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BIMINIMAL GENERAL HELIX IN

THE HEISENBERG GROUP Heis3

ESSIN TURHAN AND TALAT KÖRPINAR

Abstract. In this paper, we study biminimal curves and characterize non-geodesic
biminimal general helix in the Heisenberg group Heis3. We show that non-geodesic
biminimal general helix are biharmonic curves. Morover, we obtain the position
vectors of biminimal general helix in the Heisenberg group Heis3.

1. Introduction

Let f : (M, g) → (N, h) be a smooth function between two Riemannian manifolds.

Then f is said to be harmonic over compact domain Ω ⊂ M if it is a critical point

of the energy

E (f) =
∫

Ω
h (df, df) dvg,

where dvg is the volume form of M . From the first variation formula it follows that

is harmonic if and only if its tension field τ (f) = traceg∇df vanishes.

The bienergy E2(f) of f over compact domain Ω ⊂ M is defined by

(1.1) E2 (f) =
∫

Ω
h (τ (f) , τ (f)) dvg.

Using the first variational formula one sees that f is a biharmonic map if and only if

its bitension field vanishes identically, i.e.,

(1.2) τ̃(f) := −4f (τ(f))− tracegR
N(df, τ(f))df = 0,
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where

(1.3) 4f = −traceg(∇f )2 = −traceg

(
∇f∇f −∇f

∇M

)

is the Laplacian on sections of the pull-back bundle f−1(TN) and RN is the curvature

operator of (N, h) defined by

R(X, Y )Z = −[∇X ,∇Y ]Z +∇[X,Y ]Z.

An isometric immersion f : (M, g) → (N, h) is called a λ−biminimal immersion if

it is a critical point of the functional:

E2,λ(f) = E2(f) + λE(f) , λ ∈ R

with respect to all normal variations.

The Euler-Lagrange equation for λ−biminimal immersions is

(1.4) τ̃(f)⊥ = λτ(f).

In particular, f is called a biminimal immersion if it is a critical point of the bienergy

functional E2 with respect to all normal variation with compact support. Here, a

normal variation means a variation {ft} through f = f0 such that the variational

vector field V = dft/dt|t=0 is normal to M .

The Euler-Lagrange equation of this variational problem is τ̃(f)⊥ = 0. Here τ̃(f)⊥

is the normal component of τ̃(f).

In this paper, we study biminimal curves and we characterize non geodesic bimini-

mal general helix in Heisenberg group Heis3. Morover, we obtain the position vectors

of a biminimal general helix in the Heisenberg group Heis3.

2. Left invariant metric in the Heisenberg group Heis3

Heisenberg group Heis3 can be seen as the space R3 endowed with multiplication:

(2.1) (x, y, z)(x, y, z) = (x + x, y + y, z + z − 1

2
xy +

1

2
xy).

Heis3 is a three-dimensional, connected, simply connected and 2-step nilpotent Lie

group.

The Riemannian metric g given by

(2.2) g = dx2 + dy2 + (dz +
y

2
dx− x

2
dy)2.
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The Lie algebra of Heis3 has an orthonormal basis

(2.3) e1 =
∂

∂x
− y

2

∂

∂z
, e2 =

∂

∂y
+

x

2

∂

∂z
, e3 =

∂

∂z
,

for which we have the Lie products

[e1, e2] = e3, [e2, e3] = 0, [e3, e1] = 0 ,

with

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1.

Proposition 2.1. For the covariant derivatives of the Levi-Civita connection of the

left-invariant metric g, defined above is given by:

(2.4) ∇ =
1

2




0 e3 −e2

−e3 0 e1

−e2 e1 0


 ,

where the (i, j)-element in the table above equals ∇ei
ej for our basis

{ek, k = 1, 2, 3} = {e1, e2, e3}.

We adopt the following notation and sign convention for Riemannian curvature

operator

R(X, Y )Z = −∇X∇Y Z +∇Y∇XZ +∇[X,Y ]Z,

the Riemannian curvature tensor is given by

R (X,Y, Z,W ) = g(R (X, Y )Z, W ) ,

where X, Y, Z, W are smooth vector fields on Heis3.

The components {Rijkl} of R relative to {e1, e2, e3} are defined by

g (R(ei, ej)ek, el) = Rijkl.

The non vanishing components of the above tensor fields are

R121 = −3
4
e2, R131 = 1

4
e3, R122 = 3

4
e1,

R232 = 1
4
e3, R133 = −1

4
e1, R233 = −1

4
e2,

and

(2.5) R1212 = −3
4
, R1313 = R2323 = 1

4
.
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3. Biminimal curves in the Heisenberg group Heis3

Let γ : I → Heis3 be a differentiable curve parametrized by arc length and let

{T, N, B} be the orthonormal frame field tangent to Heis3 along γ and defined as

follows: by T we denote the unit vector field γ′ tangent to γ, by N the unit vector

field in the direction of ∇T T normal to γ, and we choose B so that {T, N,B} is a

positive oriented orthonormal basis. Then we have the following Frenet equations

∇T T = kN,

∇T N = −kT − τB,

∇T B = τN,

(3.1)

where k = |τ(γ)| = |∇T T | is the curvature of γ and τ its torsion. Expand T,N, B as

T =T1e1 + T2e2 + T3e3,

N =N1e1 + N2e2 + N3e3,

B =B1e1 + B2e2 + B3e3,

with respect to the basis {e1, e2, e3}.
We can write the tension field of γ as

τ(γ) = ∇T T,

and the bitension field of γ as

(3.2) τ̃(γ) = ∇3
T T −R(T,∇T T )T.

Theorem 3.1. Let γ : I → Heis3 be a differentiable curve parametrized by arc length.

Then is a non-geodesic biminimal curve if and only if

(3.3) k′′ − k3 − kτ 2 = k(
1

4
−B2

3),

(3.4) 2τk′ + kτ ′ = kN3B3.

Proof. Using (3.1) and (3.2), we obtain

τ̃(γ) = ∇3
T T − kR(T, N)T

= (−3kk′)T + (k′′ − k3 − kτ 2)N + (2τk′ + kτ ′)B − kR(T,N)T.

From the vanishing of the normal components

k′′ − k3 − kτ 2 − kR(T, N, T, N) = 0,

2τk′ + kτ ′ − kR(T, N, T, B) = 0.
(3.5)
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On the other hand, using (2.5), we have

R(T, N, T, N) =
3∑

i,j,l,p=1

TlNpTiNjRlpij

=T1N2T1N2R1212 + T1N2T2N1R1221

+T2N1T2N1R2121 + T2N1T1N2R2112

+T1N3T1N3R1313 + T1N3T3N1R1331

+T3N1T3N1R3131 + T3N1T1N3R3113

+T2N3T2N3R2323 + T2N3T3N2R2332

+T3N2T3N2R3232 + T3N2T2N3R3223

−3

4
T 2

1 N2
2 +

3

4
T1N2T2N1 − 3

4
T 2

2 N2
1 +

3

4
T2N1T1N2

+
1

4
T 2

1 N2
3 −

1

4
T1N3T3N1 +

1

4
T 2

3 N2
1 −

1

4
T3N1T1N3

+
1

4
T 2

2 N2
3 −

1

4
T2N3T3N2 +

1

4
T 2

3 N2
2 −

1

4
T3N2T2N3

=− 3

4
(T1N2 − T2N1)

2 +
1

4
(T1N3 − T3N1)

2

+
1

4
(T2N3 − T3N2)

2.

From B2
1 + B2

2 + B2
3 = 1 and the fact that B = T ×N , we obtain

R(T, N, T, N) =
1

4
−B2

3 .

Similarly, we have

R(T, N, T, B) = N3B3.

These, together with (3.5), complete the proof of the theorem. ¤

The equations (3.3) and (3.4) can be deduced from ([1], (3.5)). Note that in [4],

biminimal Legendre curves in Heis3 are studied.

4. Biminimal general helix in the Heisenberg group Heis3

Definition 4.1. (see, for example, [8]) Let γ : I → Heis3 be a curve of Heisenberg

group Heis3 and {T, N, B} be a Frenet frame on Heis3 along γ. If k and τ are

positive constant along γ, then γ is called a helix with respect to Frenet frame.
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Definition 4.2. (see, for example, [8]) Let γ : I → Heis3 be a curve of Heisenberg

group Heis3 and {T, N,B} be a Frenet frame on Heis3 along γ. A curve γ such that

k

τ
= constant

is called a general helix with respect to Frenet frame.

Theorem 4.1. Let γ : I → Heis3 be a non-geodesic biminimal general helix parametrized

by arc length if N3B3 = constant, then γ is a helix.

Proof. We can use (3.1) to compute the covariant derivatives of the vector fields

T, N, B as:

∇T T =(T ′
1 + T2T3)e1 + (T ′

2 + 2T1T3)e2 + T ′
3e3,

∇T N =(N ′
1 +

1

2
(T2N3 + T3N2))e1 + (N ′

2 −
1

2
(T1N3 + T3N1))e2

+ (N ′
3 +

1

2
(T1N2 − T2N1))e3,

∇T B =(B′
1 +

1

2
(T2B3 + T3B2))e1 + (B′

2 −
1

2
(T1B3 + T3B1))e2

+ (N ′
3 +

1

2
(T1N2 − T2N1))e3.

(4.1)

It follows that the first components of these vectors are given by

< ∇T T, e3 >= T ′
3,

< ∇T N, e3 >= N ′
3 +

1

2
(T1N2 − T2N1),

< ∇T B, e3 >= B′
3 +

1

2
(T1B2 − T2B1).

(4.2)

On the other hand, using Frenet formulas (3.1), we have,

< ∇T T, e3 >= kN3,

< ∇T N, e3 >= −kT3 − τB3,

< ∇T B, e3 >= τN3.

(4.3)

These, together with (4.2) and (4.3), give

T ′
3 =kN3,

N ′
3 +

1

2
B3 =− kT3 − τB3,

B′
3 +

1

2
N3 =τN3.

(4.4)
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From (4.4), we have

(4.5) B′
3 = (τ − 1

2
)N3.

Suppose that γ is a be a non-geodesic biminimal general helix with respect to the

Frenet frame {T, N, B}. Then,

(4.6)
k

τ
= c.

Using (4.6), we have

(4.7) k′τ = τ ′k.

We substitute (4.7) in (3.4), we obtain

(4.8) k′ =
1

3
N3B3, τ ′ =

c

3
N3B3.

From N3B3 =constant it follows that

(4.9) k′′ = 0.

We substitute (4.9) in (3.3), we obtain

(4.10) k2 + τ 2 = B2
3 −

1

4
.

Next we replace τ = k/c in (4.10)

(4.11) k2 =
1

1 + 1
c2

(B2
3 −

1

4
).

If (4.11) derived and taking into account (4.5) and (4.8), becomes

(4.12) k =
3(τ − 1

2
)

1 + 1
c2

.

Substituting (4.6) in (4.12), we have

(4.13) k = constant.

From (4.6), we obtain

τ = constant,

which implies γ circular helix. ¤
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Theorem 4.2. Let γ : I → Heis3 be a non-geodesic biminimal general helix parametrized

by arc length and N3B3 = constant. Then the position vector of the curve γ (s)

γ (s) =
(
s + C1k sin

(
s
√

B2
3 − 1

4

)
− C2k cos

(
s
√

B2
3 − 1

4

)
− ks

B2
3− 1

4

)
T (s)

+
(
c1 cos

(
s
√

B2
3 − 1

4

)
+ c2 sin

(
s
√

B2
3 − 1

4

)
− k

B2
3− 1

4

)
N (s)

+
(
C1τ sin

(
s
√

B2
3 − 1

4

)
− C2τ cos

(
s
√

B2
3 − 1

4

)
− kτs

B2
3− 1

4

)
B (s) ,

where c1, c2 ∈ R, C1 = c1√
B2

3− 1
4

and C2 = c2√
B2

3− 1
4

.

Proof. If γ (s) is a non-geodesic biharmonic curve. Then we can write its position

vector as follows:

(4.14) γ (s) = ξ (s) T (s) + η (s) N (s) + ρ (s) B (s)

for some differentiable functions ξ, η and ρ of s ∈ I ⊂ R. These functions are called

component functions (or simply components) of the position vector.

Differentiating (4.14) with respect to s and by using the corresponding Frenet

equation (3.1), we find

ξ′ (s)− η (s) k =1,

η′ (s) + ξ (s) k + ρ (s) τ =0,

ρ′ (s)− η (s) τ =0.

(4.15)

From (4.15) we get the following differential equation:

(4.16) η′′ (s) + (k2 + τ 2)η (s) + k = 0.

By using (3.3) we find

(4.17) η′′ (s) + (
1

4
−B2

3)η (s) + k = 0.

The solution of (4.17) is

(4.18) η (s) = c1 cos


s

√
B2

3 −
1

4


 + c2 sin


s

√
B2

3 −
1

4


− k

B2
3 − 1

4

,

where c1, c2 ∈ R.
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From ξ′ (s) = η (s) k + 1 and using (4.18) we find the solution of this equation as

follows:

ξ (s) =s +
c1k√

B2
3 − 1

4

sin


s

√
B2

3 −
1

4




− c2k√
B2

3 − 1
4

cos


s

√
B2

3 −
1

4


− ks

B2
3 − 1

4

.

(4.19)

By using (4.18) we find the solution of ρ′ (s) = η (s) τ as follows:

ρ (s) =
c1τ√

B2
3 − 1

4

sin


s

√
B2

3 −
1

4




− c2τ√
B2

3 − 1
4

cos


s

√
B2

3 −
1

4


− kτs

B2
3 − 1

4

.

(4.20)

Substituting (4.18), (4.19) and (4.20) in (4.14) complete the proof of the theorem.

¤

Corollary 4.1. If γ is non-geodesic biminimal general helix and N3B3 = constant, γ

is a biharmonic curve.
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