆ and b = δ, it follows

n ·M1(G) ≤ (∆ + δ)2

4∆δ
· (2m)2,

which completes the proof. The equality holds if and only if the graph is regular, or

bidegreed such that the number

p =
n

1 + ∆
δ

=
nδ

∆ + δ

is integer. In the later case, the number of vertices with degree B = ∆ must be exactly

p and the number of vertices with degree δ must be exactly q = n∆
∆+δ

= n− p. ¤

Corollary 2.1. Let G be a connected (n,m) graph. If δ = 1, then

M1(G) ≤ nm2

n− 1
,

with equality if and only if G ∼= Sn. If δ ≥ 2, then

M1(G) ≤ (n + 1)2m2

2n(n− 1)
,

with equality if and only if G ∼= K3.

Proof. Obviously the function f(x) = x + 1
x

is increasing for x ≥ 1. We will use the

upper bound from Theorem 2.2 in the form

M1(G) ≤
(

∆

δ
+

δ

∆
+ 2

)
m2

n
.

Case δ = 1. Since 1 ≤ ∆
δ
≤ n − 1, we have M1(G) ≤ (n − 1 + 1

n−1
+ 2)m2

n
, with

equality if and only if G is bidegreed graph with ∆ = n−1 and δ = 1, or equivalently

G ∼= Sn.

Case δ ≥ 2. Since 1 ≤ ∆
δ
≤ n−1

2
, we have M1(G) ≤ (n−1

2
+ 2

n−1
+ 2)m2

n
, with

equality if and only if G is regular with δ = 2, or bidegreed graph with ∆ = n−1 and

δ = 2 and (n− 1 + 2) | 2n. It follows that equality holds only for K3, since n + 1 | 2n
holds only of n = 1. ¤
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The authors in [10] claimed that the equality in Theorem 2.2 is achieved if and

only if G is regular graph. The obvious counterexample is the star Sn with

M1(Sn) = n(n− 1) =
(n− 1 + 1)2

n(n− 1) · 1 (n− 1)2.

Other counterexamples are complete bipartite graphs Kp,q with p+q = n. Similarly,

the authors in [10] claimed that the equality in Corollary 2.1 is achieved if and only

if G ∼= K2 or G ∼= K3, respectively. The obvious counterexample for the first part is

the star Sn.

3. New sharp upper bound for M1(G)

We will use the following Diaz-Metcalf inequality [15], in order to present a simple

proof for the upper bound established by Das in [2].

Theorem 3.1. If ak and bk, k = 1, 2, . . . , n are real numbers such that mak ≤ bk ≤
Mak for k = 1, 2, . . . , n, then

n∑

k=1

b2
k + mM

n∑

k=1

a2
k ≤ (M + m)

n∑

k=1

akbk.

The equality holds if and only if either bk = mak or bk = Mak for every k = 1, 2, . . . , n.

Theorem 3.2. Let G be a simple graph with n vertices and m edges. Then

(3.1) M1(G) ≤ 2m(∆ + δ)− n∆δ,

with equality if and only if G is regular or bidegreed graph.

Proof. By setting bi = deg(vi) and ai = 1 in Theorem 3.1, the inequality follows since

δ · 1 ≤ bi ≤ ∆ · 1. ¤

Remark 3.1. The bound from Theorem 3.2 is always better than the bound from

Theorem 2.2,
(∆ + δ)2

n∆δ
m2 ≥ 2m(∆ + δ)− n∆δ.

Using the arithmetic-geometric inequality we get

(∆ + δ)2

n∆δ
m2 + n∆δ ≥ 2

√
(∆ + δ)2

n∆δ
m2 · n∆δ = 2m(∆ + δ),

with equality if and only if (∆ + δ)m = n∆δ.



ON THE UPPER BOUNDS FOR THE FIRST ZAGREB INDEX 177

For δ = 1, it follows

M1(G) ≤ ∆(2m− n) + 2m.

Similarly as in Section 6 of [10], one can determine the first four largest M1(G) in the

class of trees on n vertices. For ∆ ≤ n−5, it follows M1(G) ≤ n2−5n+8 < n2−5n+14.

Using the same technique, we can derive the following stronger inequality

Theorem 3.3. Let G be a simple non-regular graph with n vertices and m edges,

with a vertices of degree maximal ∆ and b vertices of degree δ. Then

(3.2) M1(G) ≤ 2m(∆ + δ)− n∆δ − (n− a− b)(∆− δ − 1),

with equality if and only if the vertex degrees are equal to δ, δ + 1, ∆− 1 or ∆.

Proof. For the vertices vi, such that δ < deg(vi) < ∆ it holds

∆− δ − 1 ≤ (∆− deg(vi))(deg(vi)− δ) = −deg(vi)
2 −∆δ + deg(vi)(∆ + δ),

with equality if and only if deg(vi) = δ + 1 or deg(vi) = ∆ − 1. After adding these

inequalities, we get

(n−a−b)(∆−δ−1) ≤ − ∑

δ<deg(vi)<∆

deg(vi)
2− (n−a−b)∆δ+(2m−a∆−bδ)(∆+δ),

and finally

M1(G) ≤ a∆2+bδ2+(n−a−b)(∆−δ−1)−n∆δ+(a+b)∆δ+2m(∆+δ)−(a∆+bδ)(∆+δ)

M1(G) ≤ 2m(∆ + δ)− n∆δ − (n− a− b)(∆− δ − 1)

The equality holds if and only if deg(vi) ∈ {δ, δ + 1, ∆ − 1, ∆}. This completes the

proof. ¤

In particular, the equality holds for all chemical graphs (with maximum degree

∆ ≤ 4).

Let G denote the complement of a graph G. Next we will establish the Nordhaus–

Gaddum type inequalities [18] for M1(G).

Theorem 3.4. Let G be a simple graph with n vertices and m edges, with a vertices

of degree maximal ∆ and b vertices of degree δ. Then

(3.3) M1(G)+M1(G) ≤ n(n−1)2−2nδ∆+4m(1+δ+∆−n)−2(∆−δ−1)(n−a−b),

with equality if and only if the vertex degrees of G are equal to δ, δ + 1, ∆− 1 or ∆.
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Proof. The complement graph G has n(n−1)
2

−m edges, maximal degree n− 1− δ and

minimal degree n− 1−∆. Therefore,

M1(G) ≤ 2

(
n(n− 1)

2
−m

)
(2n−2−δ−∆)−n(n−1−δ)(n−1−∆)−(n−a−b)(∆−δ−1).

By adding this inequality with the relation (3.2), we complete the proof.

The equality holds if and only if deg(vi) ∈ {δ, δ + 1, ∆ − 1, ∆} as in the proof of

Theorem 3.3. ¤

The second Zagreb index (see [4] and [9]) is defined as the sum of product of the

degrees of adjacent vertices

M2(G) =
∑

uv∈E

deg(v) · deg(u).

We will use the following estimation from [3]

M2(G) ≤ 2m2 − (n− 1)mδ +
1

2
(δ − 1)M1(G),

with equality if and only if G is a regular graph or G is bidegreed graph in which

each vertex is of degree either δ or ∆ = n− 1.

Theorem 3.5. Let G be a simple graph with n vertices and m edges, with a vertices

of degree maximal ∆ and b vertices of degree δ. Then

M2(G) ≤ 2m2− (n− 1)mδ +
1

2
(δ− 1) (2m(∆ + δ)− n∆δ − (n− a− b)(∆− δ − 1)) ,

with equality if and only if G is a regular graph or G is bidegreed graph in which each

vertex is of degree either δ or n− 1.

4. Computational results

In this section, we compare four upper bounds for the first Zagreb index.

Theorem 4.1. [2] Let G be a connected graph with n vertices, m edges, maximum

degree ∆, and minimum degree δ. Then

M1(G) ≤ m
(

2m

n− 1
+

n− 2

n− 1
∆ + (∆− δ)

(
1− ∆

n− 1

))
,

with equality if and only if G is a star or a regular graph.
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Theorem 4.2. [10] Let G be a connected graph with n vertices, m edges, maximum

degree ∆, and minimum degree δ. Then

M1(G) ≤ max

{
m

(
∆ + δ − 1 +

2m− δ(n− 1)

∆

)
, m

(
δ + 1 +

2m− δ(n− 1)

2

)}
.

Equality can be obtained, for example, by a star or a regular graph of order n ≥ 3.

Theorem 4.3. [3] Let G be a graph with n > 1 vertices, m edges, maximum degree

∆, second maximum degree ∆′ and minimum degree δ. Then

M1(G) ≤ ∆2 + (∆′ + δ)(2m−∆)− (n− 1)∆′δ.

Equality holds if and only if G is isomorphic to a graph H, such that for the vertex

degrees of H holds deg(v1) = ∆, deg(v2) = deg(v3) = . . . = deg(vp) = ∆′ and

deg(vp+1) = deg(vp+2) = . . . = deg(vn) = δ, for some 2 ≤ p ≤ n.

In Table 1 and Table 2 we present the computational results for connected graphs

on n = 3 to n = 10 vertices and trees on n = 10 to n = 20 vertices. The first

three columns contain n, the number of connected graphs (trees) on n vertices and

the average value of the first Zagreb index M1(G). The next four groups of three

columns represent the average value of the upper bound, the standard deviation

(

√∑
G

(X(G)−M1(G))2

count
) and the number of graphs for which the equality holds.

By comparing these values, it is clear that the upper bound (3.2) has the smallest

deviation from the first Zagreb index. For the standard benchmark data sets of chem-

ical compounds proposed by the International Academy of Mathematical Chemistry

[14], it can be easily observed that the proposed upper bound from Theorem 3.3 is

superior in comparison with the other upper bounds. In particular, for all octanes

(see Figure 1) we have the equality in Theorem 3.3.
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Figure 1. The comparison of upper bounds for the first Zagreb index
on the set of 18 octanes.
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