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ON THE CONTINUOUS DEPENDENCE OF THE FIXED POINTS

FOR (ϕ, ψ)−CONTRACTIVE-TYPE OPERATORS

MEMUDU OLAPOSI OLATINWO

Abstract. In this paper, we establish some results pertaining to the continuous
dependence of the fixed points in a Banach space setting for three iterative processes
by using some general contractive conditions.

1. Introduction

In this paper, we establish some results pertaining to the continuous dependence of

the fixed points in a Banach space setting for three iterative processes by using some

general contractive conditions. Two of these iterative processes have been recently

introduced in [14] and [15]. Our results are generalizations and extensions of some of

the results of [3], [4], [19] and [26]. See also the recent results of [5], [16], [20], [21]

and [22].

Let (E, d) be a complete metric space and T : E → E a selfmap of E. Suppose

that FT = {p ∈ E | Tp = p} is the set of fixed points of T .

There are several iterative processes in the literature for which the fixed points of

operators have been approximated over the years by various authors. In a complete

metric space, the Picard iterative process {xn}∞n=0 defined by

(1.1) xn+1 = Txn, n = 0, 1, . . . ,
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has been employed to approximate the fixed points of mappings satisfying the in-

equality relation

(1.2) d(Tx, Ty) ≤ αd(x, y), for all x, y ∈ E and α ∈ [0, 1).

Condition (1.2) is called the Banach’s contraction condition. Any operator satisfying

(1.2) is called strict contraction. Also, condition (1.2) is significant in the celebrated

Banach’s fixed point theorem [1].

In a normed linear space or a Banach space setting, we shall state some of the

iterative processes generalizing (1.1) as follows:

For x0 ∈ E, the sequence {xn}∞n=0 defined by

(1.3) xn+1 = (1− αn)xn + αnTxn, n = 0, 1, . . . ,

where {αn}∞n=0 ⊂ [0, 1], is called the Mann iterative process (see [12]).

The sequence {xn}∞n=0 defined by

(1.4) xn+1 =
k∑

i=0

αi T ixn, x0 ∈ E, n = 0, 1, 2, . . . ,
k∑

i=0

αi = 1,

αi ≥ 0, α0 6= 0, αi ∈ [0, 1], where k is a fixed integer is called the Kirk iterative

process (see [10]).

The following two iterative processes in Olatinwo [14] and [15] generalize several well-

known iterative processes in the literature including those defined in (1.1), (1.3) and

(1.4):

(I) For x0 ∈ E, define the sequence {xn}∞n=0 by

(1.5) xn+1 =
k∑

i=0

αn, i T ixn, n = 0, 1, 2, . . . ,
k∑

i=0

αn, i = 1,

αn, i ≥ 0, αn, 0 6= 0, αn, i ∈ [0, 1], where k is a fixed integer.

(II) Let Ti : E → E (i = 0, 1, . . . , k) be selfmaps of E and x0 ∈ E. Then, define the

sequence {xn}∞n=0 by

(1.6) xn+1 =
k∑

i=0

αn, i Tixn,
k∑

i=0

αn, i = 1, n = 0, 1, 2, . . . ,

αn, i ≥ 0, αn, 0 6= 0, αn, i ∈ [0, 1], where k is a fixed integer and T0 is an identity

operator.

In many applications, the operator T in the Picard iteration of (1.1) depends on

an additional parameter λ ∈ Y , where Y is a parameter space. Therefore, (1.1) is
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replaced by the equation

(1.7) xλ = Sλ xλ, xλ ∈ E, λ ∈ Y.

Condition (1.2) was employed in Zeidler [26] to prove a result on the stability of the

fixed points (that is, continuous dependence of the fixed points on a parameter) for

the Picard iteration. In Rus [19] and also Berinde [3] and Berinde [4], the continu-

ous dependence of the fixed points on a parameter has been well formulated in the

following general context in a metric space: Let (E, d) be a complete metric space,

(Y, τ) a topological space and Sλ : E × Y → E a family of operators depending on

the parameter λ ∈ Y . Suppose that Sλ := S(·, λ), λ ∈ Y , has a unique fixed point

x∗λ, for any λ ∈ Y .

Define the operator U : Y → E by

U(λ) = x∗λ, for all λ ∈ Y.

We are interested in finding sufficient conditions on Sλ that guarantee the continuity

of U . In Rus [19], the following contractive condition was used: For a continuous

mapping Sλ : E × Y → E, there exists a strict comparison function ψ : R+ → R+

such that, for all x, y ∈ E,

(1.8) d(S(x, λ), S(y, λ)) ≤ ϕ(d(x, y)), for all x, y ∈ E, λ ∈ Y.

In Olatinwo [16], the concept of the continuous dependence of the fixed points on a

parameter has been extended from the complete metric space to the normed linear

space for the Schaefer and Mann iterative processes. Since metric is induced by norm,

we have that d(x, y) = ||x−y||, for all x, y ∈ E, for the normed linear space or Banach

space setting.

2. Preliminaries

We shall require the following definition and lemmas in the sequel:

Definition 2.1. (a) A function ψ : R+ → R+ is called a comparison function if

it satisfies the following conditions:

(i) ψ is monotone increasing;

(ii) lim
n→∞ψn(t) = 0, for all t ≥ 0.

(b) A comparison function satisfying t − ψ(t) → ∞ as t → ∞ is called a strict

comparison function.
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See Berinde [2], [3], [4], Rus [19] and Rus et al [23] for the definition and examples

of comparison function.

Remark 2.1. Every comparison function satisfies ψ(0) = 0.

We shall use the following contractive conditions:

(a) For a continuous mapping Sλ : E × Y → E, there exist:

(i) a real number L ≥ 0 and a strict comparison function ψ : R+ → R+ such that, for

all x, y ∈ E,

(2.1) ||S(x, λ)− S(y, λ)|| ≤ L||x− S(x, λ)||+ ψ(||x− y||), λ ∈ Y ;

(ii) a monotone increasing function ϕ : R+ → R+ with ϕ(0) = 0 and a strict compar-

ison function ψ : R+ → R+ such that, for all x, y ∈ E,

(2.2) ||S(x, λ)− S(y, λ)|| ≤ ϕ(||x− S(x, λ)||) + ψ(||x− y||), λ ∈ Y.

(b) For continuous mappings Si : E × Y → E, there exist a monotone increasing

function ϕ : R+ → R+ with ϕ(0) = 0 and strict comparison functions ψi : R+ → R+,

such that, for all x, y ∈ E, we have

(2.3) ||Si(x, λ)−Si(y, λ)|| ≤ ϕ(||x−Si(x, λ)||)+ψi(||x− y||), i = 0, 1, 2, . . . , λ ∈ Y,

where ψ0(||x − y||) = I(||x − y||) = ||x − y||=identity function and S0 = I (identity

mapping).

We shall require the following Lemmas in the sequel:

Lemma 2.1. Let (E, || · ||) be a Banach space and let Sλ : E × Y → E be a mapping

satisfying (2.1), where ψ : R+ → R+ is a sublinear comparison function. Then, for

all i ∈ N, we have

(2.4) ||Si(x, λ)− Si(y, λ)|| ≤
i∑

j=1

(
i

j

)
Ljψi−j(||x− S(x, λ)||) + ψi(||x− y||),

λ ∈ Y , for all x, y ∈ E.

Lemma 2.2. Let (E, || · ||) be a Banach space and Sλ : E × Y → E a mapping

satisfying (2.2), where ψ : R+ → R+ is a sublinear comparison function and ϕ : R+ →
R+, a sublinear monotone increasing function such that ϕ(0) = 0 and ψs(ϕr(x)) ≤
ϕr(ψs(x)), for all x ∈ R+, r, s ∈ N. Then, for all i ∈ N, we have

(2.5) ||Si(x, λ)− Si(y, λ)|| ≤
i∑

j=1

(
i

j

)
ϕj(ψi−j(||x− S(x, λ)||)) + ψi(||x− y||),
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λ ∈ Y , for all x, y ∈ E.

Proof. The proof of sublinearity of both ϕ and ψ is as follows:

In order to show that ψi (i.e. iterate of ψ) is sublinear, we have to show that ψi is

both subadditive and positively homogeneous.

We first establish that ψ subadditive implies that each iterate ψi of ψ is also subad-

ditive: Since ψ is subadditive, we have

ψ(x + y) ≤ ψ(x) + ψ(y), for all x, y ∈ R+.

Therefore,using subadditivity of ψ in ψ2 yields

ψ2(x + y) = ψ(ψ(x + y)) ≤ ψ(ψ(x) + ψ(y)) ≤ ψ(ψ(x)) + ψ(ψ(y)) = ψ2(x) + ψ2(y),

which implies that ψ2 is subadditive.

Similarly, applying subadditivity of ψ2 in ψ3, we get

ψ3(x + y) = ψ(ψ2(x + y)) ≤ ψ(ψ2(x) + ψ2(y)) ≤ ψ(ψ2(x)) + ψ(ψ2(y))

= ψ3(x) + ψ3(y),

which implies that ψ3 is also subadditive.

Hence, in general, each ψn, n = 1, 2, . . . , is subadditive.

We now prove that ψ positively homogeneous implies that each iterate ψi of ψ is also

positively homogeneous: Therefore, we have that

ψ(αx) = αψ(x), for all x ∈ R+, α > 0.

Using positive homogeneity of ψ in ψ2, we have

ψ2(αx) = ψ(ψ(αx)) = ψ(αψ(x)) = αψ(ψ(x)) = αψ2(x), for all x ∈ R+, α > 0,

which implies that ψ2 is positively homogeneous.

Hence, in general, each ψn, n = 1, 2, . . . , is positively homogeneous.

Thus, we have that ψn, n = 1, 2, . . . , is sublinear.

Similarly, we can prove the sublinearity of ϕ as that of ψ.

The second part of the proof of this lemma is by induction on i as follows: Now,

throughout the proof, we shall use the fact that S(x, λ) = Sλx, x ∈ E, λ ∈ Y .

If i = 1, then (2.5) becomes

||Sλx−Sλy|| ≤
1∑

j=1

(
1

j

)
ϕj(ψ1−j(||x−Sλx||))+ψ(||x−y||) = ϕ(||x−Sλx||)+ψ(||x−y||),

that is, (2.5) reduces to (2.2) when i = 1 and hence the result holds.
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Assume as an inductive hypothesis that (2.4) holds for i = m, m ∈ N, that is,

||Sm
λ x− Sm

λ y|| ≤
m∑

j=1

(
m

j

)
ϕj(ψm−j(||x− Sλx||)) + ψm(||x− y||), for all x, y ∈ E.

We then show that the statement is true for i = m + 1

||Sm+1
λ x− Sm+1

λ y||
= ||Sm

λ (Sλx)− Sm
λ (Sλy)||

≤
m∑

j=1

(
m

j

)
ϕj(ψm−j(||Sλx− S2

λx||)) + ψm(||Sλx− Sλy||)

≤
m∑

j=1

(
m

j

)
ϕj(ψm−j(ϕ(||x− Sλx||) + ψ(||x− Sλx||)))

+ ψm(ϕ(||x− Sλx||) + ψ(||x− y||))

≤
m∑

j=1

(
m

j

)
ϕj[ψm−j(ϕ(||x− Sλx||)) + ψm+1−j(||x− Sλx||)]

+ ψm(ϕ(||x− Sλx||)) + ψm+1(||x− y||)

≤
m∑

j=1

(
m

j

)
ϕj[ϕ(ψm−j(||x− Sλx||)) + ψm+1−j(||x− Sλx||)]

+ ϕ(ψm(||x− Sλx||)) + ψm+1(||x− y||)

≤
m∑

j=1

(
m

j

)
ϕj+1(ψm−j(||x− Sλx||)) +

m∑

j=1

(
m

j

)
ϕj(ψm+1−j(||x− Sλx||))

+ ϕ(ψm(||x− Sλx||)) + ψm+1(||x− y||)

=

(
m

m

)
ϕm+1(||x− Sλx||) +

[(
m

m− 1

)
+

(
m

m

)]
ϕm(ψ(||x− Sλx||))

+
[(

m

m− 2

)
+

(
m

m− 1

)]
ϕm−1(ψ2(||x− Sλx||)) + . . .

+
[(

m

1

)
+

(
m

0

)]
ϕ(ψm(||x− Sλx||)) + ψm+1(||x− y||)

=

(
m + 1

m + 1

)
ϕm+1(||x− Sλx||) +

(
m + 1

m

)
ϕm(ψ(||x− Sλx||))

+

(
m + 1

m− 1

)
ϕm−1(ψ2(||x− Sλx||)) + . . .

+

(
m + 1

2

)
ϕ2(ψm−1(||x− Sλx||)) +

(
m + 1

1

)
ϕ(ψm(||x− Sλx||))

+ ψm+1(||x− y||)
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=
m+1∑

j=1

(
m + 1

j

)
ϕj(ψm+1−j(||x− Sλx||)) + ψm+1(||x− y||).

¤
Lemma 2.3. [13] Let {ψk(t)}n

k=0 be a finite set of comparison functions. Then, any

linear combination
∑n

j=0 cjψ
j(t) of the comparison functions is also a comparison

function, where
∑n

j=0 cj = 1 and co, c1, . . . , cn are positive constants.

3. Main Results

Theorem 3.1. Let (E, ‖ · ‖) be a Banach space and (Y, τ) a topological space. Let

Si : E × Y → E (i = 0, 1, . . . , k) be continuous mappings satisfying (2.3). Suppose

that ψi : R+ → R+ (for each i) is a strict comparison function and ϕ : R+ → R+ a

monotone increasing function such that ϕ(0) = 0. Let x∗λ be the unique common fixed

point of Siλ, for each i, where Siλx = Si(x, λ), x ∈ E, λ ∈ Y . Suppose {xn}∞n=0 is the

Kirk-Mann iterative process defined by (1.6) with
∑k

i=0 αn,i = 1. Then, the mapping

U : Y → E, given by U(λ) = x∗λ, λ ∈ Y , is continuous.

Proof. Let λ1, λ2 ∈ Y . Then, we shall apply the contractive condition and the triangle

inequality in the sequel. Let S0 = I (identity mapping). Then, I(xλ, λ) = Iλxλ = xλ.

Since
||x∗λ1

− x∗λ2
||

≤
k∑

i=0

αλ1,i||Si(x
∗
λ1

, λ1)− Si(x
∗
λ2

, λ2)||+
k∑

i=0

|αλ1,i − αλ2,i| ||Si(x
∗
λ2

, λ2)||

≤
k∑

i=0

αλ1,i[ ||Si(x
∗
λ1

, λ1)− Si(x
∗
λ2

, λ1)||+ ||Si(x
∗
λ2

, λ1)− Si(x
∗
λ2

, λ2)|| ]

+
k∑

i=0

|αλ1,i − αλ2,i| ||Si(x
∗
λ2

, λ2)||

=
k∑

i=0

αλ1,i||Si(x
∗
λ1

, λ1)− Si(x
∗
λ2

, λ1)||

+
k∑

i=0

αλ1,i||Si(x
∗
λ2

, λ1)− Si(x
∗
λ2

, λ2)||+
k∑

i=0

|αλ1,i − αλ2,i| ||Si(x
∗
λ2

, λ2)||

≤
k∑

i=0

αλ1,i

{
ϕ(||x∗λ1

− Si(x
∗
λ1

, λ1)||) + ψi(||x∗λ1
− x∗λ2

||)
}

+
k∑

i=0

αλ1,i||Si(x
∗
λ2

, λ1)− Si(x
∗
λ2

, λ2)||+
k∑

i=0

|αλ1,i − αλ2,i| ||Si(x
∗
λ2

, λ2)||
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(3.1)

=
k∑

i=0

αλ1,iψi(||x∗λ1
− x∗λ2

||) +
k∑

i=0

αλ1,i||Si(x
∗
λ2

, λ1)− Si(x
∗
λ2

, λ2)||

+
k∑

i=0

|αλ1,i − αλ2,i| ||Si(x
∗
λ2

, λ2)||.

Therefore, we have from (3.1) that

||x∗λ1
− x∗λ2

|| −
k∑

i=0

αλ1,iψi(||x∗λ1
− x∗λ2

||) ≤
k∑

i=0

αλ1,i||Si(x
∗
λ2

, λ1)− Si(x
∗
λ2

, λ2)||

+
k∑

i=0

|αλ1,i − αλ2,i| ||Si(x
∗
λ2

, λ2)||,
(3.2)

so that from (3.2) we have

||x∗λ1
− x∗λ2

|| − ψ̄(||x∗λ1
− x∗λ2

||)

≤
k∑

i=0

αλ1,i||Si(x
∗
λ2

, λ1)− Si(x
∗
λ2

, λ2)||+
k∑

i=0

|αλ1,i − αλ2,i| ||Si(x
∗
λ2

, λ2)||

(3.3) =
k∑

i=0

αλ1,i||Siλ1x
∗
λ2
− Siλ2x

∗
λ2
||+

k∑

i=0

|αλ1,i − αλ2,i| ||Siλ2x
∗
λ2
||,

where ψ̄(||x∗λ1
− x∗λ2

||) =
∑k

i=0 αλ1,iψi(||x∗λ1
− x∗λ2

||).
By Lemma 2.3, we have that ψ̄ is also a (strict) comparison function.

Since Si is continuous for each i, we have

||Siλ1x
∗
λ2
− Siλ2x

∗
λ2
|| → 0 as λ2 → λ1,

and also,
k∑

i=0

|αλ1,i − αλ2,i| ||Siλ2x
∗
λ2
|| → 0 as λ2 → λ1,

so that (3.3) leads to

||x∗λ1
− x∗λ2

|| → 0 as λ2 → λ1.

That is,

||U(λ1)− U(λ2)|| → 0 as λ2 → λ1.

Hence, the mapping U : Y → E, defined by U(λ) = x∗λ, λ ∈ Y , is continuous. ¤
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Theorem 3.2. Let (E, ‖ · ‖) be a Banach space and (Y, τ) a topological space. Let

S : E × Y → E be a continuous mapping satisfying (2.2). Suppose ϕ : R+ → R+

is a sublinear monotone increasing function such that ϕ(0) = 0 and ψ : R+ → R+

a sublinear comparison function such that ψs(ϕr(x)) ≤ ϕr(ψs(x)), for all x ∈ R+,

r, s ∈ N. Let x∗λ be the unique fixed point of Sλ, where Sλx = S(x, λ), x ∈ E,

λ ∈ Y . Suppose {xn}∞n=0 is the Kirk-Mann iterative process defined by (1.5) with
∑k

i=0 αn, i = 1. Then, the mapping U : Y → E, given by U(λ) = x∗λ, λ ∈ Y , is

continuous.

Proof. Let λ1, λ2 ∈ Y . Then, we shall apply Lemma 2.2, Lemma 2.3 and the triangle

inequality in the sequel. Let T 0 = I (identity mapping). Then, I(xλ, λ) = Iλxλ = xλ.

||x∗λ1
− x∗λ2

||

= ||
k∑

i=0

αλ1,i[ Si(x∗λ1
, λ1)− Si(x∗λ2

, λ2) ] +
k∑

i=0

(αλ1,i − αλ2,i)S
i(x∗λ2

, λ2)||

≤
k∑

i=0

αλ1,i||Si(x∗λ1
, λ1)− Si(x∗λ2

, λ2)||+
k∑

i=0

|αλ1,i − αλ2,i| ||Si(x∗λ2
, λ2)||

≤
k∑

i=0

αλ1,i[ ||Si(x∗λ1,i, λ1)− Si(x∗λ2
, λ1)||+ ||Si(x∗λ2

, λ1)− Si(x∗λ2
, λ2)|| ]

+
k∑

i=0

|αλ1,i − αλ2,i| ||Si(x∗λ2
, λ2)||

=
k∑

i=0

αλ1,i||Si(x∗λ1
, λ1)− Si(x∗λ2

, λ1)||

+
k∑

i=0

αλ1,i||Si(x∗λ2
, λ1)− Si(x∗λ2

, λ2)||

+
k∑

i=0

|αλ1,i − αλ2,i| ||Si(x∗λ2
, λ2)||

=
k∑

i=1

αλ1,i||Si(x∗λ1
, λ1)− Si(x∗λ2

, λ1)||+ αλ1,0||I(x∗λ1
, λ1)− I(x∗λ2

, λ1)||

+
k∑

i=0

αλ1,i||Si(x∗λ2
, λ1)− Si(x∗λ2

, λ2)||

+
k∑

i=0

|αλ1,i − αλ2,i| ||Si(x∗λ2
, λ2)||
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≤
k∑

i=1

αλ1,i[
i∑

j=1

(
i

j

)
ϕj(ψi−j(||x∗λ1,i − S(x∗λ1

, λ1)||)) + ψi(||x∗λ1
− x∗λ2

||) ]

+ αλ1,0||x∗λ1
− x∗λ2

||+
k∑

i=0

αλ1,i||Si(x∗λ2
, λ1)− Si(x∗λ2

, λ2)||

+
k∑

i=0

|αλ1,i − αλ2,i| ||Si(x∗λ2
, λ2)||

=
k∑

i=1

αλ1,i[
i∑

j=1

(
i

j

)
ϕj(ψi−j(0)) + ψi(||x∗λ1

− x∗λ2
||) ] + αλ1,0||x∗λ1

− x∗λ2
||

+
k∑

i=0

αλ1,i||Si
λ1

x∗λ2
− Si

λ2
x∗λ2
||+

k∑

i=0

|αλ1,i − αλ2,i| ||Si
λ2

x∗λ2
||,

i.e.

(3.4)

||x∗λ1
− x∗λ2

|| ≤
k∑

i=0

αλ1,iψ
i(||x∗λ1

− x∗λ2
||) +

k∑

i=0

αλ1,i||Si
λ1,ix

∗
λ2
− Si

λ2
x∗λ2
||

+
k∑

i=0

|αλ1,i − αλ2,i| ||Si
λ2

x∗λ2
||,

since ϕj(ψi−j(0)) = ϕj(0) = ψi−j(0) = ϕ(0) = ψ(0) = 0.

It follows from (3.4) that

||x∗λ1
− x∗λ2

|| − ψ̄(||x∗λ1
− x∗λ2

||) ≤
k∑

i=0

αλ1,i||Si
λ1

x∗λ2
− Si

λ2
x∗λ2
||

+
k∑

i=0

|αλ1,i − αλ2,i| ||Si
λ2

x∗λ2
||,

(3.5)

where ψ̄(||x∗λ1
− x∗λ2

||) =
∑k

i=0 αλ1,iψ
i(||x∗λ1

− x∗λ2
||).

By Lemma 2.3, we have that ψ̄ is also a (strict) comparison function.

Since S is continuous, we have

||Si
λ1

x∗λ2
− Si

λ2
x∗λ2
|| → 0 as λ2 → λ1,

and also,
k∑

i=0

|αλ1,i − αλ2,i| ||Si
λ2

x∗λ2
|| → 0 as λ2 → λ1,

so that (3.5) leads to

||x∗λ1
− x∗λ2

|| → 0 as λ2 → λ1.
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That is, ||U(λ1)− U(λ2)|| → 0 as λ2 → λ1.

Hence, the mapping U : Y → E, defined by U(λ) = x∗λ, λ ∈ Y, is continuous. ¤

Theorem 3.3. Let (E, ‖ · ‖) be a Banach space and (Y, τ) a topological space. Let

S : E×Y → E be a continuous mapping satisfying (2.1). Suppose that ψ : R+ → R+

a sublinear comparison function. Let x∗λ be the unique fixed point of Sλ where Sλx =

S(x, λ), x ∈ E, λ ∈ Y . Suppose {xn}∞n=0 is the Kirk-Mann iterative process defined

by (1.5) with
∑k

i=0 αn, i = 1. Then, the mapping U : Y → E, given by U(λ) = x∗λ,

λ ∈ Y , is continuous.

Proof. The proof is similar to that of Theorem 3.2, except for the application of

Lemma 2.1. ¤

Theorem 3.4. Let (E, ‖ · ‖) be a Banach space and (Y, τ) a topological space. Let

S : E × Y → E be a continuous mapping satisfying (2.2). Suppose ϕ : R+ → R+

is a sublinear monotone increasing function such that ϕ(0) = 0 and ψ : R+ → R+ a

sublinear comparison function. Let x∗λ be the unique fixed point of Sλ where Sλx =

S(x, λ), x ∈ E, λ ∈ Y . Suppose {xn}∞n=0 is the Kirk iterative process defined by (1.4)

with
∑k

i=0 αi = 1. Then, the mapping U : Y → E, given by U(λ) = x∗λ, λ ∈ Y , is

continuous.

Proof. The proof is similar to that of Theorem 3.2. ¤

Remark 3.1. Our results generalize, extend and improve Proposition 1.2 of Zeidler

[26]. Our results also extend Theorem 7.7 of Berinde [3] and [4] (which is Theorem

7.1.2 of Rus [19]) from the complete metric space to the Banach space setting. See

also the results of [5], [16], [20], [21] and [22].
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