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SOME UNIQUENESS RESULTS ON MEROMORPHIC FUNCTIONS

SHARING TWO OR THREE SETS

ABHIJIT BANERJEE 1 AND PRANAB BHATTACHARJEE 2

Abstract. In the paper we study the uniqueness of meromorphic functions and
prove some theorems which are the improvements of some results earlier given by
Yi, Jank and Terglane and a recent result of the first author. Examples are provided
to show that some assumptions are sharp.

1. Introduction Definitions and Results

In the paper by meromorphic function we always mean a function which is mero-

morphic in the open complex plane C. We use the standard notations and definitions

of the value distribution theory available in [4]. We denote by T (r) the maximum of

T (r, f) and T (r, g). The notation S(r) denotes any quantity satisfying S(r) = o(T (r))

as r →∞, outside a possible exceptional set of finite linear measure.

If for some a ∈ C ∪ {∞}, f and g have the same set of a-points with same multi-

plicities then we say that f and g share the value a CM (counting multiplicities). If

we do not take the multiplicities into account, f and g are said to share the value a

IM (ignoring multiplicities).

Let S be a set of distinct elements of C∪{∞} and Ef (S) =
⋃

a∈S{z : f(z)−a = 0},
where each zero is counted according to its multiplicity. We denote by Ef (S) the set

contains the same points as that of Ef (S) but without counting multiplicities. If
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Ef (S) = Eg(S) we say that f and g share the set S CM. On the other hand if

Ef (S) = Eg(S), we say that f and g share the set S IM.

Let m be a positive integer or infinity and a ∈ C ∪ {∞}. We denote by Em)(a; f)

the set of all a-points of f with multiplicities not exceeding m, where an a-point is

counted according to its multiplicity. If for some a ∈ C ∪ {∞}, E∞)(a; f)=E∞)(a; g)

we say that f , g share the value a CM. For a set S of distinct elements of C we define

Em)(S, f) =
⋃

a∈S Em)(a, f).

In the paper unless otherwise stated we denote by S1, S2 and S3 the following three

sets S1 = {1, ω, ω2, . . . , ωn−1}, S2 = {0} and S3 = {∞}, where ω = cos2π
n

+ isin2π
n

and n is a positive integer.

Improving and extending all the previous results (c.f. [2], [3], [14]) related to the

problem of uniqueness of two meromorphic functions f , g for which Ef (Si) = Eg(Si),

where i = 1, 2, 3.

Yi [15] and independently Tohge [12] proved the following theorem.

Theorem A. Let f and g be two non-constant meromorphic functions such that

Ef (Si) = Eg(Si), where i = 1, 2, 3. If n ≥ 2 then one of the following hold:

(1.1) f ≡ tg,

where tn = 1 or

(1.2) f.g ≡ s,

where 0, ∞ are lacunary values of f and g, and sn = 1 .

In 1991 Jank and Terglane [10] improved Theorem A as follows.

Theorem B. Let f and g be two non-constant meromorphic functions such that

Ef (S1) = Eg(S1), Ef (S2) = Eg(S2) and Ef (S3) = Eg(S3). If n ≥ 2 then f , g satisfy

(1.1) or (1.2).

In 1997 H.X.Yi [17] proved the following theorems.

Theorem C. Let f and g be two non-constant meromorphic functions such that

Ef (S1) = Eg(S1), Ef (S2) = Eg(S2) and Ef (S3) = Eg(S3). If n ≥ 2 then f , g satisfy

(1.1) or (1.2).

Theorem D. Let f and g be two non-constant meromorphic functions such that

Ef (S1) = Eg(S1), Ef (S2) = Eg(S2) and Ef (S3) = Eg(S3). If n ≥ 3 then f , g satisfy

(1.1) or (1.2).
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In the paper we relax the nature of sharing the sets in the above mentioned theo-

rems.

In 1997, H.X.Yi and L.Z.Yang [19] proved the following result.

Theorem E. Let f and g be two non-constant meromorphic functions such that

Ef (S1) = Eg(S1) and Ef (S3) = Eg(S3). If n ≥ 6 then then f , g satisfy (1.1) or

(1.2).

In 2001 Lahiri introduced the idea of weighted sharing of values and sets in [6], [7].

In the following definition we explain the notion.

Definition 1.1. [6], [7] Let k be a nonnegative integer or infinity. For a ∈ C ∪ {∞}
we denote by Ek(a; f) the set of all a-points of f , where an a-point of multiplicity m

is counted m times if m ≤ k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g), we say

that f, g share the value a with weight k.

We write f , g share (a, k) to mean that f , g share the value a with weight k.

Clearly if f , g share (a, k) then f , g share (a, p) for any integer p, 0 ≤ p < k. Also

we note that f , g share a value a IM or CM if and only if f , g share (a, 0) or (a,∞)

respectively.

Definition 1.2. [6] Let S be a set of distinct elements of C ∪ {∞} and k be a

nonnegative integer or ∞. We denote by Ef (S, k) the set
⋃

a∈S Ek(a; f).

Clearly Ef (S) = Ef (S,∞) and Ef (S) = Ef (S, 0).

In 2006 Lahiri and Banerjee [8] have improved Theorem E by relaxing the nature

of sharing the sets with the idea of weighted sharing of values and sets which we have

just discussed.

Recently the first author [1] have also investigated the problem of uniqueness of

two meromorphic functions sharing the two sets S1 and S3 and improved and supple-

mented the results of Yi-Yang [19] and Lahiri-Banerjee [8].

In [1] the first author proved the following theorem.

Theorem F. Let f and g be two non-constant meromorphic functions such that

E2)(S1, f) = E2)(S1, g), Ef (S3, 0) = Eg(S3, 0) and n ≥ 8 then f , g satisfy (1.1) or

(1.2).

In this paper we shall improve Theorem F by showing that the assumption n ≥ 8

can be replaced by n ≥ 7.
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Following theorems are the main results of the paper.

Theorem 1.1. If Em)(S1, f) = Em)(S1, g), Ef (S2, 0) = Eg(S2, 0), Ef (S3, k) = Eg(S3, k),

where k(2m− 17) > 12 and n ≥ 2 then f , g satisfy one of (1.1) or (1.2).

Theorem 1.2. If Em)(S1, f) = Em)(S1, g), Ef (S2, p) = Eg(S2, p), Ef (S3, 0) = Eg(S3, 0),

where p(2m− 17) > 12 and n ≥ 2 then f , g satisfy one of (1.1) or (1.2).

Theorem 1.3. If E7)(S1, f) = E7)(S1, g), Ef (S2, 0) = Eg(S2, 0), Ef (S3, 0) = Eg(S3, 0)

and n ≥ 3 then f , g satisfy one of (1.1) or (1.2).

Theorem 1.4. If E2)(S1, f) = E2)(S1, g), Ef (S3, 0) = Eg(S3, 0) and n ≥ 7 then f , g

satisfy (1.1) or (1.2).

Example 1.1. Let f(z) = (1− ez)3 and g(z) = 3(e−z − e−2z) and S1 = {1}, S2 = {0},
S3 = {∞}. Clearly f and g share (S1,∞), (S2, 0), (S3,∞), but neither condition

(1.1) nor (1.2) is satisfied. So the condition n ≥ 2 in Theorem 1.1 is the best possible.

Example 1.2. Let f(z) =
(1− 3ez)

(1− ez)3
and g(z) =

(1− 3ez)

4(1− ez)
and and S1, S2, S3 be same

as defined in Example 1.1. Clearly f and g share (S1,∞), (S2,∞), (S3, 0), but neither

condition (1.1) nor (1.2) is satisfied. So the condition n ≥ 2 in Theorem 1.2 is the

best possible.

Example 1.3. Let f(z) =
(e2z + 1)2

2ez(e2z − 1)
and g(z) =

2iez(e2z + 1)

(e2z − 1)2
and S1 = {−1, 1},

S2 = {0}, S3 = {∞}. Clearly f and g share (S1,∞), (S2, 0), (S3, 0), but neither

condition (1.1) nor (1.2) is satisfied. So the condition n ≥ 3 in Theorem 1.3 is the

best possible.

Corollary 1.1. When k = ∞ and p = ∞ both Theorem 1.1, Theorem 1.2 hold for

m ≥ 9.

We explain some definitions and notations which are used in the paper.

Definition 1.3. [5] For a ∈ C ∪ {∞} we denote by N(r, a; f |= 1) the counting

function of simple a-points of f . For a positive integer m we denote by N(r, a; f |≤
m)(N(r, a; f |≥ m)) the counting function of those a-points of f whose multiplic-

ities are not greater (less) than m where each a-point is counted according to its

multiplicity.
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N(r, a; f |≤ m)(N(r, a; f |≥ m)) are defined similarly, where in counting the a-

points of f we ignore the multiplicities.

Also N(r, a; f |< m), N(r, a; f |> m), N(r, a; f |< m) and N(r, a; f |> m) are

defined analogously.

Definition 1.4. We denote by N(r, a; f |= k) the reduced counting function of those

a-points of f whose multiplicity is exactly k, where k ≥ 2 is an integer.

Definition 1.5. Let f and g be two non-constant meromorphic functions such that

f and g share a value a IM where a ∈ C ∪ {∞}. Let z0 be an a-point of f with mul-

tiplicity p, an a-point of g with multiplicity q. We denote by NL(r, a; f) (NL(r, a; g))

the counting function of those a-points of f and g where p > q (q > p), each a-point

is counted only once.

Definition 1.6. Let f and g be two non-constant meromorphic functions and m be

a positive integer such that Em)(a; f) = Em)(a; g) where a ∈ C ∪ {∞}. Let z0 be

an a-point of f with multiplicity p > 0, an a-point of g with multiplicity q > 0.

We denote by N
(m+1
L (r, a; f) (N

(m+1
L (r, a; g)) the counting function of those common

a-points of f and g where p > q (q > p), each a-point is counted only once.

Definition 1.7. Let z0 be a 1-point of f with multiplicity p, a 1-point of g with

multiplicity q. We denote by N
(m+1
E (r, 1; f) the counting function of those 1-points

of f and g where p = q ≥ m + 1, each point in this counting function is counted only

once.

Definition 1.8. [7] We denote by N2(r, a; f) = N(r, a; f) + N(r, a; f |≥ 2).

Definition 1.9. Let m be a positive integer. Also let z0 be a zero of f(z) − a of

multiplicity p and a zero of g(z)− a of multiplicity q. We denote by N f≥m+1(r, a; f |
g 6= a) (N g≥m+1(r, a; g | f 6= a)) the reduced counting functions of those a-points of

f and g for which p ≥ m + 1 and q = 0 (q ≥ m + 1 and p = 0).

Definition 1.10. [6], [7] Let f , g share (a, 0). We denote by N∗(r, a; f, g) the re-

duced counting function of those a-points of f whose multiplicities differ from the

multiplicities of the corresponding a-points of g.

Clearly N∗(r, a; f, g) ≡ N∗(r, a; g, f) and N∗(r, a; f, g) = NL(r, a; f) + NL(r, a; g).
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Definition 1.11. For Em)(a; f) = Em)(a; g) we define N⊗(r, a; f, g) as follows

N⊗(r, a; f, g)

= N
(m+1
L (r, a; f) + N

(m+1
L (r, a; g) + N f≥m+1(r, a; f | g 6= a)

+N g≥m+1(r, a; g | f 6= a)

≤ N(r, a; f |≥ m + 1) + N(r, a; g |≥ m + 1).

2. Lemmas

In this section we present some lemmas which will be needed in the sequel. Let F

and G be two non-constant meromorphic functions defined in C. Henceforth we shall

denote by H, U and V the following three functions.

H =

(
F
′′

F ′ −
2F

′

F − 1

)
−

(
G
′′

G′ −
2G

′

G− 1

)
,

U =
F
′

F − 1
− G

′

G− 1

and

V =
F
′

F − 1
− F ′

F
−

(
G
′

G− 1
− G′

G

)
=

F ′

F (F − 1)
− G′

G(G− 1)
.

Lemma 2.1. [11] For Em)(1; F ) = Em)(1; G) and H 6≡ 0 then

N(r, 1; F |= 1) = N(r, 1; G |= 1) ≤ N(r,H) + S(r, F ) + S(r,G).

Lemma 2.2. [9] If N(r, 0; f (k) | f 6= 0) denotes the counting function of those zeros

of f (k) which are not the zeros of f , where a zero of f (k) is counted according to its

multiplicity then

N(r, 0; f (k) | f 6= 0) ≤ kN(r,∞; f) + N(r, 0; f |< k) + kN(r, 0; f |≥ k) + S(r, f).

Lemma 2.3. Let Em)(1; f) = Em)(1; g) and 3 ≤ m < ∞. Then

N(r, 1; f |= 2) + 2N(r, 1; f |= 3) + . . . (m− 1)N(r, 1; f |= m)

+mN
(m+1
E (r, 1; f) + mN

(m+1
L (r, 1; f) + (m + 1)N

(m+1
L (r, 1; g)

+mN g≥m+1(r, 1; g | f 6= 1)

≤ N(r, 1; g)−N(r, 1; g).
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Proof. Since Em)(1; f) = Em)(1; g), we note that common zeros of f − 1 and g − 1

up to multiplicity m are same. Let z0 be a 1-point of f with multiplicity p and a

1-point of g with multiplicity q. If q = m + 1 the possible values of p are as follows

(i) p = m + 1 (ii) p ≥ m + 2 (iii) p = 0. Similarly when q = m + 2 the possible

values of p are (i) p = m + 1 (ii) p = m + 2 (iii) p ≥ m + 3 (iv) p = 0. If q ≥ m + 3

we can similarly find the possible values of p. Now the lemma follows from above

explanation. ¤

Lemma 2.4. Let E2)(1; f) = E2)(1; g). Then

N(r, 1; f |= 2) + 2N
(3
E (r, 1; f) + 2N

(3
L (r, 1; f) + 2N

(3
L (r, 1; g) + 2N g≥3(r, 1; g | f 6= 1)

≤ N(r, 1; g)−N(r, 1; g).

Proof. Since E2)(1; f) = E2)(1; g), we note that the simple and double 1-points of f

and g are same. Let z0 be a 1-point of f with multiplicity p and a 1-point of g with

multiplicity q. If q = 3 the possible values of p are as follows (i) p = 3 (ii) p ≥ 4 (iii)

p = 0. Similarly when q = 4 the possible values of p are (i) p = 3 (ii) p = 4 (iii) p ≥ 5

(iv) p = 0. If q ≥ 5 we can similarly find the possible values of p. Now the lemma

follows from above explanation. ¤

Lemma 2.5. Let Em)(1; F ) = Em)(1; G) and F , G share (∞; 0). Also let H 6≡ 0.

Then

N(r,∞; H) ≤ N(r, 0; F |≥ 2) + N(r, 0; G |≥ 2) + N∗(r,∞; F,G)

+N⊗(r, 1; F, G) + N0(r, 0; F
′
) + N0(r, 0; G

′
),

where N0(r, 0; F
′
) is the reduced counting function of those zeros of F

′
which are not

the zeros of F (F − 1) and N0(r, 0; G
′
) is similarly defined.

Proof. The proof of the lemma can be carried out in the line of the proof of Lemma

4 [8]. So we omit it. ¤

Lemma 2.6. Let Em)(1; F ) = Em)(1; G) and F , G share (0, p) and (∞; k). Also let

H 6≡ 0. Then

N(r,∞; H) ≤ N∗(r, 0; F ; G) + N∗(r,∞; F,G) + N⊗(r, 1; F,G)

+N0(r, 0; F
′
) + N0(r, 0; G

′
).

Proof. We omit the proof since the proof can be carried out in the line of proof of

Lemma 2.5. ¤
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Henceforth we assume

F = fn and G = gn.(2.1)

Lemma 2.7. Let F , G be given by (2.1) and H 6≡ 0. If Em)(1; F ) = Em)(1; G), f , g

share (∞, k), (0, p), where 3 ≤ m < ∞. Then

nT (r, f)

≤ N(r, 0; f) + N(r,∞; f) + N(r, 0; g) + N(r,∞; g) + N∗(r, 0; f, g)

+ N∗(r,∞; f, g)−m(r, 1; G)−N(r, 1; F |= 3)− . . .

− (m− 2)N(r, 1; F |= m)− (m− 2)N
(m+1
L (r, 1; F )

− (m− 1)N
(m+1
L (r, 1; G)− (m− 1)N

(m+1
E (r, 1; F )

+ 2NF≥m+1(r, 1; F | G 6= 1)− (m− 1)NG≥m+1(r, 1; G | F 6= 1)

+ S(r, f) + S(r, g).

Similar expressions also hold for g.

Proof. By the second fundamental theorem we get

T (r, F ) + T (r,G)(2.2)

≤ N(r, 0; F ) + N(r,∞; F ) + N(r, 0; G) + N(r,∞; G)

+N(r, 1; F ) + N(r, 1; G)−N0(r, 0; F
′
)−N0(r, 0; G

′
)

+S(r, F ) + S(r,G).

Using Lemmas 2.1, 2.3 and 2.6 we see that

N(r, 1; F ) + N(r, 1; G)(2.3)

≤ N(r, 1; F |= 1) + N(r, 1; F |= 2) + N(r, 1; F |= 3) + . . . + N(r, 1; F |= m)

+N
(m+1
E (r, 1; F ) + N

(m+1
L (r, 1; F ) + N

(m+1
L (r, 1; G) + NF≥m+1(r, 1; F | G 6= 1)

+N(r, 1; G)

≤ N∗(r, 0; f, g) + N∗(r,∞; f, g) + N⊗(r, 1; F, G) + N(r, 1; F |= 2) + . . .

+N(r, 1; F |= m) + N
(m+1
E (r, 1; F ) + N

(m+1
L (r, 1; F ) + N

(m+1
L (r, 1; G)

+NF≥m+1(r, 1; F | G 6= 1) + T (r,G)−m(r, 1; G) + O(1)−N(r, 1; F |= 2)

−2N(r, 1; F |= 3)− (m− 1)N(r, 1; F |= m)− . . .−mN
(m+1
E (r, 1; F )

−mN
(m+1
L (r, 1; F )− (m + 1)N

(m+1
L (r, 1; G)−mNG≥m+1(r, 1; G | F 6= 1)

+N0(r, 0; F
′
) + N0(r, 0; G

′
) + S(r, F ) + S(r,G)
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≤ N∗(r, 0; f, g) + N∗(r,∞; f, g) + T (r,G)−m(r, 1; G)−N(r, 1; F |= 3)

−2N(r, 1; F |= 4)− . . .− (m− 2)N(r, 1; F |= m)− (m− 2)N
(m+1
L (r, 1; F )

−(m− 1)N
(m+1
L (r, 1; G)− (m− 1)N

(m+1
E (r, 1; F )

−(m− 1)NG≥m+1(r, 1; G | F 6= 1) + 2NF≥m+1(r, 1; F | G 6= 1)

+N0(r, 0; F
′
) + N0(r, 0; G

′
) + S(r, F ) + S(r,G).

Using (2.3) in (2.2), the lemma follows. ¤

Lemma 2.8. Let F , G be given by (2.1) and H 6≡ 0. If E2)(1; F ) = E2)(1; G), f , g

share (∞, 0). Then

nT (r, f)

≤ N2(r, 0; F ) + N(r,∞; f) + N2(r, 0; G) + N(r,∞; g) + N∗(r,∞; f, g)

−m(r, 1; G)−N
(3
E (r, 1; F ) + 2NF≥3(r, 1; F | G 6= 1)−NG≥3(r, 1; G | F 6= 1)

+S(r, f) + S(r, g).

Similar expressions also hold for g.

Proof. We omit the proof since using Lemmas 2.1, 2.4 and 2.5 the proof can be carried

out in the line of proof of Lemma 2.7. ¤

Lemma 2.9. [17] Let F , G be given by (2.2). If F , G share (0, 0) and U ≡ 0 then

F ≡ G.

Lemma 2.10. [17] Let F , G be given by (2.2). If F , G share (∞, 0) and V ≡ 0 then

F ≡ G.

Lemma 2.11. Let F , G be given by (2.1) and F 6≡ G. If Em)(S1; f) = Em)(S1; g),

Ef (S2, p) = Eg(S2, p) and Ef (S3, k) = Eg(S3, k), where 1 ≤ m < ∞, 0 ≤ p < ∞,

0 ≤ k < ∞ then

(n− 1)N(r, 0; f |= 1) + (2n− 1)N(r, 0; f |= 2) + . . .

+
(
np + n− 1− 1

nk + n− 1

)
N(r, 0; f |≥ p + 1)

≤ nk + n

nk + n− 1
N⊗(r, 1; F,G) + S(r).

Proof. Since F 6≡ G we have from Lemmas 2.9 and 2.10 that U 6≡ 0 and V 6≡ 0.

According to the statement of the lemma it is clear that Em)(1; F ) = Em)(1; G)
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and F , G share (0; np), (∞; nk) and so a zero (pole) of F with multiplicity r ≥
np + 1(≥ nk + 1) is a zero (pole) of G with multiplicity s ≥ np + 1(≥ nk + 1)

and vice versa. We note that F and G have no zero (pole) of multiplicity q where

np < q < np + n(nk < q < nk + n). Hence we get from the definition of U

(n− 1)N(r, 0; f |= 1) + (2n− 1)N(r, 0; f |= 2) + . . .(2.4)

+ (np + n− 1) N(r, 0; f |≥ p + 1)

= (n− 1)N(r, 0; F |= n) + (2n− 1)N(r, 0; F |= 2n) + . . .

+(np + n− 1)N(r, 0; F |≥ np + n)

≤ N(r, 0; U)

≤ T (r, U) + O(1)

≤ N(r,∞; U) + S(r)

≤ N∗(r,∞; F,G) + N⊗(r, 1; F, G) + S(r)

≤ N(r,∞; F |≥ nk + n) + N⊗(r, 1; F,G) + S(r).

In a similar argument as above we get from the definition of V

(nk + n− 1)N(r,∞; F |≥ nk + n)(2.5)

≤ N(r, 0; V )

≤ N(r,∞; V ) + S(r)

≤ N(r, 0; F |≥ np + n) + N⊗(r, 1; F,G) + S(r).

Using (2.5) in (2.4) the lemma follows. ¤

Lemma 2.12. Let F , G be given by (2.1) and F 6≡ G. If Em)(S1; f) = Em)(S1; g),

Ef (S2, p) = Eg(S2, p) and Ef (S3, k) = Eg(S3, k), where 1 ≤ m < ∞, 0 ≤ p < ∞,

0 ≤ k < ∞ then

(n− 1)N(r,∞; f |= 1) + (2n− 1)N(r,∞; f |= 2) + . . .

+

(
nk + n− 1− 1

np + n− 1

)
N(r,∞; f |≥ k + 1)

≤ np + n

np + n− 1
N⊗(r, 1; F, G) + S(r).

Proof. We omit the proof since it can be carried out in the line of proof of Lemma

2.11. ¤
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Lemma 2.13. [1] Let F , G be given by (2.1) and V 6≡ 0. If f , g share (∞, k), where

0 ≤ k < ∞, and Em)(1; F )=Em)(1; G), then

(nk + n− 1) N(r,∞; f |≥ k + 1) = (nk + n− 1)N(r,∞; F |≥ nk + n)

≤ m + 1

m
[N(r, 0; f) + N(r, 0; g)]

+
2

m
N(r,∞; f) + S(r, f) + S(r, g).

Lemma 2.14. [16] If H ≡ 0 then T (r,G) = T (r, F ) + O(1). Also if H ≡ 0 and

lim sup
r−→∞, r∈I

N(r, 0; F ) + N(r,∞; F ) + N(r, 0; G) + N(r,∞; G)

T (r, F )
< 1

where I ⊂ (0, 1) is a set of infinite linear measure, then F ≡ G or F.G ≡ 1.

Lemma 2.15. [18] If H ≡ 0, then F , G share (1,∞). If further F , G share (∞, 0)

then F , G share (∞,∞).

Lemma 2.16. Let F , G be given by (2.1) and n ≥ 2. Also let Em)(1; F ) = Em)(1; G).

If f , g share (0, 0), (∞, k), where 0 ≤ k < ∞ and H ≡ 0. Then f , g satisfy one of

(1.1) or (1.2).

Proof. Since H ≡ 0 we get from Lemma 2.15 that F and G share (1,∞) and (∞,∞).

So N⊗(r, 1; F,G) = N∗(r,∞; F, G) ≡ 0. If possible let us suppose (1.1) is not satisfied.

Then clearly F 6≡ G. Since F 6≡ G we have from Lemmas 2.9 and 2.10 respectively

U 6≡ 0 and V 6≡ 0. Hence

(n− 1)N(r, 0; f) = (n− 1)N(r, 0; g)

≤ N(r, 0; U)

≤ N(r,∞; U) + S(r)

≤ N∗(r,∞; F,G) + N⊗(r, 1; F,G) + S(r)

= S(r).

and

(n− 1)N(r,∞; f) = (n− 1)N(r,∞; g)

≤ N(r, 0; V )

≤ N(r,∞; V ) + S(r)

≤ N∗(r, 0; f, g) + N⊗(r, 1; F,G) + S(r).

= S(r).
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Since n ≥ 2 we have from above N(r, 0; f) = N(r, 0; g) = S(r) and N(r,∞; f) =

N(r,∞; g) = S(r). Hence using Lemma 2.14 we get the conclusion of the lemma. ¤

Lemma 2.17. Let F , G be given by (2.1), Em)(1; F ) = Em)(1; G), 1 ≤ m < ∞.

Then

(i) N(r, 1; F |≥ m + 1) ≤ 1
m

[
N(r, 0; f) + N(r,∞; f)−N⊗(r, 0; f

′
)
]
+ S(r, f),

(ii) N(r, 1; G |≥ m+1) ≤ 1
m

[
N(r, 0; g) + N(r,∞; g)−N⊗(r, 0; g

′
)
]
+S(r, g), where

N⊗(r, 0; f
′
) = N(r, 0; f

′ | f 6= 0, ω1, ω2 . . . ωn).

Proof. We prove only (i).

Using Lemma 2.2 we see that

N(r, 1; F |≥ m + 1)

≤ 1

m

(
N(r, 1; F )−N(r, 1; F )

)

≤ 1

m
[

n∑

j=1

(
N(r, ωj; f)−N(r, ωj; f)

)
]

≤ 1

m

(
N(r, 0; f

′ | f 6= 0)−N⊗(r, 0; f
′
)
)

≤ 1

m

[
N(r, 0; f) + N(r,∞; f)−N⊗(r, 0; f

′
)
]
+ S(r, f).

This proves the lemma. ¤

3. Proofs of the theorems

Proof of Theorem 1.1. Let F , G be given by (2.1). Then Em)(1; F ) = Em)(1; G) and

f , g share (0, 0) and (∞; k). We consider the following cases.

Case 1. Let H 6≡ 0. Then F 6≡ G. Noting that f and g share (0, 0) and (∞; k) implies

N∗(r, 0; f, g) ≤ N(r, 0; f) = N(r, 0; g) and N∗(r,∞; f, g) ≤ N(r,∞; f |≥ k + 1) =

N(r,∞; g |≥ k + 1), using Lemma 2.7, Lemma 2.11 with p = 0, (2.5) with k = 0 and

p = 0 and Lemma 2.12 with p = 0 and Lemma 2.17 we obtain

nT (r, f) + nT (r, g)(3.1)

≤ 3 N(r, 0; f) + 3 N(r, 0; g) + 2 N(r,∞; f) + 2 N(r,∞; g)

+2 N∗(r,∞; f, g)− (m− 3) N⊗(r, 1; F, G) + S(r, f) + S(r, g)
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≤ 6n(k + 1)

(n− 1)(nk + n− 1)− 1
N⊗(r, 1; F, G)

+

[
4

(n− 1)
+

2n

(n− 1)(nk + n− 1)− 1

+
4n(k + 1)

(n− 1){(n− 1)(nk + n− 1)− 1}

]
N⊗(r, 1; F, G)

−(m− 3)N⊗(r, 1; F, G) + S(r, f) + S(r, g)

≤
[

n(n− 1)(6k + 8) + 4n(k + 1)

(n− 1){(n− 1)(nk + n− 1)− 1} +
4

(n− 1)
+ 3−m

]
N⊗(r, 1; F, G)

+S(r, f) + S(r, g)

≤
[

n(n− 1)(6k + 8) + 4n(k + 1)

(n− 1){(n− 1)(nk + n− 1)− 1} +
4

(n− 1)
+ 3−m

] {
N(r, 1; F ≥ m + 1)

+N(r, 1; G ≥ m + 1)
}

+ S(r, f) + S(r, g)

≤ 2

m

[
n(n− 1)(6k + 8) + 4n(k + 1)

(n− 1){(n− 1)(nk + n− 1)− 1} +
4

(n− 1)
+ 3−m

]
T (r, f)

+
2

m

[
n(n− 1)(6k + 8) + 4n(k + 1)

(n− 1){(n− 1)(nk + n− 1)− 1} +
4

(n− 1)
+ 3−m

]
T (r, g)

+S(r, f) + S(r, g).

From (3.1) we see that

n + 2− 6

m
− 8

m(n− 1)
− n(12k + 16) + 8n(k+1)

n−1

m(n− 1)(nk + n− 1)−m


 T (r, f)(3.2)

+


n + 2− 6

m
− 8

m(n− 1)
− n(12k + 16) + 8n(k+1)

n−1

m(n− 1)(nk + n− 1)−m


 T (r, g)

≤ S(r, f) + S(r, g).

Since n ≥ 2 and k(2m− 17) > 12, (3.2) leads to a contradiction.

Case 2. Let H ≡ 0. Then the theorem follows from Lemma 2.16. ¤

Proof of Theorem 1.2. We omit the proof since it can be carried out in the line of

proof of Theorem 1.1. ¤

Proof of Theorem 1.3. Let F , G be given by (2.1). Then E7)(1; F ) = E7)(1; G) and

f , g share (0, 0) and (∞; 0). We consider the following cases.

Case 1. Let H 6≡ 0. Then F 6≡ G. Noting that f and g share (0, 0) and (∞; 0) implies

N∗(r, 0; f, g) ≤ N(r, 0; f) = N(r, 0; g) and N∗(r,∞; f, g) ≤ N(r,∞; f) = N(r,∞; g),
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using Lemma 2.7, Lemmas 2.11 and 2.12 with p = 0, k = 0 and Lemma 2.17 we

obtain

nT (r, f) + nT (r, g)(3.3)

≤ 3 N(r, 0; f) + 3 N(r, 0; g) + 3 N(r,∞; f) + 3 N(r,∞; g)

−4 N⊗(r, 1; F,G) + S(r, f) + S(r, g)

≤ 6

n− 2
N⊗(r, 1; F,G) +

6

n− 2
N⊗(r, 1; F,G)− 4N⊗(r, 1; F, G)

+S(r, f) + S(r, g)

≤
[

12

(n− 2)
− 4

]
N⊗(r, 1; F,G) + S(r, f) + S(r, g)

≤ 2

7

(
20− 4n

n− 2

)
T (r, f) +

2

7

(
20− 4n

n− 2

)
T (r, g)

+S(r, f) + S(r, g).

From (3.3) we see that

(
n− 40− 8n

7(n− 2)

)
T (r, f) +

(
n− 40− 8n

7(n− 2)

)
T (r, g) ≤ S(r, f) + S(r, g).(3.4)

Since n ≥ 3, (3.4) leads to a contradiction.

Case 2. Let H ≡ 0. Then the theorem follows from Lemma 2.16. ¤

Proof of Theorem 1.4. Let F , G be given by (2.1). Then E2)(1; F ) = E2)(1; G) and

f , g share (∞; 0). We consider the following cases.

Case 1. Let H 6≡ 0. Then F 6≡ G. So from Lemma 2.10 we get V 6≡ 0. Hence using

Lemmas 2.8, 2.13 with m = 2 and k = 0 and Lemma 2.17 we obtain

nT (r, f) + nT (r, g)(3.5)

≤ 4N(r, 0; f) + 4N(r, 0; g) + 2N(r,∞; f) + 2N(r,∞; g)

+2N∗(r,∞; f, g) + NF≥3(r, 1; F | G 6= 1)

+NG≥3(r, 1; G | F 6= 1) + S(r, f) + S(r, g)

≤ 4N(r, 0; f) + 4N(r, 0; g) +
1

2
{N(r, 0; f) + N(r, 0; g)}

+7N(r,∞; f) + S(r, f) + S(r, g)

≤
(

9

2
+

21

2(n− 2)

)
{N(r, 0; f) + N(r, 0; g)}+ S(r, f) + S(r, g).
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From (3.5) we see that

(
n− 9

2
− 21

2(n− 2)

)
T (r, f) +

(
n− 9

2
− 21

2(n− 2)

)
T (r, g)(3.6)

≤ S(r, f) + S(r, g).

Since n ≥ 7, (3.6) leads to a contradiction.

Case 2. Let H ≡ 0. Since n (≥ 7) from Lemma 2.14 it follows that f and g satisfy

one of (1.1) or (1.2). ¤
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