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DESCRIPTIONS OF ZERO SETS AND PARAMETRIC

REPRESENTATIONS OF CERTAIN ANALYTIC AREA

NEVANLINNA TYPE CLASSES IN THE UNIT DISK

ROMI SHAMOYAN 1 AND HAIYING LI 2∗

Abstract. A complete zero set description of a scale of analytic area Nevanlinna
type spaces in the unit disk and parametric representations of these spaces are
established. These generalize some well-known, classical results.

1. Definitions, Preliminaries and Problem Statement

Assuming that D = {z ∈ C : |z| < 1} is the unit disk of the finite complex plane

C, T is the boundary of D and H(D) is the space of all functions holomorphic in D,

introduce the classes of functions:

Ñ∞
α =

{
f ∈ H(D) : T (τ, f) ≤ Cf (1− τ)−α, 0 ≤ τ ≤ 1

}
, α ≥ 0,

where T (τ, f) = (1/2π)
∫
T log+ |f(rξ)|dξ is Nevanlinna’s characteristic (see eg. [10]).

It is obvious that if α = 0, then Ñ∞
0 = N , where N is Nevanlinna’s class. The follow-

ing statement holds by Nevanlinna’s classical result on the parametric representation

of N (see eg. [11]). The analytic subset of N coincides with the set of functions

representable in the form

f(z) = Cλz
λB(z, {zk}) exp

{∫ π

−π

dµ(θ)

1− ze−iθ

}
, z ∈ D,
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where Cλ is any complex number, λ is any nonnegative integer, B(z, {zk}) is the clas-

sical Blaschke product with zeros {zk}k ⊂ D enumerated according their multiplicities

and satisfying the condition
∑

k(1− |zk|) < +∞ and µ(θ) is any function of bounded

variation in [−π, π].

In [3], the following proposition is established (see also [2]) for the sequences {zk}∞k=1 ⊂
D satisfying the greater density condition

(1.1)
∞∑

k=1

(1− |zk|)t+2 < +∞, t > −1.

Proposition A. If (1.1) is true for some t > −1, then the infinite product

(1.2) Πt(z, {zk}) =
+∞∏

k=1

(
1− z

zk

)
exp



−

t

π

∫

D

(1− |ξ|2)t ln
∣∣∣1− ξ

zk

∣∣∣
(1− ξz)t+2

dm2(ξ)



 ,

where m2(ξ) is Lebesgue’s area measure, converges absolutely and uniformly inside D,

where it presents an analytic function with zeros {zk}∞k=1.

We shall be based also on some other known statements which we give below. The

next lemma can be found in [2].

Lemma A. If (1.1) is true for some t > −1, then the following estimate holds for

Djrbashian’s product:

ln+
∣∣∣Πt(z, zk)

∣∣∣ ≤ Ct

+∞∑

k=0

(
1− |zk|2
|1− zzk|

)t+2

,

where Ct > 0 is a constant depending solely on t.

To state a theorem recently established in [11], by Bp, q
γ (T), (0 < p < ∞, 0 < q ≤ ∞,

γ > 0) we denote the standard Besov class on the unit circle T = {z : |z| = 1} (see,

eg. [1, 2, 10, 11]).

We will need Besov spaces on the unit circle which we will define with the help of

Besov spaces on the real line. The Besov space Bp, q
s (R), 0 < p < ∞, 0 < q ≤ ∞

is a complete quasinormed space which is a Banach space when 1 ≤ p, q ≤ ∞. Let

4hf(x) = f(x− h)− f(x) and the modulus of continuity is defined by

ω2
p(f, t) = sup

|h|≤t
‖42

hf‖p.
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Let n = 0, 1, 2, . . . , s = n + α with 0 < α ≤ 1, the Besov space Bp, q
s (R) contains all

functions f such that f ∈ W n
p (R), where W n

p (R), 0 < p < ∞, n ∈ N is a classical

Sobolev space and
∫ ∞

0

∣∣∣∣∣
ω2

p(f
(n), t)

tα

∣∣∣∣∣
q
dt

t
< ∞.

The Besov space Bp, q
s (R), 1 ≤ p, q ≤ ∞ is equipped with the norm

‖f‖W n
p (R) +

( ∫ ∞

0

∣∣∣∣∣
ω2

p(f
(n), t)

tα

∣∣∣∣∣
q
dt

t

) 1
q

.

To define the Besov space on unit circle we have to use the previous definition of

Besov space on the real line and the standard map t → eit, t ∈ R.

Theorem A. If α ≥ 0 and β > α − 1, then the class Ñ∞
α coincides with the set of

functions representable in the form

f(z) = Cλz
λΠβ(z, zk) exp

{∫ π

−π

ψ(eiθ)dθ

(1− e−iθz)β+2

}
, z ∈ D,

where Cλ is a complex number, λ is a nonnegative integer, Πβ(z, {zk}) is Djrbashian’s

product (1.2), {zk}∞k=1 ⊂ D is a sequence satisfying the condition

n(τ) = card {zk : |zk| < τ} ≤ C

(1− τ)α+1

and ψ(eiθ) is a real function of B1,∞
β−α+1.

We also give the below theorem which is established in [10] and in a sense is similar

to Theorem A.

Theorem B. If 0 < p < ∞, α > −1 and β > (α + 1)/p, then
∫ 1

0
(1− τ)αT p(τ, f)dτ < +∞

if and only if

f(z) = Cλz
λΠβ(z, zk) exp

{
1

2π

∫ π

−π

ψ(eiθ)dθ

(1− e−iθz)β+1

}
, z ∈ D,

where Cλ is any complex number, λ ≥ 0 is any integer, {zk} ∈ D is a sequence such

that ∫ 1

0
(1− τ)α+pn(τ)pdτ < ∞,

and ψ ∈ B1,p
s (T), where s = β − (α + 1)/p.
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One can see that Theorem A gives the parametric representations of the spaces Ñ∞
α ,

while Theorem B gives the parametric representations of some other analytic area

Nevanlinna type spaces in the unit disk. One of the goals of this paper are the

parametric representations of the larger spaces

Np
α, β =

{
f ∈ H(D) :

∫ 1

0

[ ∫

|z|≤R
ln+ |f(z)|(1− |z|)αdm2(z)

]p

(1−R)βdR < +∞
}

,

N∞
α,β1

=

{
f ∈ H(D) : sup

0≤R<1

[ ∫

|z|≤R
ln+ |f(z)|(1− |z|)αdm2(z)

]
(1−R)β1 < +∞

}
,

where it is assumed that β1 ≥ 0, α > −1, β > −1 and 0 < p < ∞. Note that various

properties of N∞
α,0 are studied in [2]. In particular, the works [2, 10, 11] give complete

description of zero sets and parametric representations of N∞
α,0. Thus, it is natural to

consider the problem on extension of these important results to all N∞
α,β1

classes.

The zero set description problem can be stated in the following simple form: as-

suming that X is a fixed subspace of H(D), precisely find a class Y of sequences such

that the zero set of any function f ∈ X is of Y and for any {zk}∞k=1 ∈ Y there is a

function f ∈ X satisfying f(zk) = 0 (k = 1, . . . , n) (see [2, 7]). Note that for many

classical analytic classes, such as the space Ap
α, this problem is still open (see [2]). On

the other hand, the complete descriptions of the zero sets of N∞
α,0 and Ñ∞

α are known

(see [2, 9, 10]). One of the intentions of this paper is to solve this problem for some

new Nevanlinna type analytic classes in the unit disk and to establish the parametric

representations of these classes, where the found description is used. We mention

that several new results of this type for some classical Nevanlinna-Djrbashian ana-

lytic classes in the unit disk are presented in [2, 10, 11]. So, it is natural to consider

the problem for Np
α,β and N∞

α,β1
.

Everywhere below, by n(t) = nf (t) we denote the quantity of zeros of an analytic

function f in the disk |z| ≤ t < 1 and by Z(X) the zero set of an analytic class X,

X ⊂ H(D). Besides, we assume that

(NA)p,γ,v =

{
f ∈ H(D) :

∫ 1

0

[
sup

0<τ<R
T (f, τ)(1− τ)γ

]p

(1−R)vdR < +∞
}

,

where γ ≥ 0, v > −1 and 0 < p < ∞, and

N∞, p
α, β =

{
f ∈ H(D) : sup

0≤R<1

∫ R

0

[ ∫

T
ln+ |f(|z|ξ)|dξ

]p

(1− |z|)αd|z|(1−R)β < +∞
}

,
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where 0 < p < ∞, α > −1 and β ≥ 0. Note that the zero sets of N∞, p
α, β are described

in [10] for β = 0.

It is not difficult to verify that all the above mentioned analytic classes are topological

vector spaces with complete invariant metrics. We note that the mentioned problems

of zero set description and parametric representation have various applications and

are important in function theory (see, eg. [4, 5, 6]). Solution of many problems,

for instance on existence of radial limits, is based on descriptions of zero sets and

parametric representations. Zero set descriptions and parametric representations are

used also in spectral theory of linear operators (see, eg. [8]). All results of this

paper are given without proofs in our recent note [12]. The authors intend to publish

separate papers with various applications of these results to the description problem of

closed ideals in area Nevanlinna spaces over the unit disk and to some other problems

in these spaces (see, eg. [13]).

Throughout the paper, we write C (sometimes with indexes) to denote a positive

constant which might be different at each occurrence (even in a chain of inequalities)

but is independent of the functions or variables being discussed.

2. Theorems on Zero Sets of Np
α,β, (NA)p,γ,v and N∞, p

α, β Classes

This section gives the descriptions of the zero sets of the defined above area Nevan-

linna type classes.

Theorem 2.1. For any numbers 0 < p < ∞, α > −1 and β > −1, the following

conditions are equivalent.

(2.1)
∞∑

k=1

np
k

2k(2p+1)2kαp2kβ
< +∞,

and

{zk} ∈ Z
(
Np

α,β

)
,

where nk = n(1− 2−k) and n(τ) = card {zk : |zk| < τ}. If (2.1) is true, then

Πt(z, zk) ∈ Np
α,β for t > max [(α + β/p) + max {1, 1/p} , (α + 1)] .

Theorem 2.2. For any numbers 0 < p < ∞, v ≥ 0 and γ ≥ 0, the following

conditions are equivalent

{zk} ∈ Z
(
(NA)p,γ,v

)
,
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(2.2)
∞∑

k=1

np
k

2k[(pγ+1)+v+1]
< +∞,

where nk = n(1− 2−k). If (2.2) is true, then

Πt(z, zk) ∈ (NA)p,γ,v for p ≤ 1, t >
v + 1

p
+ γ − 1 and for p > 1, t >

v

p
+ γ.

Theorem 2.3. For any numbers 0 < p < ∞, α ≥ 0 and β > 0, the following

conditions are equivalent

{zk}∞k=1 ∈ Z
(
N∞, p

α, β

)
;

(2.3) n(τ) ≤ C(1− τ)−(α+β+p+1)/p, τ ∈ (0, 1).

If (2.3) is true, then

Πt(z, zk) ∈ N∞, p
α, β for any t >

α + β + 1

p
− 1.

Theorem 2.1 – 2.3 immediately give as corollaries the following parametric represen-

tations of mentioned above area Nevanlinna type classes.

Theorem 2.4. If 0 < p < ∞, α > −1 and β > −1, then the class Np
α,β coincides

with the set of functions representable for z ∈ D as

f(z) = Cλz
λ
∞∏

k=1

(
1− z

zk

)
exp





t + 1

π

∫ 1

0

∫ π

−π

(1− ρ2) ln
∣∣∣1− ρeiϕ

zk

∣∣∣
(1− ρe−iϕz)t+2

ρdρdϕ



 exp{h(z)},

where t > max
{(

α + β/p
)

+ max{1, 1/p}, (α + 1)
}
, Cλ is a complex number, λ ≥ 0,

∞∑

k=1

np
k

2k(β+2p+1+αp)
< +∞,

and h ∈ H(D) is a function satisfying the condition
∫ 1

0

[ ∫ R

0

( ∫ π

−π
|h(τeiϕ)|dϕ

)
(1− τ)αdτ

]p

(1−R)βdR < +∞.

Theorem 2.5. If 0 < p < ∞, v ≥ 0 and γ ≥ 0, then the class (NA)p,γ,v coincides

with the set of functions representable for z ∈ D as

f(z) = Cλz
λ
∞∏

k=1

(
1− z

zk

)
exp





t + 1

π

∫ 1

0

∫ π

−π

(1− ρ2) ln
∣∣∣1− ρeiϕ

zk

∣∣∣
(1− ρe−iϕz)t+2

ρdρdϕ



 exp{h(z)},
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where for p ≤ 1, t > v+1
p

+ γ − 1 and for p > 1, t > v
p

+ γ, Cλ is a complex number,

λ ≥ 0,
∞∑

k=1

np
k

2k[(pγ+1)+v+1]
< +∞,

and h ∈ H(D) is a function satisfying the condition
∫ 1

0

[
sup

0<τ<R

∫

T
|h(τξ)|dξ(1− τ)γ

]p

(1−R)vdR < +∞.

Theorem 2.6. If 0 < p < ∞, α ≥ 0 and β > 0, then the class N∞, p
α, β coincides with

the set of functions representable for z ∈ D as

f(z) = Cλz
λ
∞∏

k=1

(
1− z

zk

)
exp





t + 1

π

∫ 1

0

∫ π

−π

(1− ρ2) ln
∣∣∣1− ρeiϕ

zk

∣∣∣
(1− ρe−iϕz)t+2

ρdρdϕ



 exp{h(z)},

where n(τ) ≤ C(1− τ)−(α+β+p+1)/p, τ ∈ (0, 1), Cλ is a complex number, λ ≥ 0, and

h ∈ H(D) is a function satisfying the condition

sup
0≤R<1

∫ R

0

[ ∫

T
|h(τξ)|dξ

]p

(1− τ)αdτ(1−R)β < +∞.

We omit the proof of Theorem 2.4 – 2.6, since it immediately follows by the description

of zero sets of the corresponding classes and some standard argument applied in [10]

to some other analytic area Nevanlinna classes.

The given below proofs of Theorems 2.1, 2.2, 2.3 follow mainly by some standard

arguments (see, eg. [2, 10, 11] and their references) based on Lemma A and the

classical Jensen formula, but with more careful examination of estimates.

Proofs follow by the same scheme. First we use the classical Jensen inequality to show

that the conditions (2.1), (2.2) and (2.3) are necessary. Then we prove the converse

statements by application of Lemma A and Proposition A for great enough numbers

t depending on α, β or v and γ.

Proof of Theorem 2.1. Let f ∈ Np
α, β. Then, without loss of generality it can be

assumed that f(0) = 1, f(zk) = 0 (k = 1, 2, . . .). Hence, by Jensen’s inequality

I =
∫ 1

0

[ ∫ R

0
(1− τ)αdτ

∫ τ

0

n(u)

u
du

]p

(1−R)βdR

≤ C2

∫ 1

0

[ ∫

|z|<R
log+ |f(z)|(1− |z|)αdm2(z)

]p

(1−R)βdR.
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Further, it is obvious that
∫ τ

0

n(u)

u
du ≥

∫ τ

τ−R−τ
2

n(u)

u
du ≥ C2 n

(
3τ −R

2

)
R− τ

2
,

and

‖f‖p
Np

α, β
≥ C2

∫ 1

C1

[ ∫ R

C
(R− τ)α+1n

(
3τ −R

2

)
dτ

]p

(1−R)βdR

for any numbers R < 3τ , C1 > C, C < R, C1 < R < 1, C, C1 > 0, α > 0. Besides,

one can see that the following implications are true:

3τ −R

2
= ρ ⇒ τ =

2ρ + R

3
⇒ R− τ =

2(R− ρ)

3
.

Hence,
∫ R

C
(R− τ)α+1n

(
3τ −R

2

)
dτ ≥ C2

∫ R

(3C−R)/2
n(ρ)(R− ρ)α+1dρ.

Suppose C = (4R− 1)/3. Then (3C −R)/2 = R− (1−R)/2 and

‖f‖p
Np

α, β
≥ C2

∫ 1

C1

[ ∫ R

R− 1−R
2

n(ρ)(R− ρ)α+1dρ

]p

(1−R)βdR

≥ C2

∫ 1

C1

[
n

(
3R− 1

2

) ]p

(1−R)(α+1)p+β+pdR

≥ C2

∫ 1

C∗1
[n(ρ)]p(1− ρ)(α+1)p+β+pdρ ³

∞∑

k=1

np
k

2k(p+1)2k(α+1)p+kβ
,

since ∫ 1

0
f(ρ)dρ =

∞∑

k=1

∫ τk+1

τk

f(τ)dτ

for any f ∈ L1(0, 1) and τk = 1− 1
2k+1 (k = 0, 1, 2, . . .) and

n(s1) ≤ n(s2) when 0 ≤ s1 ≤ s2 < 1.

For α ∈ (−1, 0], a similar argument leads to the estimate

‖f‖p
Np

α, β
≥ C2

∫ 1

C1

[ ∫ R

R− 1−R
2

n(ρ)(R− ρ)

(
3− 2ρ−R

3

)α

dρ

]p

(1−R)βdR

≥ C2

∫ 1

C1

[
n

(
3R− 1

2

) ]p

(1−R)(α+1)p+β+pdR.

Then, we continue as in the above case α > 0 and come to the desired statement.

For proving the converse statement, fix a number t so that Lemma A and Proposition

A are applicable. Further, observe that | log |f || and log+ |f | both belong to Np
α, β if
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just one of them is of Np
α, β(D). Hence, for z = τeiϕ, τ = t + 2 we get

∫ π

−π

∣∣∣ log |Πt (z, {zk})|
∣∣∣dϕ ≤ C

∞∑

k=1

(1− |zk|)t+2
∫ π

−π

dϕ

|1− zkeiϕ|τ .

Hence, for great enough values of t

∫ R

0
T (Πt, ρ)(1− ρ)αdρ ≤ C

∫ R

0

∞∑

k=1

(1− |zk|)t+2

(1− zkρ)t+1
(1− ρ)αdρ

≤ C
∫ R

0
(1− ρ)α

∫ 1

0

(1− s)t+2

(1− sρ)t+1
dn(s)dρ = J(R, f).

Therefore,

∫ 1

0

(1− s)t+2

(1− sτ)t+1
dn(s) ≤ C

∫ 1

0

(1− s)t+1

(1− sτ)t+1
n(s)ds,

and hence

∫ 1

0

(1− s)t+1n(s)

(1− sρ)t+1
ds ≤ C

∞∑

k=1

nk

2k(t+2)

1

(1− τkρ)t+1
.

Consequently, for p ≤ 1

J ≤ C
∞∑

k=1

∫ R

0

(1− ρ)αdρ

(1− τkρ)t+1

nk

2k(t+2)
≤ C

∞∑

k=1

nk

2k(t+2)

1

(1− τkR)(t+1)−(α+1)
,

and by the inequality
[ ∑∞

k=1 ak

]p ≤ ∑∞
k=1 ap

k (p ≤ 1) we get

∫ 1

0
Jp(f, R)(1−R)βdR ≤ C

∞∑

k=1

np
k

2k(2p+1+αp+β)
.

If p > 1, then the following estimates are true:

∫ 1

0
Jp(f, R)(1−R)βdR ≤ C

∫ 1

0

[ ∞∑

k=1

∫ R

0

(1− ρ)αdρ

(1− τkρ)t+1

nk

2k(t+2)

]p

(1−R)βdR

≤ C
∫ 1

0

[ ∞∑

k=1

nk

2k(t+2)

1

(1− τkR)(t+1−(α+1))

]p

(1−R)βdR.
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Or, which is the same,

M =
∫ 1

0
Jp(f, R)(1−R)βdR

¹
∫ 1

0
(1−R)β

[ ∫ R

0
(1− ρ)α

∫ 1

0

(1− s)t+2

(1− sρ)t+1
dn(s)dρ

]p

dR

¹
∫ 1

0
(1−R)β

[ ∫ R

0
(1− ρ)α

∫ 1

0

(1− s)t+1

(1− sρ)t+1
n(s)dsdρ

]p

dR

=
∫ 1

0
(1−R)β

[ ∫ R

0
(1− ρ)α

∞∑

k=1

∫ 1−2−(k+1)

1−2−k

(1− s)t+1

(1− sρ)t+1
n(s)dsdρ

]p

dR

¹
∫ 1

0
(1−R)β

[ ∫ R

0

∞∑

k=1

nk
2−k(t+2)(1− ρ)αdρ

(1− ρτk)t+1

]p

dR

¹
∫ 1

0
(1−R)β

[ ∞∑

k=1

nk2
−k(t+2) 1

(1−Rτk)t−α

]p

dR, t > α.

Hence,

M ¹
∫ 1

0
(1−R)β

[ ∫ 1

0

n(ρ)(1− ρ)t+1

(1− ρR)t−α
dρ

]p

dR

=
∫ 1

0
(1−R)β/p

( ∫ R

0
+

∫ 1

R

)
ψ(R)dR = I1 + I2

for any function ψ ≥ 0 such that ‖ψ‖Lq = 1 (1/p + 1/q = 1). Using the Hardy and

Hölder inequalities, one can be convinced that

I1 =
∫ 1

0
n(ρ)(1− ρ)t+1

∫ ρ

0

(1−R)β/pψ(R)

(1− ρR)t−α
dRdρ

¹
∫ 1

0
n(ρ)(1− ρ)t+1+β

p
+α−t+1

∫ ρ

0

ψ(R)

1−R
dRdρ,

I1 ≤
∫ 1

0

ψ(τ)

1− τ

∫ 1

τ
n(ρ)(1− ρ)

β
p
+α+2dρdτ

≤
( ∫ 1

0
ψq(τ)dτ

) 1
q

·
( ∫ 1

0

(
1

1− τ

∫ 1−τ

0
n(1− t)t

β
p
+α+2dt

)p

dτ

) 1
p

and hence

I1 ¹
∫ 1

0
n(ρ)p(1− ρ)p+β+αp+pdρ.

For β < 0 above we used (1 − R)
β
p < (1 − ρ)

β
p , R ≤ ρ < 1 for β ≥ 0, (1 − R)

β
p <

(1− ρR)
β
p , ρ,R ∈ (0, 1), for t > max

{
(α + β/p) + max{1, 1/p}, (α + 1)

}
. Besides for
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β ≥ 0 again by Hölder and Hardy inequalities we will have

I2 =
∫ 1

0
n(ρ)(1− ρ)t+1

∫ 1

ρ

(1−R)β/pψ(R)dR

(1− ρR)t−α

¹
∫ 1

0
n(ρ)(1− ρ)1+β

p
+α

∫ 1−ρ

0
ψ(1− u)dudρ

¹
[ ∫ 1

0
n(ρ)p(1− ρ)p+β+αp+pdρ

]1/p[ ∫ 1

0

(
1

1− ρ

∫ 1−ρ

0
ψ(1− u)du

)q]1/q

¹ B · C‖ψ‖Lq , q > 1.

where

B =

[ ∫ 1

0
n(ρ)p(1− ρ)2p+β+αpdρ

]1/p

³
[ ∞∑

k=1

np
k

2k(p+1)2k(α+1)p+kβ

]1/p

for t > max
{
(α + β/p) + max{1, 1/p}, (α + 1)

}
.

The estimate of I2 in case of β < 0 needs small modification of mentioned arguments

and we omit details.

Now we shall show that for great enough numbers t Lemma A and Proposition A are

applicable. To this end, we prove that if t > max
{
(α+β/p)+max{1, 1/p}, (α+1)

}
,

then
∑∞

k=1(1− |zk|)t+2 < ∞. Hence, the condition

∞∑

k=1

np
k

2k(β+αp+2p+1)
< ∞

will imply the convergence of the product Πt(z, {zk}).
Indeed, the obvious inequality

∫ 1

0
np(τ)(1− τ)β+αp+2pdτ < +∞

implies that
∫ 1

τ1
np(τ)(1− τ)β+αp+2pdτ → 0 as τ1 → 1.

Hence, for β + αp + 2p > −1

np(τ)(1− τ)β+αp+2p+1 → 0 as τ → 1,
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and therefore n(τ) ≤ C(1− τ)−(β+αp+2p+1)/p (0 < τ < 1). Consequently,

∞∑

k=1

(1− |zk|)t+2 ≤ C
∞∑

k=1

∑

zk∈Bk

(1− |zk|)t+2nk

≤ C
∞∑

k=1

∑

zk∈Bk

(1− |zk|)t+2−(β+αp+2p+1)/p

≤ C
∞∑

k=1

1

2k[t−(β+1)/p−α]
< +∞

where Bk = {zk : |zk| ∈ (τk, τk+1)} and t > max
{
(α + β/p) + max{1, 1/p}, (α + 1)

}
.

Thus, the latter requirement on t provides the convergence of the product Πt(z, {zk}),
and the proof is complete. ¤

Proof of Theorem 2.2. We start as in Proof of Theorem 2.1. By the classical Jensen

inequality (see, eg. [2])

∫ 1

0

[
sup

0<τ<R

( ∫ τ

0

n(u)

u
du

)
(1− τ)γ

]p

(1−R)vdR ≤ C‖f‖p
(NA)p,γ,v

.

Therefore, the following inequalities are true for any R, R̃ ∈ (1/3, 1) such that R̃ =

(3R− 1)/2 < R:

sup
0<τ<R

∫ τ

0

n(u)

u
du(1− τ)γ ≥ C sup

1/3<τ<R

∫ τ

τ− 1−τ
2

n(u)

u
du(1− τ)γ

≥ C sup
1/3<τ<R

n
(

3τ − 1

2

)
(1− τ)(1− τ)γ

≥ C sup
ρ∈(0,R̃)

n(ρ)(1− ρ)γ+1

≥ C sup
ρ∈(C,R̃)

n(ρ)(1− ρ)γ+1

Besides, one can see that for
˜̃
R = R̃− (1− R̃)/2

‖f‖p
(NA)p,γ,v

≥ C
∫ 1

τ0
(1−R)v sup

ρ∈(
˜̃
R,R̃)

n(ρ)p(1− ρ)(γ+1)pdR

and

‖f‖p
(NA)p,γ,v

≥ C
∫ 1

τ0
(1− R̃)p(γ+1)+vn(R̃)pdR ≥ C

∫ 1

τ0
n(

˜̃
R)p(1− R̃)p(γ+1)+vdR̃

≥ C
∞∑

k=1

np
k

2k[p(γ+1)+v+1]
, nk = n

(
1− 2−k

)
, k = 0, 1, 2, 3, . . . .
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For proving the converse statement, we fix a number t such that Lemma A and

Proposition A can be used. Then, we observe that for p ≤ 1

‖f‖p
(NA)p,γ,v

=
∫ 1

0

[
sup

0<τ<R
T (τ, f)(1− τ)γ

]p

(1−R)vdR

and
∫ π

−π

∣∣∣ log
∣∣∣Πt(z, {zk})

∣∣∣
∣∣∣dϕ ≤ C

∞∑

k=1

(1− |zk|)t+2
∫ π

−π

dϕ

|1− ττkeiϕ|t+2
,

where it is denoted |zk| = τk and zk = τkξk, τk = 1− 1
2k+1 . Hence

‖Πt‖p
(NA)p,γ,v

≤ C
∫ 1

0

[ ∞∑

k=1

(1− |zk|)t+2

(1−R|zk|)t+1−γ

]p

(1−R)vdR

≤ C
∫ 1

0
(1−R)v

[ ∫ 1

0

(1− s)t+1n(s)ds

(1−Rs)t+1−γ

]p

dR

≤ C
∫ 1

0
(1−R)v

∞∑

k=1

np
k2
−k[(t+1)p+p]

[
1−

(
1− 1

2k+1

)
R

](t+1−γ)p
dR

≤ C
∞∑

k=1

np
k

2−k(t+1)p2−kp

2−k[(t+1−γ)p−v−1]
≤ C

∞∑

k=1

np
k

2k[p(γ+1)+v+1]

for t > (v + 1)/p + γ − 1, since one can easily verify that

∞∑

k=1

(1− |zk|)t+2

(1−R|zk|)t+1−γ
=

∫ 1

0

(1− s)t+2dn(s)

(1−Rs)t+1−γ

=
(1− s)t+2n(s)

(1−Rs)t+1−γ

∣∣∣∣∣
1

0

−
∫ 1

0
n(s)

(
(1− s)t+2

(1−Rs)t+1−γ

)′

s

ds

= −
∫ 1

0
n(s)

[−(t + 2)(1− s)t+1

(1−Rs)t+1−γ
+

(1− s)t+2(−(t + 1− γ))

(1−Rs)t+2−γ
(−R)

]
ds

=
∫ 1

0

n(s)(t + 2)(1− s)t+1ds

(1−Rs)t+1−γ
−

∫ 1

0

n(s)(1− s)t+2

(1−Rs)t+2−γ
(t + 1− γ)Rds

≤ C
∫ 1

0

n(s)(1− s)t+1

(1−Rs)t+1−γ
(t + 2)ds,

that

[ ∫ 1

0

n(s)(1− s)t+1

(1−Rs)t+1−γ
ds

]p

≤ C

[ ∞∑

k=1

n
(
1− 2−k−1

)
2−k(t+1)2−k

(1− ρkR)t+1−γ

]p

≤ C
∞∑

k=1

np
k2
−k(t+1)p2−kp

(1− ρkR)(t+1−γ)p
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and that for any τ = (t + 1− γ)p− (v + 1) > 0 and v > −1

∫ 1

0

(1−R)v

(1− ρkR)(t+1−γ)p
dR ≤ C

(
1

2−k

)τ

, ρk = 1− 1

2k
(k = 0, 1, 2, . . .).

Now, let p > 1. Then for the conjugate index q > 1 deduced by 1/p + 1/q = 1 and

any t > γ − 1

∥∥∥Πt

∥∥∥
p

(NA)p,γ,v
≤ C

∫ 1

0

[ ∫ 1

0

n(s)(1− s)t+1ds

(1−Rs)t+1−γ

]p

(1−R)vdR

= C

[
I1 + I2

]

= C
∫ 1

0
(1−R)

v
p ψ(R)

( ∫ 1

0

n(s)(1− s)t+1ds

(1−Rs)t+1−γ

)
dR,

where ψ is a nonnegative function such that ‖ψ‖Lq = 1,

I1 =
∫ 1

0

n(s)(1− s)t+1

(1−Rs)t+1−γ

( ∫ s

0
ψ(R)(1−R)v/pdR

)
ds

I2 =
∫ 1

0

n(s)(1− s)t+1

(1−Rs)t+1−γ

( ∫ 1

s
ψ(R)(1−R)v/pdR

)
ds

and

I1 ≤ C
∫ 1

0
n(s)(1− s)t+1

∫ s

0

ψ(R)(1−R)v/p

(1−R)t+1−γ
dRds.

Further, by Hardy and Hölder inequalities

I1 ≤ C
∫ 1

0

n(s)(1− s)t+1

(1− s)t−γ−v/p

∫ s

0

ψ(R)

1−R
dRds

≤ C
∫ 1

0
[n(s)]p(1− s)γp+p+vds

³
∞∑

k=1

np
k

2k(p(γ+1)+v+1)
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for t > γ + v/p. Besides, for t > γ − 1

I2 =
∫ 1

0
n(s)(1− s)t+1ds

∫ 1

s

(1−R)v/pψ(R)

(1− sR)t+1−γ
dR

≤ C
∫ 1

0
n(s)

(1− s)t+1

(1− s)t+1

( ∫ 1

s

(1−R)v/pψ(R)

(1− sR)−γ
dR

)
ds

=
∫ 1

0
n(s)

( ∫ 1

s

(1−R)v/pψ(R)

(1− s)−γ
dR

)
ds

≤ C
∫ 1

0
n(s)(1− s)

v
p
+γ

∫ 1−s

0
ψ(1− u)duds

≤ C

[ ∫ 1

0
(n(s))p(1− s)v+γp+pds

]1/p[ ∫ 1

0

(
1

1− s

∫ 1−s

0
ψ(1− u)du

)q

ds

]1/q

≤ C‖ψ‖Lq

[ ∫ 1

0
(n(s))p(1− s)v+γp+pds

]1/p

³ C‖ψ‖Lq

∞∑

k=1

np
k

2k[p(γ+1)+v+1]
.

As at the end of Proof of Theorem 2.1, it remains to show that the infinite product

Πt converges for the considered values of t. This is done in a similar way, and we

omit the proof. ¤

Proof of Theorem 2.3. Without loss of generality, we assume that f(0) = 1, f(zk) = 0

(k = 1, 2, . . .). Then by Jensen’s inequality

J = sup
C1<R<1

( ∫ R

R/3

[ ∫ τ

C∗

n(u)

u
du

]p

(1− τ)αdτ

)
(1−R)β

≤ C sup
C1<R<1

∫ R

0

[ ∫

T
log+ |f(τξ)|dξ

]p

(1− τ)αdτ(1−R)β,

where C1 > 0 is some constant and C∗ = τ − (R − τ)/2. Estimating the left-hand

side of the above inequality from below, we get

J ≥ sup
C1<R<1

( ∫ R

R/3

[
n

(
3τ −R

2

)]p (
R− τ

2

)p+α

dτ

)
(1−R)β

≥ sup
C1<R<1

( ∫ R

R− 1−R
3

[n(ρ)]p(R− ρ)α+pdρ

)
(1−R)β

≥ sup
C1<R<1

( [
n

(
3R− 1

2

)]p

(1−R)1+p+α+β

)

≥ C[n(ρ)]p(1− ρ)1+p+α+β,
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where ρ = (3R− 1)/2 and

n(ρ) ≤ C(1− ρ)−(α+β+1+p)/p

for any ρ ∈ (0, 1), α ≥ 0 and β > 0.

For proving the converse statement, we use Proposition A, Lemma A and the latter

inequality for n(ρ). We start by fixing some t for which Lemma A and Proposition

A are applicable. Then, similar to Proof of Theorem 2.1,

∥∥∥Πt(z, zk)
∥∥∥

p

N∞, p
α, β

≤ C sup
C1<R<1

(1−R)β
∫ R

0
(1− ρ)α

[ ∫ 1

0

(1− t2)t+1

(1− ρt)t+1
n(t)dt

]p

dρ

≤ C sup
C1<R<1

(1−R)β
∫ R

0
(1− ρ)α

[ ∫ 1

0

(1− s2)t+1−(α+p+β+1)/p

(1− ρs)t+1
ds

]p

dρ

≤ C sup
C1<R<1

(1−R)β

(1−R)β
≤ C.

Now, integrating by parts for t > (α + β + 1)/p− 1 and β̃ = t− (α + β + 1)/p > −1

we get

∑

|zk|<R

(1− |zk|)t+2 =
∫ R

0
(1− s)t+2dn(s) ≤ C

∫ R

0
(1− s)β̃ds < +∞.

Thus, these values of t provide the applicability of Lemma A and Proposition A, and

the proof is complete. ¤

Remark 2.1. It is not difficult to extend the statements and the forthcoming proofs

of Theorems 2.1, 2.2, 2.3 to more general, slowly varying weights w(1 − τ) from the

class S (see the works [2, 9, 10, 11] and their references).

Remark 2.2. The analogs of Theorems 2.1, 2.2, 2.3 on zero sets and parametric rep-

resentations are true for the area Nevanlinna type classes in the upper half-plane C+,

which are the analogs of the analytic classes considered above (see [14]).

Acknowledgment: The authors thank the referee for his various valuable sugges-

tions concerning the exposition of this note.

References

[1] R. Adams, Sobolev Spaces, Academic Press, 1975.
[2] A. Djrbashian, F. Shamoyan, Topics in the Theory of Ap

α Spaces, Leipzig, Teubner-Texte zur
Mathematik, 1988.



DESCRIPTIONS OF ZERO SETS AND PARAMETRIC REPRESENTATIONS 89

[3] M. M. Djrbashian, On Canonical Representation of Functions Meromorphic in the Unit Disc,
Dokl. Akad. Nauk. Arm. SSR, 3 (1), 3-9 (1945).

[4] M. Djrbashian, Integral transforms and representations of functions in the complex plane,
Moscow, Nauka, 1966. (Russian)

[5] M. Djrbashian, V. Zakharyan, Classes and boundary properties of functions that are meromor-
phic in the disk, (Russian) Nauka, Moscow, 1993.

[6] H. Hedenmalm, B. Korenblum and K. Zhu, Theory of Bergman spaces, Graduate Graduate
Texts in Mathematics, 199, Springer-Verlag, New York, 2000.

[7] C. Horowitz, Zeros of functions in Bergman spaces, Duke Math Journal, 41 (1974), 693-710.
[8] A. M. Jerbashian, Functions of α-Bounded Type in the Half-Plane, Advances in Complex Anal-

ysis and Applications (Springer, 2005).
[9] E. Seneta, Regularly varying functions, Nauka, Moscow, 1985. (Russian)

[10] F. Shamoyan, Parametric representation and description of the root sets of weighted classes of
functions holomorphic in the disk, Siberian Math Journal, 40 (6) (1999), 1211-1229.

[11] F. Shamoyan, E. Shubabko, Parametric representations of some classes of holomorphic func-
tions in the unit disk, Operator theory advances and applications, Basel, Verlag, Birkhauser,
113 (2000), 331-338.

[12] R. Shamoyan, H. Li, Descriptions of zero sets and parametric representations of certain ana-
lytic Area Nevanlinna type classes in the unit disk, Proceedings of A. Razmadze Mathematical
Institute, 151 (2009), 103-108.

[13] R. Shamoyan, H. Li, Characterizations of closed ideals and main parts of some analytic and
meromorphic classes of area Nevanlinna type, International Journal of Statistics and Mathe-
matics, 2010, to appear.

[14] R. Shamoyan, O. Mihic, On zeros of some analytic spaces of area Nevanlinna type in a halfplane,
Trudy Petrozavodskogo Universiteta, 2010, accepted.

1Department of Mathematics,
Bryansk State University,
Bryansk 241050, Russia.
E-mail address: rsham@mail.ru

2College of Mathematics and Information Science,
Henan Normal University,
Xinxiang 453007, P. R. China
E-mail address: tslhy2001@yahoo.com.cn


