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SHARP FUNCTION ESTIMATE FOR MULTILINEAR
COMMUTATOR OF LITTLEWOOD-PALEY OPERATOR

PENG MELJUN ! AND LIU LANZHE 2

ABSTRACT. In this paper, we prove the sharp inequality for multilinear commutator
related to Littlewood-Paley operator. By using the sharp inequality, we obtain the
weighted LP-norm inequality for the multilinear commutator.

1. INTRODUCTION

As the development of singular integral operators, their commutators have been
well studied (see [1]-[4]). Let T be the Calder6n-Zygmund singular integral operator,
a classical result of Coifman, Rocherberg and Weiss (see [3]) states that commutator
b, T(f) =T(bf) —bT(f) (where b € BMO(R")) is bounded on LP(R™) for 1 < p <
oo. In [7]-]9], the sharp estimates for some multilinear commutators of the Calderdn-
Zygmund singular integral operators are obtained. The main purpose of this paper is
to prove the sharp inequality for multilinear commutator related to the Littlewood-
Paley operator. By using the sharp inequality, we obtain the weighted (L?, L?)-norm

inequality for the multilinear commutator.

2. NOTATIONS AND RESULTS

First let us introduce some notations (see [4], [9], [10]). In this paper, @ will denote
a cube of R™ with sides parallel to the axes, and for a cue Q let fo = |Q[™" [o f(x)dx
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and the sharp function of f is defined by
Fh(@) =su o [ 17() = foldy.
Q3z |Q| | Q‘
It is well-known that (see [4])
#(z) ~ sup inf — / — Cldy.
F@) ~ supint o [ 17(0) = Cly

Qox c€C

We say that b belongs to BMO(R") if b* belongs to L>®(R") and define ||b||prn0 =
|67 || It has been known that (see [10])

Hb - kaQHBMO < CkHbHBMO

Let M be the Hardy-Littlewood maximal operator, that is that
M(f)(w) = sup QI [ 1wl

we write that M,(f) = (M(|f[P))"/P for 0 <p < oo. Let 0 <d <n, 0 <71 < 00, set

1/r
Mest)(o) = sup (i [ )

Q>3
fo<r<p<n/d 1/qg=1/p—35/n, we know M, ; is type of (p,q), that is

1Myl < ClIf Nl
For b; € BMO(R™)(j =1,...,m), set

m
|16l Baro = 1T 11051l Bac0-

j=1

Given a positive integer m and 1 < j < m, we denote by C}" the family of all finite

subsets 0 = {o(1),...,0(j)} of {1,...,m} of j different elements. For o € C}*,

set 0¢ = {1,...,m} \ 0. For b = (by,....by) and o = {o(1),...,0(j)} € C™,

by = (bo(1); - - - bo(s)); bo = bo(r) - - - bo(jy and ||by || saro = Hba(l)HBMO - 1bo) HBMO-
In this paper, we will study some multilinear commutators as following.

Definition 2.1. Suppose b; (j =1,...,m) are the fixed locally integrable functions
on R". Let 0 < d <n, e >0 and ¥ be a fixed function which satisfies the following
properties:

(1) o (2)dz =0,

(2) (@) < O+ |2f) =170,

(3) [z +y) — d(@)| < Clyl*(1 + [a|)~+1+7 when 2|y| < |z|.
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The Littlewood-Paley multilinear commutator is defined by

) o 1/
ot = ([TIF @)

where

—

F(f)a) = | [f[(bjm - bj<y>>] Uil = ) f)dy

R™

and ¢y (z) = 7" (z/t) for t > 0. Set Fy(f)(x) = [pn Yi(x—y) f(y)dy, we also define
that

90.(1)(x) = ( L ,th)(x),z‘f) "

which is the Littlewood-Paley g function (see [11]).

Let H be the space H = {h : ||h]| = (J5° |h(t)|?dt/t)"/?}, then, for each fixed
x € R", th(f)(x) may be viewed as a mapping from [0, +00) to H, and it is clear
that

gu.s()(w) = [[E(f) ()]

and
&5 () (@) = IFP () @)]]-

Note that when by = ... = b, 92;5 is just the m order commutator (see [1],[6]). In
[5], the sharp estimates for the multilinear commutator gz of another Littlewood-Paley
operator g, are obtained. It is well known that commutators are of great interest in
harmonic analysis and have been widely studied by many authors (see [1]-[3], [6]-[9]).
Our main purpose is to establish the sharp inequality for the multilinear commutator.

Now we state our theorems as following.

Theorem 2.1. Let b; € BMO(R") forj=1,...,m. Then for any 1 <r < oo, there
exists a constant C' > 0 such that for any f € C§°(R") and any x € R",

(gh,5 (/) (@) < C (Mr,a(f)(x) + i > Mr(gz‘fg(f))(ﬂf)) :

j=loeCy®

Theorem 2.2. Let b € BMO(R") for j = 1,...,m. Then gfw 18 bounded from
LP(R"™) to LY(R"), where 1 <p <mn/d,1/qg=1/p—¢/n.
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3. PrROOFS OF THEOREMS

To prove the theorems, we need the following lemma.

Lemma 3.1 (see [11]). Let 0 < d <n, 1 <p<n/d, 1/¢g=1/p—3/n. Then gys is
bounded from LP(R™) to L1(R™).

Lemma 3.2. Let 1l <r < oo, bj € BMO(R") for j=1,...,k. Then

!QI/ H|b Q|dy<CHHb || Brro

7j=1

and

1/r i
(|Q|/ H|b Q|Tdy> < C 1] lIbjllBmo-

J=1

Proof. Choose 1 < p; < 00, j =1,...,m such that 1/p; +...4+ 1/p,, = 1, we obtain,
by the Holder’s inequality,

k 1/p; k
’Q‘ / H |b Q|dy < 1:[ <’Q‘ / |b5( j Q‘pjdy> < OH HijBMO

j=1
and
1 k 1/r k 1 1/p]
o LTt = whelran) < T 1500~ @apas)
Q| Jao i = \@
k
< CTI vl Baro-
j=1
The lemma follows. -

Proof of Theorem 2.1. 1t suffices to prove for f € C§°(R") and some constant Cp,
the following inequality holds:

]Q\/ fgw(s — Cpldz < C (|bBMoMr,6(f)(i’) +§: Z Mr(gi"a(f)(i’))) .
j=loeCl"

Fix a cube Q = Q(z,d) and T € Q.
We first consider the Case m = 1. Write, for fi = fx2q and fo = fXx(2q),

FP () (@) = (ba(2) = (ba)2g) Fe(f) (@) = F((b1 = (01)20) 1) (2) = F(b1 = (b1)20) f2) ().
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Then,

1955 (1) (@) = gus(((B1)ag — 1) f2) (20)]

P @)= IE((B1)ag — bi) f2) (z0)

IFP(£)(@) = Fi(((br)2g — br) f2) (o)

[1(b1(2) = (51)2) B (F) @) + [ F((b1 = (b1)ag) f1) ()]
| F (b1 — (b1)29) f2)(x) — Fy((by — (b1)2) f2) (20)]]

= A(z)+ B(z) + C(x).

For A(z), by the Holder’s inequality with exponent 1/r+ 1/r' =1, we get

IN A

o /Q b1(2) = (b1)20]l9y.s(f)(z)|dx

1/r
(g ot~ ax) (g s

< ClbillBrro M (gys(f))(T).

For B(z), choose p such that 1 <r <p<gq<n/d§, 1/¢g=1/p—3/n, r = ps, by the
boundedness of g, s on LP(R")to LY(R") and the Holder’s inequality, we obtain

1 1
] /Q Blaydr = 1o /Q[gw,a((bl = (b)) f1)(@))dx

<Ml?|/ 90.a((br = (b1)2Q)fX2Q)($)]qu> )

IA

IN

IA

|Q|q (/ [b1(2) = (ba)2l"| f (= )XzQ(x)|pdx)1/p

IN

1/ps
/ ]_ /
C|O|~Va+1/ps'+(1=dps/n)/ps / b — (b ps' g
Q) 20)] 2Q| 1(2) = (b1)2q["* dx

1 1/ps
x <’2Q’1_6m/n /ZQ ]f(g;)|psd:c>

1/ps
1
= —1/q+1/ps'+(1=dr/n)/r / b — (b s’

1 1/r
X (WU(@VC[?U)
Cllb1||BmoM,s(f)(Z).

IN
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For C(z

C(z)

thus

Now,
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), by the Minkowski’s inequality, we obtain

= |[F((01 = (b1)2@) f2) (%) = Eil(br = (br)2g) f2) (o)

9 1/2
= [ /. ( Loy 1) = G0l F @) = ) = v —yﬂdy) ﬂ

1/2

- [ C\bmy)—(bl)zguf(y)\(/O“’jwt(w—w—%(xo—y)‘”t) %

/2
oo |wg — x|% - tdt !
C . 1100 = el ([ = )
|70 — 2

C/ 1b1(y) — (b1)20][f(y )|’ymdy

IA

VAN

|70 — 2

OZ/ |1 (y (51)2Q||f(y)|Wdy

2HH1Q\2Q

1/r
1
PRPR (R >
(Jk:1 <|2k+1Q|1—5r/n 2k+1Q|f(y)| y)

IN

IN

1
X <’2]€+1Q| 2k+1Q

O3 k27 b saro Mg (1))

k=1

Cl|b1||BroM,5(f)(2),

b1 (y) — (51)2Q|T/dy>

IN

IN

31 Jo C@xtr < Clllano M 5(£)(@)

we consider the Case m > 2, we have known that, for b = (by,...,b,,),

= /R [ﬁ(bj(l‘) - bj(y))] Ui(x —y) f(y)dy
- /Rn, ﬁ(bj(x) — (bj)2q) — (b(y) — (bj)2@)v(z — y) f(y)dy

= 3 3 )b - 0o [ (60) ~ Baaletile — ) (0)dy
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Il + +
:@.

+ o+
i

thus,

195,5(F) (@) = gis((Br)ag = b1) - ((bm)ag = bm)) f2) (20)]
HEZ) @) = 11F(br)ag = b1) - - (bm)2Q = bn) fo) (o)
IE(F)(@) = F((B1)ag = br) - ((bm)ag = bm) fo) (o)
[1(b1(2) = (b1)2q) - - () = (b)a@) Fi(f) ()|

T 1) = (bn)eo)e Fo (£

j=1 oeCm

[1EL (b1 = (b1)2q) - - (b = (bm)2@) f1) ()]

m

+ A0~ ) @)~ A0 ~ G )

=1

= 0(2) + L) + I3(z) + Li(x).

IANIA

+

+

For I;(x), by the Holder’s inequality with exponent 1/p; + ... 4+ 1/p, + 1/r = 1,
where 1 <p; <oo,j=1,..., m, we get

1

IN

.- /Q [b1(2) = (b1)2g] - - [bm () = (bm)2qlgw.s () ()|dx

1/pm
" — Pm
(mﬂ ”')

IA
—
@\ -
T s

=

&

—

l\'.)

O

=
N———

IN

C”bHBMOMr(gw,é(f))( )-
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For I(x), by the Minkowski’s and Hoélder’s inequality, we get

1

]Q|/ L(x
= boe x)||dx
= o LIS X 2 06 = @hal B (@l
< g P ‘Q|/| (8)20) 9775 (F) (@)l

IN

NES 2Q1<b<x>—<b>m>ar’dx) (& Ltsra)”

j=1 UECJ’.”

< O S BllsaoM, (4575 () (@),

j=1 oeCp®

For I3(x), choose 1 <r <p<gq<mn/§, 1/g=1/p—4/n, r = ps, by the boundedness
of gy from LP(R™) to LY(R"), and Holder’s inequality, we get

@ s(x)dx
_ @/Hﬂ(ﬁl@ (b7)20) f1) () |
- 1/q
< (@/ |g¢5(];[1(bj ( )2Q)fX2Q)( )lqu>
- 1/p
5 C|@|11/q (/ T = Gl ()l >|de)
) . / 1/ps 1/ps
< O | fo! 0@ — @haas ) ([ I56)pde)

IA

1/ps’
/ 1 m /
C —1/q+1/ps’—(1—(0ps/n)/ps) / b. — (b ps' g
Q) 37 o TL0) = G )z0)

1 1/ps
x (\2@\/ IR d:c)
< C||bllsroM,.s(f)(%).

For I,(z), choose 1 < p; < 00, j = 1,...,m such that 1/p; + ...+ 1/p,, + 1/r =1,
we obtain, by the Holder’s inequality,
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= IFATI0; - (o) o) F(TT0; - (b)s0)f2) o)

j=1 J=1

X (W) (Wi(r —y) — Yi(wo — y))dy

9 1/2
dt
t

g<7RJi?%@%—M@MﬁWme@H(AWMMx_yy_?@b_wPﬁﬁ:W
< c'@@in@xw—«@»QMf@n(A”<t+ﬂ;ﬁjﬂzﬁﬁﬂF®>”aw

< cr@@in@xw—w@»QMf@MMszﬁﬂiﬁw;

< Cgééﬂmﬁax—%ﬂ%—wrmﬁékﬁ; by)20) L)l

< O g [ TT00) - 0l

IA

E 2 /T
1
ke

m 1 1/p;
% H <|2k+1Q| 2k+1Q|b( y) — <b1)2Q|pjdy>

S k2 T byl mai0 Mo (£)(3)

k=1 j=1

C‘|g"BMOMT,5(f)(j)7

IN

IN

thus
1 —
m/@h(m)dw = C||bl|BroM,5(f)(7).

This completes the proof of the theorem.
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Proof of Theorem 2.2. We first consider the case m=1, we have

lgis(Ollee < 1M (gs)(Hllzs < Cllggs(F)F N1z

< CliMi(gys(f)lze + ClM5(f) | 2o
< Cllgys(N)llze + ClIMs5(f)l o

< C|fllee + Cl fllv

< Cflfllze-

When m > 2, we may get the conclusion of the theorem by induction. This finishes

the proof. O
REFERENCES
[1] J. Alvarez, R. J. Babgy, D. S. Kurtz and C. Pérez, Weighted estimates for commutators of
linear operators, Studia Math. 104 (1993), 195-209.
[2] R. Coifman and Y. Meyer, Wavelets, Caldrén-Zygmund and multilinear operarors, Cambridge
studies in Advanced Math. 48, Camridge University Press, Cambridge, 1997.
[3] R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several
variables, Ann. of Math. 103 (1976), 611-635.
[4] J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related topics,
North-Holland Math. 116, Amsterdam, 1985.
[5] J. L. Hao, L. Z. Liu, Sharp estimates for multilinear commutator of Littlewood - Paley operator,
Commun. Korean Math. Soc., 23 (1) (2008), 49-59.
[6] L. Z. Liu, Weighted weak type estimates for commutators of Littlewood-Paley operator, Japanese
J. of Math. 29 (2003), 1-13.
[7] C. Pérez, Endpoint estimate for commutators of singular integral operators, J. Func. Anal. 128
(1995), 163-185.
[8] C. Pérez and G. Pradolini, Sharp weighted endpoint estimates for commutators of singular
integral operators, Michigan Math. J. 49 (2001), 23-37.
[9] C. Pérez and R. Trujillo-Gonzalez , Sharp Weighted estimates for multilinear commutators, J.
London Matha. Soc. 65 (2002), 672-692.
[10] E. M. Stein, Harmonic analysis: real variable methods, orthogonality and oscillatory integrals,
Princeton Univ. Press, Princeton NJ, 1993.
[11] A. Torchinsky, Real variable methods in harmonic analysis, Pure and Applied Math., 123,

Academic Press, New York, 1986.

! DEPARTMENT OF MATHEMATICS,

CHANG JUN Fu RONG MIDDLE SCHOOL,

MA WANG Dui ZHONG RoAD, CHANGSHA, HUNAN PROVINCE, 410001, P. R. oF CHINA
E-mail address: pengmeijun00@163.com

2 DEPARTMENT OF MATHEMATICS,

CHANGSHA UNIVERSITY OF SCIENCE AND TECHNOLOGY,
CHANGSHA, HUNAN PROVINCE, 410077, P. R. oF CHINA
E-mail address: lanzheliu@163.com



