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NEW RESULTS ON ASYMPTOTIC BEHAVIOR OF

SOLUTIONS OF CERTAIN THIRD-ORDER

NONLINEAR DIFFERENTIAL EQUATIONS

MATHEW OMONIGHO OMEIKE

Abstract. Sufficient conditions are established for the asymptotic stability of cer-
tain third order nonlinear differential equations. Our results improve on Tunc’s
[C. Tunc, On the asymptotic behavior of solutions of certain third-order nonlinear
differential equations, J. Appl. Math. Stoch. Anal. 2005: 1 (2005) 29–35].

1. Introduction

We consider the third-order nonlinear ordinary differential equation

(1.1) x′′′ + ψ(x, x′, x′′)x′′ + f(x, x′) = p(t, x, x′, x′′)

or its equivalent system

(1.2) x′ = y, y′ = z, z′ = −ψ(x, y, z)z − f(x, y) + p(t, x, y, z)

where

(1.3) ψ ∈ C(R× R× R,R), f ∈ C(R× R,R) and p ∈ C([0,∞)× R× R× R,R).

We shall require that f(0, 0) = 0, the derivatives
∂ψ(x, y, z)

∂x
≡ ψx(x, y, z),

∂ψ(x, y, z)

∂z
≡

ψz(x, y, z),
∂f(x, y)

∂x
≡ fx(x, y) and

∂f(x, y)

∂y
≡ fy(x, y) exist and are continuous, and

the uniqueness of the solutions of (1.1) will be assumed.
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Stability and boundedness are very important problems in the theory and applica-

tions of differential equations, and an effective method for studying these problems is

the second method of Lyapunov (see [1]-[11]).

Recently, Tunc [9] discussed the boundedness and asymptotic behavior of solutions

of Eq. (1.1) and the following results were proved:

Theorem 1.1 (Tunc [9]). Further to the basic assumptions on the function ψ, f and

p, suppose the following:

(i)
∫ x

0
f(u, 0)du > 0 for x 6= 0,

(ii) lim
|x|→∞

sup
∫ x

0
f(u, 0)du = ∞,

(iii)
∫ y

0
f(0, v)dv ≥ 0,

(iv) the function p satisfies |p(t, x, y, z)| ≤ |e(t)| uniformly in t, where e(t) is a

continuous function of t such that
∫ ∞

0
|e(t)|dt < ∞,

(v) there is a positive constant B such that

ψ(x, y, z) ≥ B,

(vi) B

[
f(x, y)− f(x, 0)−

∫ y

0
ψx(x, v, 0)vdv

]
y ≥ y

∫ y

0
fx(x, v)dv,

(vii) 4B
∫ x

0
f(u, 0)du

{∫ y

0
[f(x, v)− f(x, 0)] dv + B

∫ y

0
[ψ(x, v, 0)−B] vdv

}

≥ y2f 2(x, 0) for all xy 6= 0,

(viii) yψz(x, y, z) ≥ 0.

Then for any solution (x(t), y(t), z(t)) of system (1.2), there are positive constants

c1, c2 and c3 such that

|x(t)| ≤ c1, |y(t)| ≤ c2, |z(t)| ≤ c3, t ≥ 0.

Theorem 1.2 (Tunc [9]). Suppose the following:

(i) there is a positive constant B such that the assumptions (iv)-(viii) of Theorem

1.1 hold,

(ii) xf(x, 0) > 0 for x 6= 0,

(iii) lim
|x|→∞

sup
∫ x

0
f(u, 0)du = ∞,

(iv)
∫ y

0
f(0, v)dv ≥ 0,
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(v) B

[
f(x, y)− f(x, 0)−

∫ y

0
ψx(x, v, 0)vdv

]
y + ψ(x, y, z) ≥ y

∫ y

0
fx(x, v)dv + B

for y 6= 0.

Then, every solution (x(t), y(t), z(t)) of system (1.2) satisfies

lim
t→∞x(t) = 0, lim

t→∞ y(t) = 0, lim
t→∞ z(t) = 0.

Theoretically, these are interesting results since (1.1) is a rather general third-order

nonlinear differential equation. For example, many third-order differential equations

that have been discussed in [8] are special cases of Eq. (1.1), and some known results

can be obtained using these theorems. However, it is not easy to apply Theorems 1.1

and 1.2 to these special cases to obtain new or better results since Theorems 1.1 and

1.2 have some hypotheses which are not necessary for the stability and boundedness

of many nonlinear equations.

Our aim in this paper is to further study the stability and boundedness of Eq. (1.1).

In the next section, we will state our results and also obtain sufficient conditions

for every solution of Eq. (1.1) to be bounded by using Lyapunov’s direct method.

Thereafter, we will establish criteria for every solutions of Eq. (1.1) to converge to

zero by employing the method introduced by Yoshizawa [11]. Finally, we will discuss

the asymptotic behavior of solutions of some interesting specific cases of Eq. (1.1).

In the following discussion, we always assume (1.3) holds without further delay.

2. Main results

Our main results in this section are the following theorems.

Theorem 2.1. Let δ0 > 0, a > 0, b > 0, c > 0 be constants such that ab > c. Assume

that

(1)
f(x, 0)

x
≥ δ0 > 0, x 6= 0,

(2) f ′(x, 0) ≤ c,

(3) fy(x, θy) ≥ b for 0 ≤ θ ≤ 1,

(4) ψ(x, y, z) > a,

(5) yψz(x, y, θz) ≥ 0 for 0 ≤ θ ≤ 1,

(6) a
[
f(x, y)− f(x, 0)−

∫ y

0
ψx(x, y, 0)vdv

]
y ≥ y

∫ y

0
fx(x, v)dv,

(7) the function p satisfies |p(t, x, y, z)| ≤ |e(t)| uniformly in t, where e(t) is a

continuous function of t such that
∫ ∞

0
|e(t)|dt < ∞.
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Then for any solution (x(t), y(t), z(t)) of system (1.2), there are positive constants

c1, c2 and c3 such that

(2.1) |x(t)| ≤ c1, |y(t)| ≤ c2, |z(t)| ≤ c3, for t ≥ 0.

Theorem 2.2. Let δ0 > 0, a > 0, b > 0, c > 0 be constants such that ab > c. Assume

that

(1)
f(x, 0)

x
≥ δ0 > 0, x 6= 0,

(2) f ′(x, 0) ≤ c,

(3) fy(x, θy) ≥ b for 0 ≤ θ ≤ 1,

(4) ψ(x, y, z) > a,

(5) yψz(x, y, θz) ≥ 0 for 0 ≤ θ ≤ 1,

(6) a
[
f(x, y)− f(x, 0)−

∫ y

0
ψx(x, v, 0)vdv

]
y ≥ y

∫ y

0
fx(x, v)dv,

(7) the function p satisfies |p(t, x, y, z)| ≤ |e(t)| uniformly in t, where e(t) is a

continuous function of t such that
∫ ∞

0
|e(t)|dt < ∞. Then every solution

(x(t), y(t), z(t)) of system (1.2) satisfies

(2.2) lim
t→∞x(t) = 0, lim

t→∞ y(t) = 0, lim
t→∞ z(t) = 0.

Proof of Theorem 2.1. Clearly, Eq. (1.1) is equivalent to the system (1.2), and it

suffices to show that every solution of (1.2) is bounded. To this end, consider the

function

(2.3) V (t, x, y, z) = e−P (t)U(x, y, z)

where

U(x, y, z) =
∫ x

0
f(u, 0)du +

∫ y

0
ψ(x, v, 0)vdv + a−1

∫ y

0
f(x, v)dv +

1

2
a−1z2

+ yz + 2a−1

and

P (t) =
∫ t

0
|e(t)|ds.

We claim that V is a positive function. To show this, it suffices to show that U is

positive. Now, rewrite U above thus:

U(x, y, z) =
a−1

2
(ay + z)2 +

a−1

2b
(f(x, 0) + by)2 +

∫ y

0
[ψ(x, v, 0)− a]vdv

+ a−1
∫ y

0
[fv(x, θv)− b] vdv +

∫ x

0

[
1− a−1

b
f ′(u, 0)

]
f(u, 0)du + 2a−1
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where fv(x, θv) = v−1{f(x, v)− f(x, 0)}, v 6= 0.

On using hypotheses (1)-(5) of Theorem 2.1,

(2.4) U(x, y, z) ≥ a−1

2
(ay + z)2 +

a−1

2b
(f(x, 0) + by)2 +

δ1

2
x2.

Combining (2.3) and (2.4) yields,

V (t, x, y, z) ≥ 1

2
e−P (t)

{
a−1(ay + z)2 +

a−1

b
(f(x, 0) + by)2 + δ1x

2

}
.

Thus, there exists a constant K > 0 small enough that

(2.5) V (t, x, y, z) ≥ K(x2 + y2 + z2).

Hence V (t, x, y, z) is a positive function.

Next, we show that the derivative of V (t, x, y, z) with respect to t along the solution

path of (1.2) satisfies

(2.6) V ′
(1.2) ≡

d

dt
V (t, x(t), y(t), z(t))

∣∣∣∣∣
(1.2)

≤ −D1

provided that x2 + y2 + z2 ≥ D2. D1, D2 are some positive constants.

V ′
(1.2) = e−P (t){−|e(t)|U + U ′

(1.2)},

where U = U(x(t), y(t), z(t)) and U ′
(1.2) ≡

d

dt
U(x(t), y(t), z(t))

∣∣∣∣∣
(1.2)

.

Then,

V ′
(1.2) =e−P (t)

{
−|e(t)|

[
a−1

2
(ay + z)2 +

a−1

2b
(f(x, 0) + by)2 +

∫ y

0
(ψ(x, v, 0)− a)vdv

+ a−1
∫ y

0
(fv(x, θv)− b)vdv +

∫ x

0

(
1− a−1

b
f ′(u, 0)

)
f(u, 0)du + 2a−1

]

+ a−1y
∫ y

0
fx(x, v)dv − ψz(x, y, θz)yz2 − (a−1ψ(x, y, z)− 1)z2

−
[
f(x, y)− f(x, 0)−

∫ y

0
ψx(x, v, 0)vdv

]
y + a−1(z + ay)p(t, x, y, z)

}
,

where

ψz(x, y, θz) =
ψ(x, y, z)− ψ(x, y, 0)

z
, 0 ≤ θ ≤ 1.

Clearly,

if |z + ay| < 2, then (z + ay)p(t, x, y, z) ≤ 2|p(t, x, y, z)| ≤ 2|e(t)|;
if |z + ay| ≥ 2, then (z + ay)p(t, x, y, z) ≤ 1

2
(z + ay)2|p(t, x, y, z)| ≤ 1

2
(z + ay)2|e(t)|.

Hence for any t, x and y
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(z + ay)p(t, x, y, z) ≤ (2 +
1

2
(z + ay)2)|p(t, x, y, z)| ≤ (2 +

1

2
(z + ay)2)|e(t)|

and so

V ′
(1.2) ≤ e

−P (t)

{
−|e(t)|

[
a−1

2b
(f(x, 0) + by)2 +

∫ y

0
(ψ(x, v, 0)− a)vdv

+ a−1
∫ y

0
[fv(x, θv)− b]vdv +

∫ x

0

(
1− a−1

b
f ′(u, 0)

)
f(u, 0)du

]

− ψz(x, y, θz)yz2 − (a−1ψ(x, y, z)− 1)z2 + a−1y
∫ y

0
fx(x, v)dv

−
[
f(x, y)− f(x, 0)−

∫ y

0
ψx(x, v, 0)vdv

]
y
}

.

(2.7)

Then, by noting (1)-(6), we can find an η > 0, small enough so that

V ′
(1.2) ≤ −e

−P (t)

{
ηz2 +

a−1

2b
(f(x, 0) + by)2 +

1

2
δ1x

2

}
|e(t)|

where δ1 = δ0

(
1− c

ab

)
.

Thus, there exists a constant D3 > 0 small enough such that

V ′
(1.2) ≤ −D3(x

2 + y2 + z2).

Hence

V ′
(1.2) ≤ −D4, provided x2 + y2 + z2 ≥ D4D

−1
3 ; and this completes the verification of

(2.6).

Finally, we show that all solutions of (1.2) are bounded. Following [2], assume that

(x(t), y(t), z(t)) is a solution of (1.2).

Then, there is evidently a t0 ≥ 0 such that

x2(t0) + y2(t0) + z2(t0) < D2,

where D2 is the constant defined earlier; for otherwise, that is, if

x2(t) + y2(t) + z2(t) ≥ D2, t ≥ 0,

then, by (2.6),

V ′
(1.2)(t) ≤ −D1 < 0, t ≥ 0,

and this in turn implies that V (t) −→ −∞ as t −→ ∞, which contradicts (2.5).

Hence to prove (2.1) it will suffice to show that if

(2.8) x2(t) + y2(t) + z2(t) < D5 for t = T,
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where D5 ≥ D2 is a finite constant, then there is a constant D6 > 0 depending on

a, b, c, δ0 and D5 such that

(2.9) x2(t) + y2(t) + z2(t) ≤ D6 for t ≥ T.

Our proof of (2.9) is based essentially on an extension of an argument in the proof of

[[10], Lemma 1]. For any given constant d > 0 let S(d) denote the surface: x2 + y2 +

z2 = d. Because V is continuous in t, x, y, z and tend to +∞ as x2 + y2 + z2 −→∞,

there is evidently a constant D7 > 0 depending on D5 as well as on a, b, c, δ0 such

that

(2.10) min
(x,y,z)∈S(D7)

V (t, x, y, z) > max
(x,y,z)∈S(D5)

V (t, x, y, z).

It is easy to see from (2.8) and (2.10) that

(2.11) x2(t) + y2(t) + z2(t) < D7, t ≥ T.

For suppose on the contrary that there is a t > T such that

x2(t) + y2(t) + z2(t) ≥ D7.

Then, by (2.8) and by the continuity of the quantities x(t), y(t), z(t) in the argument

displayed, there exists t1, t2, T < t1 < t2 such that

(2.12) x2(t1) + y2(t1) + z2(t1) = D5

(2.13) x2(t2) + y2(t2) + z2(t2) = D7

and such that

(2.14) D5 ≤ x2(t) + y2(t) + z2(t) ≤ D7, t1 ≤ t ≤ t2.

But writing V (t) ≡ V (t, x(t), y(t), z(t)), since D5 ≥ D2, (2.14) obviously implies [in

view of (2.7)] that

V (t2) < V (t1)

and this contradicts the conclusion (from (2.10),(2.12) and (2.13));

V (t2) > V (t1).

Hence (2.11) holds. This completes the proof of (2.1), and the theorem now follows.

¤
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Remark 2.1. Clearly, Theorem 2.1 is an improvement and extension of Theorem 1.1.

In particular, from Theorem 2.1 we see that (iii) and (vii) assumed in Theorem 1.1

are not necessary, and (i), (ii) can be replaced by (1), (2) of Theorem 2.1 for the

boundedness of solutions of Eq.(1.1).

Example 2.1. Consider Eq. (1.1) with

ψ(x, y, z) = ln(1 + x2) + eyz + 2, f(x, y) = x +
x

1 + x2
(1 + y2) + y +

1

3
y3

and p(t) =
sin t

1 + t2
.

It is easy to check that the hypotheses (1)-(5) in Theorem 2.1 are satisfied. Since

ψ(x, y, z) ≥ 2 and

2
[
f(x, y)− f(x, 0)−

∫ y

0
ψx(x, v, 0)vdv

]
y

= 2
[

x

1 + x2
y2 + y +

1

3
y3 − x

1 + x2
y2

]
y

= 2
(
y2 +

1

3
y4

)
≥ y2 +

1− x2

(1 + x2)2

(
y2 +

1

3
y4

)
= y

∫ y

0
fx(x, v)dv,

we see that (6) of Theorem 2.1 hold also. Hence all the hypotheses in Theorem 2.1

are satisfied, and so for every solution x(t) of Eq.(1.1) there is a constant D > 0 such

that

|x(t)| < D, |x′(t)| < D, |x′′(t)| < D for t ≥ 0.

The following lemma is important for the proof of our next theorem.

Lemma 2.1. Let Q be an open set in Rn and I = [0,∞). Consider the differential

system

(2.15)
dx

dt
= H(x) + G(t,x),

where H is continuous on Q,G is continuous on I ×Q, and for any continuous and

bounded function x(t) on t0 ≤ t < ∞,
∫ ∞

0
‖G(s,x(s))‖ds < ∞.

Assume that all the solutions of (2.15) are bounded, and that there exists a non-

negative continuous function V (t,x) which satisfies locally a Lipschitz condition with

respect to x in Q such that V ′(t,x) ≤ −W (x), where W (x) is positive definite with
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respect to a closed set Ω in Q. Then all the solutions of (2.15) approach the largest

semi-invariant set contained in Ω of the equation

dx

dt
= H(x)

on Q.

The proof of Lemma 2.1 is found in Yoshizawa [11].

Proof of Theorem 2.2. Consider the system (1.2) and let V be defined by (2.3). Then

by noting

a−1

2
(ay + z)2 +

a−1

2b
(f(x, 0) + by)2 +

∫ y

0
[ψ(x, v, 0)− a]vdv

+a−1
∫ y

0
[fv(x, θv)− b]vdv +

∫ x

0
[1− a−1

b
f ′(x, 0)]f(u, 0)du ≥ 0,

it follows from (2.7) that

dV

dt

∣∣∣∣∣
(1.2)

≤ −e
−P (∞)

{
y

[
f(x, y)− f(x, 0)−

∫ y

0
ψx(x, v, 0)vdv − a−1

∫ y

0
fx(x, v)dv

]

+ [a−1ψ(x, y, z)− 1]z2
}

.

Set

W (x, y, z) = e
−P (∞)

{
y

[
f(x, y)− f(x, 0)−

∫ y

0
ψx(x, v, 0)vdv − a−1

∫ y

0
fx(x, v)dv

]

+ [a−1ψ(x, y, z)− 1]z2
}

.

By noting assumptions of the theorem, we see that W (x, y, z) ≥ 0.

Now, consider the set

Ω = {(x, y, z) : W (x, y, z) = 0}.
Because the function W is continuous, the set Ω is closed and W is positive definite

with respect to Ω. Now, consider the system

(2.16) x′ = y, y′ = z, z′ = −ψ(x, y, z)z − f(x, y).

The asymptotic behavior of solutions of (2.16) has been discussed in [7]. With the

same hypotheses we have here, it has been shown in the proof of the main theorem in

[7] that (0, 0, 0) is the largest semi-invariant set of (2.16) contained in Ω. In addition,

since all the hypotheses of Theorem 2.2 are satisfied, we know that every solution of

(1.2) is bounded. Now, let

x = (x, y, z)T , H(x) = (y, z,−f(x, y)− ψ(x, y, z)z)T
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and

G(t,x) = (0, 0, p(t, x, y, z))T .

Obviously, the system (1.2) is in the form (2.15). Then, from the above discussion, it

is easy to check that all the hypotheses in Lemma 2.1 are satisfied. Hence by Lemma

2.1, every solution of (1.2) tends to the largest semi-invariant set contained in Ω of

(2.16) on Q, that is (0, 0, 0). This completes the proof. ¤

Remark 2.2. Clearly, Theorem 2.2 is an improvement and extension of Theorem 1.2.

In particular, from Theorem 2.2, we see that hypotheses (iii) and (vii) of Theorem

1.2 are not necessary, and also hypotheses (i), (ii) and (v) in Theorem 1.2 can be

replaced by (1), (2) and (6) of Theorem 2.2 for the asymptotic stability of the trivial

solutions of Eq. (1.1).

Example 2.2. Consider Eq. (1.1) with

ψ(x, y, z) = y sin x + y2 + e2yz + 2, f(x, y) = y3 + y + x +
x

1 + x2

and p(t) =
sin t

1 + t2
.

It is easy to check that the hypotheses (1)-(5) in Theorem 2.2 are satisfied. Since

ψ(x, y, z) > 1 and

[
f(x, y)− f(x, 0)−

∫ y

0
ψx(x, v, 0)vdv

]
y

=
[
y3 + y − 1

3
(cos x)y3

]
y > y2

(
1 +

1− x2

(1 + x2)2

)
= y

∫ y

0
fx(x, v)dv,

we see that (6) of Theorem 2.2 hold also. Hence all the hypotheses in Theorem 2.2

are satisfied, and so every solution x(t) of Eq. (1.1) satisfies (2.2).
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