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BIMINIMAL GENERAL HELIX IN
THE HEISENBERG GROUP Heis®

ESSIN TURHAN AND TALAT KORPINAR

ABSTRACT. In this paper, we study biminimal curves and characterize non-geodesic
biminimal general helix in the Heisenberg group Heis®. We show that non-geodesic
biminimal general helix are biharmonic curves. Morover, we obtain the position
vectors of biminimal general helix in the Heisenberg group Heis®.

1. INTRODUCTION

Let f: (M, g) — (N, h) be a smooth function between two Riemannian manifolds.
Then f is said to be harmonic over compact domain 2 C M if it is a critical point

of the energy
E(f)= [ h(df,df)dv,
where dv, is the volume form of M. From the first variation formula it follows that

is harmonic if and only if its tension field 7 (f) = trace,Vdf vanishes.
The bienergy Eq(f) of f over compact domain 2 C M is defined by

(1) By (f) = [ h(r(f).7 () dv,

Using the first variational formula one sees that f is a biharmonic map if and only if

its bitension field vanishes identically, i.e.,
(1.2) F(f) = =D (1(f)) — trace, RN (df, 7(f))df = 0,
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where
(1.3) A = —trace,(V/)? = —trace, (Vfo - VfVM>

is the Laplacian on sections of the pull-back bundle f~*(T'N) and R" is the curvature
operator of (N, h) defined by

R(X, Y)Z = —[VX, VY]Z + V[Xy]Z.

An isometric immersion f : (M, g) — (N, h) is called a A—biminimal immersion if

it is a critical point of the functional:
Esx(f) = Ea(f)+ AE(f) ,A€R

with respect to all normal variations.

The Euler-Lagrange equation for A—biminimal immersions is
(1.4) () =x7(f).

In particular, f is called a biminimal immersion if it is a critical point of the bienergy
functional Fy with respect to all normal variation with compact support. Here, a
normal variation means a variation {f;} through f = fy such that the variational
vector field V' = df;/dt|;— is normal to M.

The Euler-Lagrange equation of this variational problem is 7(f)* = 0. Here 7(f)*
is the normal component of 7(f).

In this paper, we study biminimal curves and we characterize non geodesic bimini-
mal general helix in Heisenberg group Heis®. Morover, we obtain the position vectors

of a biminimal general helix in the Heisenberg group Heis?.

2. LEFT INVARIANT METRIC IN THE HEISENBERG GROUP Heis?

Heisenberg group Heis® can be seen as the space R? endowed with multiplication:

1 1
Heis? is a three-dimensional, connected, simply connected and 2-step nilpotent Lie

group.
The Riemannian metric g given by

(2.2) g =dz* +dy* + (dz + %dx - gdy)Q.
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The Lie algebra of Heis® has an orthonormal basis

_9 yo _90, 20 _90
 Ox 20z 62_83/ 202 7 92

for which we have the Lie products

(23) €1

le1,e2] = e3, [ea,e3] =0, [es,er] =0,
with
9(61,61) = 9(62,62) = 9(63763) = 1.

Proposition 2.1. For the covariant derivatives of the Levi-Civita connection of the

left-invariant metric g, defined above is given by:

1 0 €3 —€9
(24) V= —€3 0 €1 s
2
—€y €1 0

where the (i, j)-element in the table above equals V. e; for our basis
{eka k= 17 27 3} = {617 €2, 63}'

We adopt the following notation and sign convention for Riemannian curvature

operator

R(X,Y)Z = -VxVyZ +VyVxZ+ VixvZ,
the Riemannian curvature tensor is given by
R(X,)Y,Z,W)=g(R(X,Y)Z, W),

where X, Y, Z, W are smooth vector fields on Heis?.
The components {R;;i} of R relative to {ej, ez, e3} are defined by

g (R(ei, e5)er, e1) = Rijn-
The non vanishing components of the above tensor fields are

__3 _1 _3
Rig1 = —4e2, Riz1 = 7€3, Rixp = jey,

_1 _ 1 _ 1
Ragp = 263, Ri33 = —31€1, Ras3 = —1€2,

(2.5) Ripio = =2, Rizis = Rosos = 5.
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3. BIMINIMAL CURVES IN THE HEISENBERG GROUP Heis®

Let v : I — Heis® be a differentiable curve parametrized by arc length and let
{T, N, B} be the orthonormal frame field tangent to Heis® along v and defined as
follows: by T we denote the unit vector field 4/ tangent to 7, by N the unit vector
field in the direction of V77T normal to «y, and we choose B so that {T, N, B} is a

positive oriented orthonormal basis. Then we have the following Frenet equations

VT = kN,
(3.1) VoN = —kT — 7B,
VTB = TN,

where k = |7(y)| = |VrT| is the curvature of v and 7 its torsion. Expand T, N, B as
T =Tier + Taes + Tzes,
N =Nie; + Noes + Nses,
B =Byey + Byes + Bses,

with respect to the basis {ej, ez, e3}.

We can write the tension field of v as
7(v) = VT,
and the bitension field of v as
(3.2) 7(v) = VAT — R(T,V1T)T.

Theorem 3.1. Let v : I — Heis® be a differentiable curve parametrized by arc length.

Then is a non-geodesic biminimal curve if and only if
1
(3.3) K — k3 — kr? = k(1 — B3),
(34) 27'k'l + kTI = kNng.
Proof. Using (3.1) and (3.2), we obtain
7(y) = V3T — kR(T, N)T
= (=3kKT + (K" — k* — k7*)N + (27K + k7")B — kR(T, N)T.
From the vanishing of the normal components
' —k* —kr* —kR(T,N,T,N) =0,

(3.5)
27k + k7' — kR(T,N, T, B) = 0.
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On the other hand, using (2.5), we have

3
R(T, N, T, N) - Z ]}NpﬂNlem]’
i,j,l,p:1

=T1NoT1 Ny Ryg12 + T1NoTo N1 Ryogy
+15N1To Ny Ra121 + ToN1T1 No Raqia
+11N3T1 N3 Rigis + T1N3T3 N1 Ryss
+13N1T3N1 R3131 + T3N1T1 N3 R3113
+15N3T5 N3 Rozaz + ToN3T3 N2 Rosso
+13N2T3N3 R3a30 + T3 N2 1o N3 R3oo3

_inNZQ + iT1N2T2N1 - iTng + iT2N1T1N2
—l—i N3 — éllT1N3T3N1 + leTgQNf - iTSNlTlN?;
+iT22N32 - iT2N3T3N2 + 411 SNG — iT3N2T2N3
= — i(TlNQ — ToN1)* + i(TlNg — T3N,)?

1
+7(TaN3 — T3N»)?.
From B? + B2 + B2 =1 and the fact that B =T x N, we obtain
1
R(T,N,T,N) = 1 B3,
Similarly, we have
R(T,N,T,B) = N3Bs.

These, together with (3.5), complete the proof of the theorem. O

The equations (3.3) and (3.4) can be deduced from ([1], (3.5)). Note that in [4],

biminimal Legendre curves in Heis® are studied.

4. BIMINIMAL GENERAL HELIX IN THE HEISENBERG GROUP Heis?

Definition 4.1. (see, for ezample, [8]) Let v : I — Heis® be a curve of Heisenberg
group Heis® and {T, N, B} be a Frenet frame on Heis® along . If k and 7 are

positive constant along ~, then v is called a helix with respect to Frenet frame.
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Definition 4.2. (see, for example, [8]) Let v : I — Heis® be a curve of Heisenberg
group Heis® and {T, N, B} be a Frenet frame on Heis® along 7. A curve «y such that

— = constant
-

is called a general helix with respect to Frenet frame.

Theorem 4.1. Let vy : I — Heis® be a non-geodesic biminimal general heliz parametrized

by arc length if N3Bs = constant, then v is a helix.

Proof. We can use (3.1) to compute the covariant derivatives of the vector fields
T,N,B as:

VTT :(Tll —|— T2T3)61 —|— (T2/ + 2T1T3)€2 —f- Té637
1 1
VTN :(N{ + §(T2N3 -+ T3N2))€1 + (Né — §(T1N3 + T3N1))€2
1
(4.1) + (N3 + §(T1N2 — TyNy))es,
1 1
VTB :(Bi + §(T233 + TgBQ))el + (Bé — §(T‘lBg + T331))€2
1
+ (N:; + §(T1N2 — TQNl))Gg.
It follows that the first components of these vectors are given by
< V7T, e3 >= Té,
1
(42) < VrN,e3 >= Né + §(T1N2 — T2N1)7
1
< VTB, €3 >= Bé + §(T1B2 — TQBl).
On the other hand, using Frenet formulas (3.1), we have,
< V71T, e3 >= kN3,
(4.3) < VrN,e3 >= —kT3 — 7B;,
< VrB,e3 >= 7N3.
These, together with (4.2) and (4.3), give
Ty =kNs,
1
(4.4) N§+§B3 = — kT35 — 7B,

1
Bé + §N3 :TNg.
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From (4.4), we have
1
(4.5) By = (1 — §)N3.

Suppose that v is a be a non-geodesic biminimal general helix with respect to the
Frenet frame {7, N, B}. Then,

k
4. — =c.
(4.6) —=c
Using (4.6), we have
(4.7) KT =1k

We substitute (4.7) in (3.4), we obtain

1
(4.8) K= SNoBs, 7= gNng.

From N3Bs; =constant it follows that
(4.9) k' = 0.

We substitute (4.9) in (3.3), we obtain

1
(4.10) k2+72:B§—1.
Next we replace 7 = k/c in (4.10)
1 1
2 _ 2 1
(4.11) k= T c%(BS 4).

If (4.11) derived and taking into account (4.5) and (4.8), becomes
37— 1)

4.12 k= 27

(4.12) 1+ 5
Substituting (4.6) in (4.12), we have

(4.13) k = constant.

From (4.6), we obtain

T = constant,

which implies v circular helix. U
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Theorem 4.2. Let~y : I — Heis® be a non-geodesic biminimal general heliz parametrized

by arc length and N3Bs = constant. Then the position vector of the curve 7 (s)

v(s) = <3+C’1ksin (31/B§ — i) — Cyk cos (s\/Bg — i) — Bé“%) T (s)
+ (cl cos (s\/Bg — i) + ¢o8in (s\/Bg — i) - ngi> N (s)
+ (ClT sin (31/B§ — i) — Cy7 cos (31/B§ — i) — B’?_Si) B (s),

where c1,co € R, C] = ——— and Cy = —=2

Proof. If v (s) is a non-geodesic biharmonic curve. Then we can write its position

vector as follows:

(4.14) V(8) =&(8)T(s) +n(s) N(s)+p(s) B(s)

for some differentiable functions £, 7 and p of s € I C R. These functions are called
component functions (or simply components) of the position vector.

Differentiating (4.14) with respect to s and by using the corresponding Frenet
equation (3.1), we find

§'(s) —n(s)k =L,
(4.15) ' (s) +&(s)k+p(s)T =0,
p'(s) =n(s)T=0.

From (4.15) we get the following differential equation:
(4.16) 0" (s) + (k* + 7)1 (s) + k = 0.

By using (3.3) we find

(4.17) n" (s) + (jl — BHn(s)+k=0.

The solution of (4.17) is

1 . 1 k
(4.18) n(s) = ¢ cos (3\/%) + ¢ sin (8\/33%7_4) - B?)Qi_%’

where ¢, ¢y € R.
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From &' (s) = n(s) k + 1 and using (4.18) we find the solution of this equation as

follows:

k. , 1
€ (s) —s—f-?sm (s 33—4)

4

cok , 1 ks
— ————cos|sy/Bf— - | — ————.
/B -1 V7)) Byl

By using (4.18) we find the solution of p’ (s) = 7 (s) 7 as follows:

C1 7T . 1
- (B2 - =
p(s) : %sm (s 3 4)

CoT | o 1 kts
_ \/Bg?_i COS | S Bg — Z - Bgi—%
Substituting (4.18), (4.19) and (4.20) in (4.14) complete the proof of the theorem.
0

(4.19)

(4.20)

Corollary 4.1. If v is non-geodesic biminimal general helix and N3Bs = constant, ~y

18 a biharmonic curve.
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