
Kragujevac Journal of Mathematics

Volume 34 (2010), Pages 151–159.

ON THE LAPLACIAN SPREAD OF TREES AND

UNICYCLIC GRAPHS

MUHUO LIU

Abstract. In this paper, we determine the four trees (resp. the three unicyclic
graphs), which share the second to fifth (resp. the second to fourth) largest Lapla-
cian spreads among all the trees (resp. connected unicyclic graphs) on n ≥ 10
(respectively n ≥ 17) vertices.

1. Introduction

Throughout the paper, we only consider the connected undirected simple graphs.

Let d(u) be the degree of vertex u. Especially, ∆(G), short for ∆, indicates the

maximum degree of vertices pertaining to G. The notations Tn and Un are used to

denote the class of trees and connected unicyclic graphs of order n, respectively. As

usual, K1,n−1 denotes the star of order n.

Let A(G) be the adjacency matrix of G. Since A(G) is symmetric, the eigenvalues

of A(G) can be arranged as follows:

λ1(G) ≥ λ2(G) ≥ . . . ≥ λn(G).

The spread of the graph G is defined as

S(G) = λ1(G)− λn(G).

Suppose the degree of vertex vi equals d(vi) for i = 1, 2, . . . , n, and let D(G)

be the diagonal matrix whose (i, i)-entry is d(vi). The Laplacian matrix of G is
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L(G) = D(G)− A(G), and the Lapalacian characteristic polynomial of G is denoted

by Φ(G, x), i.e., Φ(G, x)=det(xI − L(G)). It is well known that L(G) is symmetric

and positive semidefinite so that its eigenvalues can be arranged as follows:

0 = µn(G) ≤ µn−1(G) ≤ . . . ≤ µ1(G),

where µn−1(G) > 0 if and only if G is connected and is called the algebraic connectivity

of the graph G. The Laplacian spread of the graph G, denoted by LS(G), is defined

to be

LS(G) = µ1(G)− µn−1(G).

Recently, the spread of a graph has received much attention. In [1], Petrović

determined all minimal graphs whose spreads do not exceed 4. In [2] and [3], some

lower and upper bounds for the spread of a graph were given. After then, the maximal

spreads among all unicyclic graphs and all bicyclic graphs were determined in [4] and

[5], respectively. For the up to date results on the spread of a graph G, one can

refer to [6] and [7]. However, the Laplacian spread seems less well-known because it

is conceived somewhat later [6]. Up to now, there are only very limited results on

the Laplacian spread. Firstly, the maximal and minimal Laplacian spreads among all

trees of given order were identified in [6]. After then, the maximum Laplacian spread

among all unicyclic graphs of given order was determined in [7] and [8] by using

different methods. Very recently, the minimum Laplacian spread among all unicyclic

graphs on n vertices was determined in [9]. In this paper, by using different methods

from [6], [7], [8] and [9], we determine the four trees (resp. the three unicyclic graphs),

which share the second to fifth (resp. the second to fourth) largest Laplacian spreads

among all the trees (resp. connected unicyclic graphs) of given order.

2. The first to fifth largest Laplacian spreads of trees

Lemma 2.1. [10] Suppose G is a connected graph, then µ1(G) ≤ max{d(v) + m(v) :

v ∈ V }, where m(v) =
∑

u∈N(v)
d(u)/d(v).

Proposition 2.1. Let T be a tree on n vertices with ∆ ≤ n − 4. If n ≥ 10, then

µ1(T ) ≤ n− 2.5.

Proof. By Lemma 2.1, we only need to prove that max{d(v) + m(v) : v ∈ V (T )} ≤
n− 2.5. Suppose max{d(v) + m(v) : v ∈ V (T )} occurs at the vertex u. Three cases

arise d(u) = 1, d(u) = 2, or 3 ≤ d(u) ≤ ∆.
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Case 1. d(u) = 1.

Suppose v ∈ N(u). Since m(u) = d(v) ≤ ∆ ≤ n− 4, thus d(u) + m(u) ≤ n− 3 <

n− 2.5.

Case 2. d(u) = 2.

Suppose that v,w ∈ N(u). Note that T is a tree, then |N(v) ∩ N(w)| ≤ 1 and

|N(v) ∪N(w)| ≤ n. Therefore,

d(u) + m(u) = 2 +
d(v) + d(w)

2
≤ 2 +

n + 1

2
≤ n− 2.5.

Case 3. 3 ≤ d(u) ≤ ∆.

Note that T has n− 1 edges and 3 ≤ d(u) ≤ ∆ ≤ n− 4, then

d(u) + m(u) ≤ d(u) +
2(n− 1)− d(u)− 3

d(u)
= d(u)− 1 +

2n− 5

d(u)
.

Next we shall prove that d(u)−1+2n−5
d(u)

≤ n−2.5, equivalently, d(u) (n− 1.5− d(u))

≥ 2n− 5. Once this is proved, we are done. Let f(x) = (n− 1.5− x)x.

When 3 ≤ x ≤ n−1.5
2

, since f ′(x) = n − 1.5 − 2x ≥ 0, we have f(x) ≥ f(3) =

3(n− 4.5) > 2n− 5.

When n−1.5
2

≤ x ≤ n−4, since f ′(x) = n−1.5−2x ≤ 0, we have f(x) ≥ f(n−4) =

2.5(n− 4) ≥ 2n− 5.

By combining the above arguments, the assertion follows. ¤
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Figure 1. The trees T2, T3, T4 and T5

In the following, let T1 = K1,n−1 and T2, T3, . . . , T5 be the trees of order n ≥ 10 as

shown in Figure 1. By an elementary computation, it follows that

(1a) Φ(T2, x) = x(x− 1)n−4(x3 − (n + 2)x2 + (3n− 2)x− n).

(2a) Φ(T3, x) = x(x− 1)n−5(x4 − (n + 3)x3 + (5n− 4)x2 − (6n− 10)x + n).

(3a) Φ(T4, x) = x(x− 1)n−4(x3 − (n + 2)x2 + (4n− 7)x− n).

(4a) Φ(T5, x) = x(x− 1)n−6(x2 − 3x + 1)(x3 − (n + 1)x2 + (3n− 5)x− n).
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Lemma 2.2. If n ≥ 10, then LS(T2) > LS(T3) > LS(T4) > LS(T5).

Proof. If 10 ≤ n ≤ 12, by equalities (1a)–(4a) we have

n 10 11 12
LS(T2) 8.5826 9.5843 10.5861
LS(T3) 7.7689 8.7693 9.7705
LS(T4) 7.7142 8.7070 9.7038
LS(T5) 7.6660 8.6540 9.6460

It is easily checked that LS(T2) > LS(T3) > LS(T4) > LS(T5) holds. Thus,

we suppose n ≥ 13 in the following. Let ϕ1(x) = x3 − (n + 2)x2 + (3n − 2)x − n,

ϕ2(x) = x4−(n+3)x3+(5n−4)x2−(6n−10)x+n, ϕ3(x) = x3−(n+2)x2+(4n−7)x−n,

ϕ4(x) = x3−(n+1)x2 +(3n−5)x−n. We divide the proof into the next three stages.

(1) LS(T2) > LS(T3).

Since

ϕ1(0) = −n < 0, ϕ1(0.5) = 0.25n− 1.375 > 0,

ϕ1(n− 1) = −1 < 0, ϕ1(n) = n2 − 3n > 0,

then the three roots of the equation ϕ1(x) = 0 lie in (0, 0.5), (0.5, n−1) and (n−1, n),

respectively. On the other hand, since

ϕ2(0) = n > 0, ϕ2(0.24) = 2.13144576− 0.165824n < 0,

ϕ2(2) = n− 4 > 0, ϕ2(n− 2) = 4− n < 0,

ϕ2(n− 1.5) = 0.5n3 − 4.75n2 + 12.875n− 8.8125 > 0.5n3 − 5n2 > 0,

then the four roots of the equation ϕ2(x) = 0 lie in (0, 0.24), (0.24, 2), (2, n− 2) and

(n− 2, n− 1.5), respectively.

By equalities (1a) and (2a), we can conclude that

0 < µn−1(T2) < 0.5, n− 1 < µ1(T2) < n.(2.1)

0 < µn−1(T3) < 0.24, n− 2 < µ1(T3) < n− 1.5.(2.2)

By inequalities (2.1) and (2.2), it follows that

LS(T2) = µ1(T2)−µn−1(T2) > n−1−0.5 = n−1.5−0 > µ1(T3)−µn−1(T3) = LS(T3).

(2) LS(T3) > LS(T4).

Recall that n ≥ 13, then

ϕ3(0.267) = −1.992543837− 0.003289n < 0,
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ϕ3(0.34) = 0.2444n− 2.571896 > 0, ϕ3(n− 2) = −2 < 0,

ϕ3(n− 1.973) = 0.027n2 − 0.214542n− 1.654812317 > 0.027(n2 − 8n− 62) > 0.

Thus, the three roots of the equation ϕ3(x) = 0 lie in (0.267, 0.34), (0.34, n − 2)

and (n− 2, n− 1.973), respectively. By equality (3a), it follows that

0.267 < µn−1(T4) < 0.34, n− 2 < µ1(T4) < n− 1.973.(2.3)

By combining with inequalities (2.2) and (2.3), we can conclude that

LS(T3) = µ1(T3)− µn−1(T3) > n− 2− 0.24 = n− 1.973− 0.267 > LS(T4).

(3) LS(T4) > LS(T5).

Recall that n ≥ 13, then

ϕ4(0.38) = −1.989528− 0.0044n < 0,

ϕ4(0.5) = 0.25n− 2.625 > 0, ϕ4(n− 2) = −2 < 0,

ϕ4(n− 1.97) = 0.03n2 − 0.2082n− 1.676273 > 0.03(n2 − 7n− 56) > 0.

Thus, the three roots of the equation ϕ4(x) = 0 lie in (0.38, 0.5), (0.5, n − 2) and

(n− 2, n− 1.97), respectively. By equality (4a), it follows that

0.38 < µn−1(T5) < 0.5, n− 2 < µ1(T5) < n− 1.97.(2.4)

By combining with inequalities (2.3) and (2.4), we can conclude that

LS(T4) = µ1(T4)− µn−1(T4) > n− 2− 0.34 > n− 1.97− 0.38 > LS(T5).

This completes the proof of this lemma. ¤

The next result determines the largest Laplacian spread in the class of trees on n

vertices

Lemma 2.3. [6] If n ≥ 5 and T ∈ Tn, then LS(T ) ≤ LS(T1) = n − 1, where the

equality holds if and only if T ∼= T1.

Theorem 2.1. If n ≥ 10 and T ∈ Tn \ {T1, T2, T3, T4, T5}, then

LS(T1) > LS(T2) > LS(T3) > LS(T4) > LS(T5) > LS(T ).

Proof. By Lemmas 2.2 and 2.3, we only need to prove that LS(T5) > LS(T ). Since

T ∈ Tn \ {T1, T2, T3, T4, T5}, we have ∆(T ) ≤ n− 4. Note that µn−1(T ) > 0 because

T is connected, by Proposition 2.1 and inequality (2.4) we have

LS(T ) = µ1(T )− µn−1(T ) < µ1(T ) ≤ n− 2.5 < µ1(T5)− µn−1(T5) = LS(T5).
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This completes the proof of this result. ¤

3. The first to fourth largest Laplacian spreads

of unicyclic graphs

Proposition 3.1. Let G be a unicyclic graph with ∆ ≤ n − 3. If n ≥ 17, then

µ1(G) ≤ n− 1.7.

Proof. By Lemma 2.1, we only need to prove that max{d(v)+m(v) : v ∈ V } ≤ n−1.7.

Suppose max{d(v)+m(v) : v ∈ V } occurs at the vertex u. Three cases arise: d(u) = 1,

d(u) = 2, or 3 ≤ d(u) ≤ ∆.

Case 1. d(u) = 1.

Suppose v ∈ N(u). Since d(v) ≤ ∆ ≤ n − 3, thus d(u) + m(u) = d(u) + d(v) ≤
n− 2 < n− 1.7.

Case 2. d(u) = 2.

Suppose v, w ∈ N(u). Note that G is a unicyclic graph, then |N(v) ∩ N(w)| ≤ 2

and |N(v) ∪N(w)| ≤ n. Therefore,

d(u) + m(u) ≤ 2 +
d(v) + d(w)

2
≤ 2 +

n + 2

2
< n− 1.7.

Case 3. 3 ≤ d(u) ≤ ∆.

Note that 3 ≤ d(u) ≤ ∆ ≤ n− 3, then

d(u) + m(u) ≤ d(u) +
2m− d(u)− 2

d(u)
= d(u)− 1 +

2n− 2

d(u)
.

Let f(x) = x− 1 + 2n−2
x

, where 3 ≤ x ≤ n− 3.

If 3 ≤ x ≤ √
2n− 2, since f

′
(x) ≤ 0, it follows that f(x) ≤ f(3) = 2 + 2n−2

3
<

n− 1.7.

If
√

2n− 2 ≤ x ≤ n − 3, since f
′
(x) ≥ 0, it follows that f(x) ≤ f(n − 3) =

n− 4 + 2n−2
n−3

≤ n− 1.7.

Recall that 3 ≤ d(u) ≤ ∆ ≤ n− 3, then d(u) + m(u) ≤ n− 1.7.

By combining the above discussion, the conclusion follows. ¤

Let G1, . . . , G4 be the unicyclic graphs of order n ≥ 17 as shown in Figure 2.
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Figure 2. The unicyclic graphs G1, G2, G3 and G4

By an elementary computation, it follows that

(1b) Φ(G2, x) = x(x− 1)n−5(x− 3)(x3 − (n + 2)x2 + (3n− 2)x− n).

(2b) Φ(G3, x) = x(x− 1)n−5(x4 − (n + 5)x3 + (6n + 3)x2 − (9n− 5)x + 3n).

(3b) Φ(G4, x) = x(x− 1)n−5(x− 2)(x3 − (n + 3)x2 + (4n− 2)x− 2n).

Lemma 3.1. If n ≥ 17, then LS(G2) > LS(G3) > LS(G4).

Proof. Let f1(x) = x3 − (n + 2)x2 + (3n − 2)x − n, f2(x) = x4 − (n + 5)x3 + (6n +

3)x2 − (9n− 5)x + 3n, f3(x) = x3 − (n + 3)x2 + (4n− 2)x− 2n. We divide the proof

into the next two stages.

(1) LS(G2) > LS(G3).

Since

f1(0) = −n < 0, f1(0.438) = 0.122156n− 1.175660328 > 0,

f1(n− 1) = −1 < 0, f1(n) = n2 − 3n > 0,

then the three roots of the equation f1(x) = 0 lie in (0, 0.438), (0.438, n − 1) and

(n− 1, n), respectively. On the other hand, since

f2(0.46) = 0.032264n + 2.49289456 > 0,

f2(0.548) = 2.908261532416− 0.294742592n < 0,

f2(2) = n− 2 > 0, f2(n− 1) = 4− n < 0,

f2(n− 0.98) = 0.02n3 − 0.1788n2 − 0.527176n + 3.60952816

> 0.02(n3 − 9n2 − 27n + 180)

> 0,

then the four roots of the equation f2(x) = 0 lie in (0.46, 0.548), (0.548, 2), (2, n− 1)

and (n− 1, n− 0.98), respectively.
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By equalities (1b) and (2b), we can conclude that

0 < µn−1(G2) < 0.438, n− 1 < µ1(G2) < n.(3.1)

0.46 < µn−1(G3) < 0.548, n− 1 < µ1(G3) < n− 0.98.(3.2)

By inequalities (3.1) and (3.2), it follows that

LS(G2) = µ1(G2)− µn−1(G2) > n− 1− 0.438 > n− 0.98− 0.46 > LS(G3).

(2) LS(G3) > LS(G4).

Since

f3(0.585) = −1.996473375− 0.002225n < 0,

f3(0.7) = 0.31n− 2.527 > 0, f3(n− 1) = −2 < 0,

f3(n− 0.965) = 0.035n2 − 0.20755n− 1.762307125 > 0.035(n2 − 6n− 51) > 0,

then the three roots of the equation f3(x) = 0 lie in (0.585, 0.7), (0.7, n − 1) and

(n− 1, n− 0.965), respectively. By equality (3b), it follows that

0.585 < µn−1(G4) < 0.7, n− 1 < µ1(G4) < n− 0.965.(3.3)

By combining with inequalities (3.2) and (3.3), we can conclude that

LS(G3) = µ1(G3)− µn−1(G3) > n− 1− 0.548 > n− 0.965− 0.585 > LS(G4).

This completes the proof of this lemma. ¤

In [7] and [8], it has been shown that

Lemma 3.2. [7, 8] If n ≥ 10 and G ∈ Un, then LS(G) ≤ LS(G1) = n− 1, where the

equality holds if and only if G ∼= G1.

Theorem 3.1. If n ≥ 17 and G ∈ Un \ {G1, G2, G3, G4}, then

LS(G1) > LS(G2) > LS(G3) > LS(G4) > LS(G).

Proof. By Lemmas 3.1 and 3.2, we only need to prove that LS(G4) > LS(G). Since

G ∈ Un \ {G1, G2, G3, G4}, then ∆(G) ≤ n− 3. Note that µn−1(G) > 0 because G is

connected, by Proposition 3.1 and inequality (3.3) we have

LS(G) = µ1(G)− µn−1(G) < µ1(G) ≤ n− 1.7 < µ1(G4)− µn−1(G4) = LS(G4).

This completes the proof of this result. ¤
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