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AMPLITUDES OF LINEAR OSCILLATIONS DETERMINED BY
LINEAR HOMOGENOUS DIFFERENTIAL EQUATION OF
THE SECOND ORDER AND LIOUVILLE-BESGE FORMULAE

MILOJE RAJOVIC ! AND DRAGAN DIMITROVSKI 2

ABSTRACT. In this paper we present some quadraturic aspects of solving the equa-
tion by means of quadratures. It has a special comparative value when estimating
Sturm’s zeros, ”periods” and variable amplitudes in cases which are solvable by
means other than quadratures (iterations).

1. INTRODUCTION AND PRELIMINARIES

It is well known how hard it is to solve the equation of ordinary (nonharmonic) oscil-
lations of the second order y” (z) + a(x)y (z) = 0, a(x) > 0 by means of quadratures.
Long time ago, Besge and Liouville anticipated that some classes of the equation
could be solved by means of quadratures, but it was not until L. M. Berkovich [3],
who did it. Problems on zeros of the solution (Sturm’s theorems), the problem of
distance between successive zeros (being a replacement for nonexistent periods), as
well as the problems of amplitudes of solutions, are still not solved in a satisfactory
way (for details see [4], [5], [9], [10], [12], [13] and [14]).

It is shown in our paper [7] for the equation of linear oscillations
(1.1) y' (2)+a(z)y(x) =0, a(z) >0
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that two linearly independent particular integrals could transform, by means of ite-
rations and for every positive and continuous coefficient a (x), into a series of integrals

of the coefficient

(12) Y1 = COSq(q) x—l—// r) da® +/ / ///xa dxdx

yg—smax)a:—x—//xa dx—i—

It is obvious that if a = const > 0 the equations (1.2) transform to harmonic os-
cillations. If the theorem on average value of integrals is applied on the integrals in
(1.2)

z 2

/a( )do // —a(@)a(&) .
//:m o = a(&)a(@) g

the equations (1.2) yield potential series, wherefrom the Sturm’s theorems are ob-
tained in their simplest form: that the locations of zeros are in the solutions of the

equations

(1.3) zeros of y; in the solutions of z\/a () = (2k — 1) 7/2, k=1,2,3,... } |

zeros of yo in the solutions of z\/a (x) = k7, k=0,1,2,3,...
The other Sturm’s theorems could be subsequently derived.

The other valuable result of the iterations and averaging is the consequence of (1.2)

and (1.3), that is the solutions of (1.2) could be presented in the approximate form

1
(1.4) Y1 = COSq(z) T R COS (a:\/a (x)) ; Yo = silg(y) T & 5 sin (:m/a (x))
a(x

on the right sides there are ordinary sine and cosine, but of a complex function. This

could have a broader importance in the treatment of the oscillations (1.1). From the
results (1.1) - (1.4), there are the following conclusions:

I. The Sturm’s functions sing) x and cos,q)x could, in a number of cases,
be expressed by means of ordinary sing(x) and cos g (x), where g(x) is a complex
function, continuous if a(x) is continuous.

I1. Something known in the Physics from long time ago: the fundamental am-
plitudes of the solution depend on the overall cause of the oscillations, represented by

means of the coefficient a(x) > 0.
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2. THE AMPLITUDE PROBLEM

Some 95% of oscillations in the engineering and practice are harmonic oscillations,

that is the solutions of the equation
y' () + o’y () =0, a = Const., y = O} cos ax + Cy sin a.

When manipulating those oscillations the constant « (defining period/frequency) is
incorrectly sorted into integration constants C7 or Cs, so in a bit injudicious way
the amplitude is intermingled with integration constants. Nonetheless, it is well
known from Physics that the amplitude fundamentally depends on causes of the
oscillations (actuators), concentrated in the above «, only secondarily depending on
initial conditions, expressed through the integration constants.

Therefore, the only correct way, taking into consideration the above mentioned
and the equations (1.1)- (1.4), is to look for the oscillatory solution of the linear

homogeneous differential equation of the second order in the form

(2.1) y=F(g(x))cosg(x), y2 = F(g(x))sing (z)

Moreover, the fundamental amplitude A = F' (g (x)) may not be the same for the
both solutions y; and ys, as shown in (1.4). The problem seems unsolvable, as two
novel functions g (z) and F' (g (z)) are introduced, whereas there is only one function

a(z) in (1.1). However, it comes out this is not true.

3. QUADRATURAL ASPECTS

There is the experience in the Physics that if the quadrature method could be
successfully applied when solving accompanying differential equation, then it means
that it is a fundamental and important physical law.

In his book, L. M. Berkovich [3] refers to the classical case of Liouville-Besge
equation

k

v=>0
(az? + bz + ¢)

(3.1) v+

which could be solved by means of quadratures. He gives a generalization, still far

away from the type (2.1) efforts. From (2.1), there are the derivatives

vy = ¢ (z)[F'(g)cosg — F (g)sing] and
Yy = g (v)[F'(g)sing + F(g)cosg],
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the Wronskian

W(yl,yz)z‘ zg Nl = g () F2(g) #0

Y2

and the second derivatives

v, = ¢ (F'(g)cosg— F(g)sing) +g” (F"(g)cosg — 2F' (g)sing — F (g) cos g)
v = ¢"(F'(g)sing + F(g)cosg) + ¢*(F"(g)sing + 2F" (g) cos g — F' (g) sin g).
After a long calculation, astonishingly simply, there are the coefficients A(z) and

B(z) of the linear homogeneous differential equation of the second order obtained.

The solutions of the equations are just (2.1).
W (y1,92) y" (2) + A(2)y' (v) + B (2)y (x) = 0

where

A(x) = F(g) (9" (x) F(g)+2F (9) 9" (x)),
B(x) = ¢*(x)(F(9) F"(9) —2F"(9) — F*(9)).
There is a relatively simple linear homogeneous differential equation of the second
order with solutions of the type (2.1) depending on two arbitrary functions g(x) and
F(g (z))

w9 @) Flg) +2F (9) 9" () ,
v g
F*(g) +2F?(g) — F (9) F"(9) » _

This is equivalent to the normal form of the second order equation

(3.2)

y" (2) +a(2)y (z) +b(x)y(z) =0

where

= _g” (z) F'(9) + 2F/(g)g’2 (z) - the resistance coefficien
(3.3) a(r) = 7 @) th t fficient,
(3.4) b(z) = F2(g) +2F7(9) — F(g) F” (g)g’2(x) - the cause.

F2(g)
This infers the following:
The differential equation (3.1), comprising two arbitrary functions g (z) and F'(z),
under the conditions ¢’ (x) > 0, F (g (x)) > 0 has oscillatory solutions given in (2.1),
with equal but functional amplitudes A = F'(x).
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4. EXAMPLE - SPECIAL CASES

I. Harmonic oscillations. If there is chosen
g(x)=nx, n#0, ¢ (x)=n, ¢"(x) =0, F(x) =Const. #0, F'(z) = F" (z) =0,

then there is directly y” (x) + n?y (z) = 0 and the solutions are y; = cosnzx, y, =

sin nx.

II. The equation of the oscillations with a single period, and the same
but not constant amplitudes. Let there be g(z) =z, ¢’ () = 1, ¢" () = 0. Then,
(3.2) yields the following result:

The differential equation

2F" F?2 4+ 2F? — FF"

(1) Y (@) = Sy ()

where F' = F (z), has the oscillatory solutions

y() =0

(4.2) y1 = F(x)coszx, yo = F (x)sinz
with the periods T' = 2k, and the amplitude F' (x) # 0.

ITI. Nonharmonic oscillations with constant amplitudes. Let in (3.2) be
g = g(z), but F' = Const. Then, there is

g// T
(43) /(@)= L )+ 7 @y o) =0
and it infers the following:

The equation (4.3) with two times differentiable coefficient g (), under the condi-
tion ¢’ (x) # 0, has equally-amplitudal solutions

(4.4) y1 = cosg(v), y2 =sing (z), ¢ () #0.
5. CANONICAL FORM FOR THE GENERAL CASE OF THE EQUATION (3.2)

Using the well-known Liouville formula

[N

/ a(z)dz
(5.1) y(z) =e z (x)
the canonical form for the equation (3.2) could be obtained, where z is a new unknown
function.
After a short calculation there is

/
%/ |:g///g/+211§<£(;)]>g/(x):| dx

y(z)=e z(2)
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(5.2) y(z) = Flg)\/g'(z)z (x)

Finally, there is

(5.3) 2" (x)+ B(z)z (x) =0
where the coefficient is, in accordance with the fundamental theory of differential
equations
a(z) a*(x)
64) B =b@) - DT ppg) g ()
_F?(g)+2F7(g) — F(g) I (g)glz(x)
F2(g)
L(g" ()  2F'(g) , ) ! (g" () , 2F'(g) , )
+ 5 + glx)| ——+ + g(x)| .
(56 o) -1 (5 g @
As the solution y(z) is known from (2.1), where it is represented with (y1,¥2), (5.1)
gives
2= ———, (@) £0, F (1) >0
F(g)y/g'(x
or
(5.5) - cos g(x) - sing(m).
g'(x) g'(x)

It infers the following:

The canonical form of the differential equation (5.3) with complex coefficient B =
B(F(g),9(x)), has quadratural, that is exact solutions (5.5).

There is also the following important and indicative:

The amplitude of the oscillatory solutions (5.3) is

(5.6) Ae) = g,l ==FOE). /00 Flg) >0

and it depends exclusively on the cause of the oscillations g (x).

6. LIOUVILLE-BESGE TYPE OF QUADRATURES

We research possibilities to solve some classes of the equation (1.1) by means of
quadratures. This has been processed in detail in the monograph [3], where the
complete exact solution of the equation (3.1) is obtained, and some generalizations

in the form of integral-differential equations are given.
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The simplest case of quadratural solution of the equation of the type (1.1) is the

equation
1
")+ ————y () =0
V) ¢ e )
with the exact solution
— Chcos— 4+ Chsin—————

y(z) = (ax + ) 1cosa(ax—|—6) + 2Slna(ax—|—ﬁ)

whose amplitude is
A(z) = ax + 0.

This is an opportunity to check the formula (5.6). As the argument of the oscillations

1S

(x) 1
=
g a(ax + )
and wherefrom
g = 1| ] !
€T = — =
g a|(ax + 5)2 (v + 5)2
and )
/ -
g(x)—a:c—i—ﬁ’ a>0, >0 >0
the formula )
Alx) = F(z) = =ar+ 3
g (v)

is correct in this case, that is the theoretically obtained formula (5.6) agrees with the
simple quadratural solution.
If a generalization is made, then it could be proved that if f (z) is a general depen-
dency on z, not via g ().
There is a linear homogenous differential of the second order in the form
! !
.1) /@) - (L0 + 28 ) 4@y —o

where b (z) could be determined in a way similar to (3.4) or (5.4), with the oscillatory

solutions

(6.2) y1 = f(x)cosg(z),ys = f(z)sing (x).
The equation (6.1) will be canonical in a simplest case, if there is the following
relation between the cause of the oscillations g (x) and the strength (amplitude) of

the oscillations f (z)
dx

g(z) = W,
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what is the same as the formula (5.6). It is possible then to find general solution by

means of quadratures as well, the solution being

dx dx
i 1) [Croos [ 21 Cpn [ 1]
(6.3 v= 1) [Creos [ 55+ Cosn [ 2]
In this particular case, the equation (6.1) reads

P
i Y=o

In accordance with our previous results [6], if 1 — f3 (z) f” (z) > 0, when z — oo

(6.4) y' (z) +

the equation (23) has infinite number of oscillations and Sturm’s zeros in [0, +-00) . If

1— f3(x) f"(z) < 0, when z — +00, then the solution has only a finite number of

oscillations, since if starting from an = = xq it is [ fglg;) — 0, then it will be:
dx dx
f? (x) f* (@)

—sin0 = 0.

coS — cos0 =1, and sin/

This is the Prodi theorem [11], that one solution of the oscillatory equation is
mandatory limited, while the other tends to zero.
For other questions of this subject see [1], [2], [8], [15] and [16].
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