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ON THE UPPER BOUNDS FOR THE FIRST ZAGREB INDEX
ALEKSANDAR ILIC !, MILOVAN ILIC 2, AND BOLIAN LIU 3

ABSTRACT. The first Zagreb index M; is one of the oldest and the most famous
topological molecular structure-descriptor, defined as the sum of squares of the
degrees of the vertices. In this paper we analyze and compare various upper bounds
for the first Zagreb index involving the number of vertices, the number of edges
and the maximum and minimum vertex degree. In addition, we propose new upper
bound and correct the equality case in [M. Liu, B. Liu, New sharp upper bounds
for the first Zagreb index, MATCH Commun. Math. Comput. Chem. 62 (2009)
689-698.].

1. INTRODUCTION

Let G = (V, E) be a connected simple graph with n = |V| vertices and m = |E)|
edges. The degree of a vertex v is denoted as deg(v). Specially, A = A(G) and

= 0(G) are called the maximum and minimum degree of G, respectively.

The first Zagreb index is one of the oldest and most used molecular structure-
descriptor, defined as the sum of squares of the degrees of the vertices

Mi(G) = deg(v)>.
veV

Zagreb index was first introduced in [7] and the survey of properties of M; is given
in [17], [19]. Recently, there was a vast research on comparing Zagreb indices [1], [8],
9], [12], establishing various upper and lower bounds [2], [3], [10], [11], [20], [22], and
relations involving other graph invariants [5], [13], [21], [23]. For a survey on the first
Zagreb index see [6].
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In this paper we classify the upper bounds for the first Zagreb index involving n,
m, A and §. We correct the equality case for Theorem 2.3 and Corollary 2.3 from [10]
in Section 2, and introduce new sharp upper bound in Section 4. In Section 5 we
present the computational results for the four upper bounds, and conclude that the

new upper bound
Mi(G) <2m(A+95) —nAS— (n—k)(A—0—1),

where k is the number of vertices having degree equal to A or J, is the best one.

2. CORRECTION OF EQUALITY CASE

We will correct the equality case in Theorem 2.3 from [10], using the Pélya—Szego
inequality [15].

Theorem 2.1. Let ay,as,...,a, and by, by, ..., b, be positive real numbers such that
for1<i<mnholdsa<a; <A andb<b; <B, witha <A andb < B. Then,

() (50) =32 V) ()

The equality holds if and only if the numbers

A B
_ a _ b
p—é+§'n and q—é+§-n
a b a b
are integers, a1 = Gy = ... =Ap = A, Qpp1] = Qpp2 = ... =0y = A, by = by = ... =
bp:B andbq+1:bq+2:...:bn:b.

By extending the proof of Theorem 2.1, if we allow a = A or b = B, the equality
holds also if AB =ab,i. e. a1 =ay =...=a,=a=Aand by =by=...=0, =
b= B.

Bidegreed graph is a graph whose vertices have exactly two degrees A and ¢ [16].

Theorem 2.2. Let G be a simple graph with n vertices and m edges. Then

(A+0)° ,
M, (G) < — 2~
&) < =™
with equality if and only if G is reqular graph, or G is bidegreed graph such that A+ 6
divides on and there are exactly p = &%5 vertices of degree A and q = f—fé vertices

of degree 0.
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Proof. By setting the values a; = 1 and b; = deg(v;) in Theorem 2.2, we have

" " AB + ab)* " 2
12.3°d i2<<7. deg(v;) - 1| .
312 Sdeg(n? < P (S deatu) 1)
Since A=a=1, B=A and b =4, it follows

(A +0)? 2
n- Mi(G) < === (2m)’,

which completes the proof. The equality holds if and only if the graph is regular, or
bidegreed such that the number

on_ond
Py s a1
is integer. In the later case, the number of vertices with degree B = A must be exactly
p and the number of vertices with degree 6 must be exactly ¢ = g—_ﬁs =n-—p. 0

Corollary 2.1. Let G be a connected (n,m) graph. If § =1, then

nmz

M, (G) <

n—1
with equality if and only if G =2 S,,. If § > 2, then
(n +1)?m?
M <~
1(G) < 2n(n — 1)’
with equality if and only if G = K.

Proof. Obviously the function f(z) = x + % is increasing for x > 1. We will use the

upper bound from Theorem 2.2 in the form

2

M(G) < (? + i + 2) %

Case § = 1. Since 1 < 2 <n—1, we have M1(G) < (n— 1+ -1 + 2)%2, with

equality if and only if G is bidegreed graph with A =n—1 and § = 1, or equivalently
G=S5,.

Case 6 > 2. Since 1 < % < "T_l, we have M;(G) < ("7_1 + % + 2)7”72, with

equality if and only if G is regular with § = 2, or bidegreed graph with A =n—1 and

d =2and (n—1+2) | 2n. It follows that equality holds only for K3, since n+1 | 2n

holds only of n = 1. 0
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The authors in [10] claimed that the equality in Theorem 2.2 is achieved if and
only if G is regular graph. The obvious counterexample is the star S, with
(n—1+1)> 9
————(n—1)~
nn—1)-1 (n—1)

Other counterexamples are complete bipartite graphs K, ;, with p+¢ = n. Similarly,

M,(S,) =n(n—1) =

the authors in [10] claimed that the equality in Corollary 2.1 is achieved if and only
if G = Ky or G = K3, respectively. The obvious counterexample for the first part is
the star S,,.

3. NEW SHARP UPPER BOUND FOR M;(G)

We will use the following Diaz-Metcalf inequality [15], in order to present a simple

proof for the upper bound established by Das in [2].

Theorem 3.1. If ai and by, k = 1,2,...,n are real numbers such that may < by <
May, for k=1,2,... n, then

S +mM> ap < (M+m)Y apby.
k=1 k=1 k=1

The equality holds if and only if either b, = may or by = May, for everyk =1,2,... n.

Theorem 3.2. Let G be a simple graph with n vertices and m edges. Then

(3.1) M (G) < 2m(A+§) — nAd,

with equality if and only if G is reqular or bidegreed graph.

Proof. By setting b; = deg(v;) and a; = 1 in Theorem 3.1, the inequality follows since
0-1<h; <A1 O

Remark 3.1. The bound from Theorem 3.2 is always better than the bound from
Theorem 2.2,

A+ 6)?
(nz(i)mz > 2m(A + 9) — nAod.
Using the arithmetic-geometric inequality we get
2 2
() A 2\/(A+6)m2 nAS = 2m(A + 6),
nAd n

with equality if and only if (A 4 §)m = nAd.
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For § = 1, it follows
M, (G) < A(2m —n) + 2m.
Similarly as in Section 6 of [10], one can determine the first four largest M;(G) in the
class of trees on n vertices. For A < n—5, it follows M;(G) < n?—5n+8 < n?—5n+14.

Using the same technique, we can derive the following stronger inequality
Theorem 3.3. Let G be a simple non-reqular graph with n vertices and m edges,
with a vertices of degree maximal A and b vertices of degree . Then
(3.2) Mi(G) <2m(A+9) —nAd—(n—a—-0b)(A—-3§—1),
with equality if and only if the vertex degrees are equal to §, § +1, A — 1 or A.
Proof. For the vertices v;, such that § < deg(v;) < A it holds

A—65—1< (A —deg(vi))(deg(v;) — 6) = —deg(v;)* — AS + deg(v;) (A + 6),
with equality if and only if deg(v;) = § + 1 or deg(v;) = A — 1. After adding these

inequalities, we get

(n—a—b)(A=d6-1)<— > deg(v;)’—(n—a—b)As+ (2m—aA —b5)(A+5),
0<deg(v;)<A

and finally

M (G) < aA*+b5*+(n—a—b)(A—6—1)—nAd+(a+b) As+2m(A+6)— (aA+bS) (A+9)
M(G) <2m(A+0)—nAd—(n—a—0b)(A—-5—1)

The equality holds if and only if deg(v;) € {9,0 + 1, A — 1, A}. This completes the

proof. O

In particular, the equality holds for all chemical graphs (with maximum degree
A < 4).

Let G denote the complement of a graph G. Next we will establish the Nordhaus—
Gaddum type inequalities [18] for M;(G).

Theorem 3.4. Let G be a simple graph with n vertices and m edges, with a vertices

of degree mazximal A and b vertices of degree §. Then
(3.3) My(G)+M,(G) < n(n—1)>-2ndA+4m(1+5+A—n)—2(A—5—1)(n—a—b),

with equality if and only if the vertex degrees of G are equal to §, 6 +1, A —1 or A.
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n(n 1)

Proof. The complement graph G has —m edges, maximal degree n —1 — ¢ and

minimal degree n — 1 — A. Therefore,
— n(n —1)
M (G) <2 —ym (2n—2—0—A)—n(n—1-9)(n—1—-A)—(n—a—b)(A—-i—1).

By adding this inequality with the relation (3.2), we complete the proof.
The equality holds if and only if deg(v;) € {4, + 1,A — 1, A} as in the proof of
Theorem 3.3. U

The second Zagreb index (see [4] and [9]) is defined as the sum of product of the

degrees of adjacent vertices

= > deg(v) - deg(u).

wek

We will use the following estimation from [3]
1
My(G) < 2m? — (n — 1)md + 5((5 — 1)My(G),
with equality if and only if G is a regular graph or G is bidegreed graph in which

each vertex is of degree either 6 or A =n — 1.

Theorem 3.5. Let G be a simple graph with n vertices and m edges, with a vertices

of degree maximal A and b vertices of degree §. Then
My(G) < 2m? — (n— 1)md + ;(5_ 1) (2m(A +8) — nAS — (n—a—b)(A—6—1)),

with equality if and only if G is a reqular graph or G is bidegreed graph in which each

vertex is of degree either 0 orn — 1.

4. COMPUTATIONAL RESULTS
In this section, we compare four upper bounds for the first Zagreb index.

Theorem 4.1. [2] Let G be a connected graph with n vertices, m edges, mazimum

degree A, and minimum degree 6. Then

2m n—2

M1<G>Sm(n_1+n_1A+<A—5><1‘n€1)>’

with equality if and only if G is a star or a reqular graph.
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Theorem 4.2. [10] Let G be a connected graph with n vertices, m edges, mazimum

degree A, and minimum degree §. Then

Ml(G)§max{m<A—|—(5—1+2m_5A<n_1)>,m<5+1+2m_5(n_1>>}.

2

Equality can be obtained, for example, by a star or a reqular graph of order n > 3.

Theorem 4.3. [3] Let G be a graph with n > 1 vertices, m edges, mazximum degree

A, second mazximum degree A’ and minimum degree 6. Then
M (G) < A 4+ (A +6)(2m — A) — (n — 1)A/S.

Equality holds if and only if G is isomorphic to a graph H, such that for the vertex
degrees of H holds deg(v1) = A, deg(ve) = deg(vs) = ... = deg(v,) = A’ and
deg(vpt1) = deg(vpt2) = ... = deg(vy,) = 0, for some 2 <p < n.

In Table 1 and Table 2 we present the computational results for connected graphs
on n = 3 ton = 10 vertices and trees on n = 10 to n = 20 vertices. The first
three columns contain n, the number of connected graphs (trees) on n vertices and
the average value of the first Zagreb index M;(G). The next four groups of three

columns represent the average value of the upper bound, the standard deviation

( \/ 3 (X ()~ My (G))?

count

) and the number of graphs for which the equality holds.

By comparing these values, it is clear that the upper bound (3.2) has the smallest
deviation from the first Zagreb index. For the standard benchmark data sets of chem-
ical compounds proposed by the International Academy of Mathematical Chemistry
[14], it can be easily observed that the proposed upper bound from Theorem 3.3 is
superior in comparison with the other upper bounds. In particular, for all octanes

(see Figure 1) we have the equality in Theorem 3.3.
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Upper bound comparison

35
— 7 7 [~
30 ./._._._./ —s—Theorem 3.3

Theorem 4.1
—«Theorem 4.2

Zagreb Index
[
[4)]

——Theorem 4.3

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Octanes

F1GURE 1. The comparison of upper bounds for the first Zagreb index
on the set of 18 octanes.
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