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THE IMPROVEMENT OF THE VALUE DISTRIBUTION ON

f + a(f ′)n

SHANPENG ZENG 1, YAN YANG 1, AND YUESHENG WU 2∗

Abstract. Let f(z) be a transcendental meromorphic function in the plane and
let a(6= 0), b be two finite complex numbers. Then for positive integer n ≥ 3, we
have (n− 1)T (r, f ′) ≤ 3N(r, f) + 4N(r, 1

f+a(f ′)n−b ) + S(r, f).

1. Introduction and main results

Let f be a nonconstant meromorphic function in the whole complex plane C. We

will use the standard notations of Nevanlinna’s value distribution theory such that

T (r, f), N(r, f), N(r, f), m(r, f) and so on, as found in [1].

It is interesting to combine the function and it’s derivative. In 1959, Hayman prove

the following theorem.

Theorem A. [2] Let f(z) be transcendental meromorphic function in the plane, a

a finite non-zero complex number and let n ≥ 5 be a positive integer. Then f ′ + afn

assumes every finite complex number infinitely often.

In 1979, Mues [3] show that for case n = 3 or 4, Theorem A is not right.

In 1994, Ye Yasheng studied the value distribution of f + a(f ′)n which is similar

to Theorem A,and get the following results.
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Theorem B. [4] Let f(z) be a transcendental meromorphic function in the plane

and let a( 6= 0), b be two finite complex numbers. Then for positive integer n ≥ 3, we

have

(n− 1)T (r, f ′) ≤ 4N(r, f) + 9N(r,
1

f + a(f ′)n − b
) + S(r, f).

In 2008, M. L. Fang and Lawrence Zaclman improved Theorem B.

Theorem C. [5] Let f(z) be a transcendental meromorphic function in the plane

and let a( 6= 0), b be two finite complex numbers. Then for positive integer n ≥ 3, we

have

(n− 1)T (r, f ′) ≤ 3N(r, f) + 4N(r,
1

f + a(f ′)n − b
) + S(r, f ′).

There is a natural question: ”Can we replace N(r, 1
f+a(f ′)n−b

) by N(r, 1
f+a(f ′)n−b

)

in Theorem C?” In this paper, we will do this work and get a stronger inequality as

following.

Theorem 1.1. Let f(z) be a transcendental meromorphic function in the plane and

let a(6= 0), b be two finite complex numbers. Then for positive integer n ≥ 3, we have

(n− 1)T (r, f ′) ≤ 3N(r, f) + 4N(r,
1

f + a(f ′)n − b
) + S(r, f).

2. Some Lemmas

Lemma 2.1. [6] Let f(z) be a meromorphic function in the plane. For positive integer

k, f ((k+1)) 6≡ 0. Then

m(r,
f (k)

f
) = S(r, f (k)).

Before we give Lemma 2.2, we first define a differential polynomial. A differential

polynomial P of f is defined by

(2.1) P (z) =
n∑

t=1

φt(z)

where

φt(z) = αt(z)
k∏

j=0

(f (j)(z))Stj ,
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αt 6≡ 0, the Stj are non-negative integers and T (r, αt) = S(r, f) for all t. Let

d(P ) = max
1≤t≤n

k∑

j=0

Stj and d(P ) = min
1≤t≤n

k∑

j=0

Stj.

Then d(P ) is the degree of P , while d(P ) is the minimal degree of the constituent

differential monomials. If d(P ) = d(P ), P is said to be homogeneous, and inhomoge-

neous otherwise.

Lemma 2.2. [7] Let f(z) be a transcendental meromorphic function in the plane, P

a nonconstant differential polynomials in f such that d(P ) ≥ 2 and let

Q = max
1≤t≤n

{
k∑

j=1

jStj}.

Then

d(P )T (r, f) ≤ (Q + 1)N(r,
1

f
) + N(r, f) + N(r,

1

P − 1
) + S(r, f).

Proof. In fact the conclusion of Lemma 2.2 is the not the last conclusion of [7]. At the

last part of proof of Theorem 1 from [7], if we omit the inequality of N(r, f) ≤ T (r, f)

and remain the term N(r, f), then we can get the conclusion of Lemma 2.2. ¤

Lemma 2.3. Let f(z) be a transcendental meromorphic function in the plane and let

a(6= 0) be a finite number. Then

(n + 1)T (r, f) ≤ 2N(r,
1

f
) + N(r, f) + N(r,

1

fnf ′ − a
) + S(r, f).

Proof. In fact, the conclusion of Lemma 2.3 had been proved by S.Z.Ye ([8]). But

now we give a shorter proof. From Nevanlinna Theory, we know that ’1’ in the term

of P −1 of Lemma 2.2 is not essential. It can be replace by any finite number a(6= 0).

Hence, let P = fnf ′. In this case, Q = 1 and d(P ) = n + 1. Then we can get Lemma

2.3 immediately from Lemma 2.2. ¤

3. Proof of Theorem

Proof. Let

(3.1) g = f + a(f ′)n − b, φ =
g′

g
.

If φ ≡ 0, then g′ ≡ 0, that is to say

f ′[1 + na(f ′)n−2f ′′] ≡ 0.
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From the equality above, we can obtain that f is entire function in C. If there exists

z0 such that f ′(z0) 6= 0, then there also exists Dδ(z0) (which is a neighborhood of z0

with radius δ > 0) such that f ′(z) 6= 0 in Dδ(z0). Then from the equality we can

get 1 + na(f ′)n−2f ′′ ≡ 0 in Dδ(z0). Hence by Uniqueness Theorem, we can obtain

1 + na(f ′)n−2f ′′ ≡ 0 in the plane C.

If there exists z0 such that 1+na(f ′(z0))
n−2f ′′(z0) 6= 0, then there also exists Dδ(z0)

(which is a neighborhood of z0 with radius δ > 0) such that 1+na(f ′(z0))
n−2f ′′(z0) 6=

0 in Dδ(z0). Then from the equality we can get f ′(z) ≡ 0 in Dδ(z0). Hence by

Uniqueness Theorem, we can obtain f ′(z) ≡ 0 in the plane C.

Then f ′(z) ≡ 0 or 1 + na(f ′)n−2f ′′ ≡ 0. Hence f is constant or a polynomial with

degree 2, a contradiction with f is transcendental. Hence φ 6≡ 0.

From Nevanlinna theory and (3.1), we can obtain T (r, g′) ≤ O(T (r, f ′)). Together

with Lemma 2.1, we can get

(3.2) m(r, φ) = S(r, f ′).

From (3.1), we can obtain

(3.3) f ′[1 + na(f ′)n−2f ′′] = φ[f + a(f ′)n − b].

f ′(z0) = 0 ⇒ [1 + na(f ′)n−2f ′′](z0) = 1 6= 0 and [1 + na(f ′)n−2f ′′](z0) = 0 ⇒
f ′(z0) 6= 0 (otherwise f ′(z0) = 0, then [1 + na(f ′)n−2f ′′](z0) = 1, a contradiction).

Hence zeros of f is different with all zeros of 1 + na(f ′)n−2f ′′. And from (3.3) we can

get that the zeros of f and 1+na(f ′)n−2f ′′ is either from the zeros of φ or f+a(f ′)n−b.

By Nevanlinna First Fundamental Theory and (3.3) and (3.2), we can get

N(r,
1

f ′
) + N(r,

1

(f ′)n−2f ′′ + 1
na

) ≤ N(r,
1

φ
) + N(r,

1

f + a(f ′)n − b
)

≤ N(r,
1

φ
) + N(r,

1

f + a(f ′)n − b
)

≤ T (r, φ) + N(r,
1

f + a(f ′)n − b
) + S(r, f ′)

= N(r, φ) + N(r,
1

f + a(f ′)n − b
) + S(r, f ′).

(3.4)
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Since g = f + a(f ′)n − b, φ = g′
g
, it is easy to see that the poles of φ are either from

the pole of g′ or the zeros of g, and the multiplicity of the pole of φ is simple. Hence

N(r, φ) ≤ N(r, g′) + N(r,
1

g
) = N(r, g) + N(r,

1

g
)

= N(r, f) + N(r,
1

f + a(f ′)n − b
).

(3.5)

From (3.4) and (3.5), we can get

(3.6) N(r,
1

f ′
) + N(r,

1

(f ′)n−2f ′′ + 1
na

) ≤ N(r, f) + 2N(r,
1

f + a(f ′)n − b
) + S(r, f ′).

Let g = f ′ and m = n− 2. By Lemma 2.3 we can get

(3.7) (m + 1)T (r, g) ≤ 2N(r,
1

g
) + N(r, g) + N(r,

1

(g)n−2g′ − 1
na

) + S(r, g).

By putting g = f ′ and m = n− 2 into (3.7), we can get

(3.8) (n− 1)T (r, f ′) ≤ 2N(r,
1

f ′
) + N(r, f ′) + N(r,

1

(f ′)n−2f ′′ − 1
na

) + S(r, f ′).

Together with (3.6) and (3.8), we have

(n− 1)T (r, f ′) ≤ 2N(r,
1

f ′
) + N(r, f ′) + N(r,

1

(f ′)n−2f ′′ − 1
na

) + S(r, f ′)

≤ 2[N(r,
1

f ′
) + N(r,

1

(f ′)n−2f ′′ − 1
na

)] + N(r, f ′) + S(r, f ′)

= 2[N(r,
1

f ′
) + N(r,

1

(f ′)n−2f ′′ − 1
na

)] + N(r, f) + S(r, f ′)

≤ 2[N(r, f) + 2N(r,
1

f + a(f ′)n − b
)] + N(r, f) + S(r, f ′)

= 3N(r, f) + 4N(r,
1

f + a(f ′)n − b
) + S(r, f ′).

Hence, Theorem 1.1 has been proved completely. ¤
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