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AFFINE INVARIANT L-SYSTEMS

LJUBIŠA KOCIĆ 1 AND MARIJA RAFAJLOVIĆ 2

Abstract. The purpose of this article is to investigate if the L-systems introduced
and developed mainly by Lindenmayer, and Prusinkiewicz [8]–[12] possess affine
invariance property. The main result given in Theorem 1 establishes a negative
answer.

1. Introduction

The first fractal objects that appeared in mathematics were described by recur-

sive constructions. The examples are: Cantor set (Henry J. S. Smith, 1875; Paul du

Bois-Reymond, c. 1880; Vito Volterra, 1881; Georg Cantor, 1883); Peano space-filling

curve (Giuseppe Peano, 1890); Hilbert space-filling curve (David Hilbert, 1891); Koch

snowflake (Helge von Koch, 1904); Lévy C-curve (Ernesto Cesàro, 1906; G. Farber,

1910; Paul Pierre Lévy, 1938); Sierpinski triangle (Waclaw Sierpinski, 1915); Sier-

pinski carpet (Waclaw Sierpinski, 1916), etc. These recursive constructions are later

called ”deterministic algorithms” or initiator-generator type algorithms. Initiator

is a simple geometric object, usually a simplex, or simplicial sequence. Genera-

tor is an union of initiator’s images upon certain collection of contractive mappings

{w1, . . . , wk}, usually defined on a real metric space of dimension that is rarely higher

than 3. In fact, in all above examples, known as ”classic fractals”, the wi’s are affine

automorphisms of R or R2. Such constructions were generalized in the concept of It-

erated Function Systems (IFS), {X; w1, . . . , wk}, i.e. the set of contractive mappings

that act in the metric space (X, d), where d is a suitable metric (see [1]).
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Definition 1.1. The mapping w is called contractive if there exists a real number

λ ∈ (0, 1), such that the inequality ‖w(x)−w(y)‖ ≤ λ‖x− y‖ is exact for some norm

‖ · ‖ in Rn. The minimal value c = min{λ} is called Lipschitz factor of w.

Definition 1.2. Given the set {w1, w2, . . . , wk} of contractive mappings in the metric

space (Rn, d) with Lipschitz factors 0 < ci < 1, i = 1, . . . , k respectively. Then the

Iterated Function Systems (IFS)

(1.1) Σ = {Rn; w1, w2, . . . , wk},

is called hyperbolic IFS.

Definition 1.3. Let H be the set of nonempty compact subsets of Rn. The operator

W , known as Hutchinson operator, defined on H by

(1.2) W (·) =
⋃

i

wi(·),

is associated with the hyperbolic IFS (1.1).

Definition 1.4. The Hausdorff distance h(A,B) between any two sets A,B ∈ H, is

given by

(1.3) h(A,B) = max
{

max
a∈A

min
b∈B

dE(a, b), max
b∈B

min
a∈A

dE(b, a)
}

(dE is Euclid metric).

Theorem 1.1. Let Σ = {Rn; w1, w2, . . . , wk} be a hyperbolic IFS. Then, the associ-

ated Hutchinson operator (1.2) is contractive in Hausdorff metric space (H, h), with

Lipschitz factor c = max
i
{ci}, where ci is Lipschitz factor of the contraction wi. The

operator equation

(1.4) X = W (X) =
⋃

i

wi(X), X ∈ H,

has the unique solution X0 on H, called attractor of the IFS Σ, X0 = att(Σ).

Theorem 1.2. Let W om = W (W o(m−1)) be the m-th auto-composition of the Hutchin-

son operator W associated with the IFS Σ, given by (1.1). Then, the attractor att(Σ)

of Σ, is given as a limit of the sequence

(1.5) B, W (B),W o2(B), . . . , W om(B), . . . ,
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where B is an arbitrary point in H, from the open neighborhood of att(Σ). In other

words,

(1.6) att(Σ) = lim
k→∞

W ok(B), B ∈ H.

By the rule, attractors are fractal sets ([1], [2]). Then, the sets (1.5) are called

pre-attractors of orders 0, 1, 2, . . . , m, . . ., respectively.

The simplest Iterated Function Systems having the widest applications anyway,

consist out of affine mappings of the form

(1.7) w(x) = Ax + b, x ∈ Rm,

where A is an m×m nonsingular real matrix and b is an m-dimensional real vector.

Let S = (sij)
m+1
i,j=1 be an (m+1)× (m+1) row-stochastic real matrix (i.e. real matrix

which rows sum up to 1). Then the following theorem holds.

Theorem 1.3. [7] For any affine mapping of the form (1.7), there exists a nonsingular

row-stochastic real matrix S = (sij)
m+1
i,j=1, such that (1.7) can be represented by the

linear mapping L : Rm → Rm, given by

(1.8) L(r) = ST r,

where r = (r1 r2 · · · rm+1)
T ∈ Rm+1, with restriction

(1.9)
m+1∑

i=1

ri = 1.

The mapping (1.8), L : Rm → Rm is said to be associated to the affine mapping

w : Rm → Rm, given by (1.7).

Note that {r1, r2, . . . , rm+1} is the set of affine coordinates, so called barycentric

coordinates with respect to an m-simplex.

Definition 1.5. A (non-degenerate) m-simplex P̂m is the convex hull of a set of m+1

points (or vectors) P T
m = (p1 p2 · · · pm+1) such that their affine full coincide with Rm.

Definition 1.6. [5, 6] Let P̂m be a non-degenerate simplex and let {Si}n
i=1 be a set

of real square nonsingular row-stochastic matrices of order m. If the linear mappings

associated with Si are contractions in (Rm, d), the system

(1.10) Ω(P̂m) = {P̂m; S1, S2, . . . , Sn},
is (hyperbolic) Affine invariant IFS (AIFS), with the unique attractor att(Ω).
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Theorem 1.4. [7] Given the IFS Σ = {Rn; w1, w2, . . . , wk} with affine mappings,

and AIFS Ω(P̂m) = {P̂m; S1, S2, . . . , Sn} with associated linear mappings. Then these

systems are equihyperbolic, and share the same attractor att(Σ) = att(Ω).

Theorem 1.5. [7] The AIFS (1.10) has affine invariance property that is, for any

affine transformation ϕ : Rm → Rm, att


Ω

(
ϕ(P̂m)

)
 ≡ ϕ


att

(
Ω(P̂m)

)
 is valid.

Example 1.1. One of the classical fractals is the famous Lévy C-curve, which is the

attractor of the IFS ΣC = {R2; w1, w2}, where

w1 :

[
x
y

]
7→

[
0.5 −0.5
0.5 0.5

] [
x
y

]
, w2 :

[
x
y

]
7→

[
0.5 0.5

−0.5 0.5

] [
x
y

]
+

[
0.5
0.5

]
.

The AIFS with the same attractor is given by C = {T̂ ; S1, S2}, where T̂ is 2-simplex

(proper triangle) T T = (a b c) with vertices a = (0 0)T , b = (0.5 0.5)T , c = (1 0)T ,

and two contractive mappings given by row-stochastic matrices

S1 =




1 0 0
0.5 1 −0.5
0 1 0


 and S2 =




0 1 0
−0.5 1 0.5

0 0 1


 .

The attractor, C = att(C) is displayed in Figure 1 (upper row) next to the simplex T̂ .

Altering T̂ into T̂ ′ affinely causes altering the attractor’s shape by exactly the same

affine transform C 7→ C ′ (Figure 1, bottom row). This is the point of introducing the

AIFS: ability of gaining control over the global shape of fractal attractors.

Figure 1. Affine invariance of the AIFS code.
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2. L-systems

Trying to find a suitable mathematical model that will satisfactory describe growth

and development of various biological forms, Lindenmayer, and later Prusinkiewicz

(see [8]-[12]) elaborated a special iterated system based on iterated string rewriting,

called L-system.

The structure G = {Σ, Π, α}, calling grammar of L-systems contains the following

elements:

1◦ A finite set of characters Σ = {σ1, σ2, . . . , σn}, called alphabet, which is used to

form words as strings of characters;

2◦ A finite set Π of rules for creating words;

3◦ The starting word, called axiom, α ∈ Σ∗, the set of all possible words over Σ.

Obviously, Π is a mapping

(2.1) Π = {π | π : Σ → Σ∗},

of the alphabet into the set of all possible words Σ∗.

Definition 2.1. L-system over the grammar G is the set L = {Πok(α) | k ∈ N0},
where Πok denotes k-th auto-composition of the mapping (2.1).

Since the rule Π is applied repeatedly on the same characters simultaneously, it is

sometimes called parallel rewriting rule.

There are a lot of types of L-systems, but in this paper, focus will be set on so

called deterministic, context-free L-systems (shortly D0L-systems). Deterministic L-

systems have all elements defined a priori (by the grammar G). Context-free means

that the replacing rule applied to the i-th character of some word is independent of

the neighbor characters. The acronym ”D0L” stands for Deterministic 0-context L

(-systems).

The concept of L-systems was accepted as a useful tool in the Theory of formal

languages, developed by Chomsky as well as the model of growth of living cells and

biological organisms. Originally, L-systems were invented by Lindenmayer [8] as an

answer to the problem of formal description of plant growth. In this context, L-

systems were necessarily connected with geometric configurations in the plane or

space. These configurations are product of a particular geometry, known as ”turtle

geometry”. In one of the simplest setting, based on a simple L-system over the
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alphabet

(2.2) Σ = {F, f, +,−},
2D turtle generates ”turtle interpretation map” that give geometric meaning to the

words from Σ∗.

Definition 2.2. The turtle interpretation map τ defined over the set of all words Σ∗

is specified as follows:

• F -causes moving the turtle linearly forward for a fixed step of prescribed

length (say 1) and tracing the line being passed over;

• f -the same as above, without marking the trace;

• + -causes turning the turtle counterclockwise by a prescribed angle δ;

• − -causes turning the turtle clockwise by a prescribed angle δ.

Definition 2.3. The turtle geometry is the set of geometric objects T obtained by

the mapping τ : Σ∗ → T , where τ is turtle interpretation map as given in Definition

2.2. The image of axiom α in T is called initiator, In = τ(α), and the image of Π(α)

is called generator, Gen = τ(Π(α)).

So, the ”turtle” is a kind of ”translator” that translates words (strings) into geo-

metric objects. In 2D turtle geometry, these objects are made out of linear segments.

Initiator and generator are pre-attractors of order 0 and 1.

What is amazing is that using some simple rules, the strings obtained by parallel

rewriting rules may become highly complex. Since the process of rewriting is applied

endlessly, the resulting limiting objects are often fractal sets [11] and [12].

Example 2.1. The Lévy C-curve defined in Example 1.1, can be coded by the single

rule Π = {F 7→ +F − −F+}, over the alphabet Σ = {F, +,−}, starting with the

axiom α ≡”F ” with angle δ = π/4. Here, the initiator In = τ(α) is the linear

segment (Figure 2, left, dashed line denoted by ”0 ”), while the generator, Gen =

τ(” + F −−F + ”) is the union of sides of isosceles triangle with the base angle of 45

degrees (Figure 2, left, solid line denoted by ”1”).

But, since the lengths of segments are one unit each, the distance between the end

points of the turtle’s path is s =
√

2, which is the Lipschitz factor indicating extension.

The next step of iteration will be guided by the string ”++F−−F+−−+F−−F++”,

obtained by replacing of ”F ” in the generator string ”+F − −F+”. Consequently,
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Figure 2. The pre-attractors of the Lévy C-curve of orders 0 to 5,
generated with L-system without step reduction (left) and with step
reduction (right).

the new geometric object will be τ(” + +F −−F +−−+F −−F + +”) (Figure 2,

left, dashed line no. 2). End-points distance will now be s2 = 2. The next iteration

(Figure 2, left, solid line no. 3) increments the distance to s3 = 2
√

2, and so on. In

order to make this process equivalent to one produced by Iterated Function System,

one must reduce the size of each step by s. Thus, the string Πok(α) of the L-system

should be associated with the elementary step of length s−k. Only in this case, ”string

rewriting” will cause proper ”geometric replacement” which will result in getting the

correct attractor.

In order to distinguish L-systems, which are algebraic structures from its graphical

interpretation using ”turtle graphics” endowed with turtle step reduction, the latter

is suitable to call Recursive L-systems (RLS).

Definition 2.4. Let L = {Πok(α) | k ∈ N0} be the L-system with one replacement

rule that allows 2D turtle geometry. Let In = τ(α), and Gen = τ(Π(α)) are initiator

and generator, respectively. The Recursive L-system (RLS) is the set

(2.3) RL = {R2; In → Gen}.

If exists, the attractor of RLS is given by

(2.4) att(RL) = att{R2; In → Gen} = lim
k→∞

(
In → Gen

)ok
.

Note that, in some cases, transformation In → Gen is equivalent to Hutchinson

operator of the IFS with affine mappings (Definition 1.3), and in these cases the

Recursive L-systems and Iterated Function Systems can be identified (see [3] and

[4]).
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3. Lack of L-system’s affine invariance

The main advantage of the concept of L-system is its simplicity and similarity to

biological growth structures. The most successful tree and plant models are created

doubtless by the help of L-systems ([3], [4]). Another curious feature of L-systems is

their intrinsically algebraic structure based on simple string operations. For instant,

the Lévy C-curve production rule Π = {F 7→ +F − −F+}, transformed by the

algebraic operator X 7→ FXF into Π1 = {F 7→ F + F − −F + F} with the new

angle δ = π/3, generates another famous fractal set known as Koch curve. Besides, the

initiator can be chosen differently. Instead the linear segment, some other piecewise

linear configuration can be used. So, if the axiom will be changed to ”F − F − F”,

with the same angle δ = π/3, the initiator will be a triangle. The attractor becomes

the Koch snowflake. On the other hand, the axiom ”F + F + F” gives the ”inward”

snowflake. By extending the alphabet (2.2) with new characters ”[” and ”]”, some

branching structures will be created. Also, several rules combined with associated

probabilities result in random fractal patterns.

From the point of view of modeling, the most desirable feature of some fractal

generating system is predictability of the attractor’s shape. Predictability is the

main ingredient of what designers called free-form property of some modeling scheme.

Similarly to IFS, L-systems, regarding the attractor’s form, are unpredictable. This

means that the form of attractor is very difficult to predict by using L-systems or

IFS. The reasons partly lie in the fact that both systems suffer from the lack of affine

invariance which is the condition sine qua non free-form property.

Definition 3.1. The RL-system (2.3) is invariant with respect to the mapping ϕ if

att
{
R2; ϕ(In) → ϕ(Gen)

}
= ϕ

(
att

{
R2; In → Gen

})
.

Concerning, the following theorem holds.

Theorem 3.1. The RL-system is not an affine invariant structure.

Proof. A counterexample will be constructed based on the Lévy C-curve (Exam-

ple 2.1), defined by the L-system is Π = {F 7→ +F − −F+}, with δ = π/4.

As it is mentioned in Example 1.1, ΣC = {R2; w1, w2} is the associated IFS. Since

the spectral norms of matrices A1 =

[
0.5 −0.5
0.5 0.5

]
and A2 =

[
0.5 0.5

−0.5 0.5

]
, are
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‖A1‖ = ‖A2‖ = 1√
2

< 1, both mappings w1 and w2 are contractions ([7]). Accord-

ingly, the attractor, att(Σc), exists, and it is Lévy C-curve (Figure 1, upper row).

Now, as in Example 2.1, denote

In = τ(”F ”) ≡
{
(x, y) | 0 ≤ x ≤ 1, y = 0

}
,

and

Gen = τ(”+F−−F+”) ≡
{
(x, y) | {0 ≤ x ≤ 1/2, y = x}∧{1/2 ≤ x ≤ 1, y = 1−x}

}
,

and apply on In and Gen the following affine mapping

(3.1) ϕ :

[
x
y

]
7→

[
1 0
0 tan β

] [
x
y

]
, 0 < β <

π

2
.

It yields ϕ(In) ≡ In (the initiator is not changed), while the generator transforms

into an isosceles triangle with base angles β

ϕ(Gen) ≡
{
(x, y) | {0 ≤ x ≤ 1/2, y = (tan β)x}∧{1/2 ≤ x ≤ 1, y = 1− (tan β)x}

}
.

The associated Hutchinson operator continuously depends of the angle β as a param-

eter, W β(·) = wβ
1 (·) ∪ wβ

2 (·), where

wβ
1 :

[
x
y

]
7→ 1

2

[
1 − tan2 β

tan β tan β

] [
x
y

]
,

wβ
2 :

[
x
y

]
7→ 1

2

[
1 tan2 β

− tan β tan β

] [
x
y

]
+

1

2

[
1
tan β

]
.

Figure 3. Lipschitz factor of Hutchinson operator W β as function of β.
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The matrices have the same norm, which is in the same time the Lipschitz factor

s(β) of the Hutchinson operator W β which is clearly function of β

(3.2) s(β) =

√
1− | cos(2β)|
2
√

2 cos2 β
, 0 < β <

π

2
.

As expected, the Lipschitz factor function is an increasing function (Figure 3). It

is evident that 0 < s(β) < 1 for 0 < β < π/3, i.e. the IFS is hyperbolic, with a

unique attractor that is Lévy C-curve-like (and is exact C -curve for β = π/4); The

IFS is isometry (Lipschitz factor s(β) = 1) for β = π/3; And, finally, for all β > π/3,

s(β) > 1, and the iterative process diverges, so, the attractor does not exist.

So, every RL-system {R2; F 7→ +F − −F+} with π/3 < δ < π/2 is not affine

invariant system. Generally, there exists affine mappings ϕ such that

att{R2; ϕ(In) → ϕ(Gen)} 6= ϕ(att{R2; In → Gen}),
i.e. the affine invariance property fails to exist. ¤

Figure 4. a) RL-system {R2; F 7→ +F −−F+} for δ = 11π/36;
b) Affinely transformed C-curve

Example 3.1. The attractor of the RL-system {R2; F 7→ +F −−F+} for δ = 11π/36

is approximated by the set of 6 × 104 points, using Random algorithm [1] (Figure 4

a). It differs grossly from the attractor of the Lévy C-curve, transformed affinely, by

the mapping (3.1) for β = δ (Figure 4 b).

4. Conclusion

In this article, three different types of system for generating fractal sets are pre-

sented: The Iterated Function System (IFS) [1], the Affine invariant Iterated Function

System (AIFS) [5]-[7], and RL-systems, the Recursive L-systems [8]–[12]. For the IFS
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is already known that it is not affine invariant system. On the other hand, the main

feature of AIFS is its affine invariance. The main result presented in Theorem 3.1

is that L-systems also fail to have affine invariance property. The importance of

this property for some modeling system reflects in the fact that affine invariance en-

ables some elements of free-form modeling, which is precious feature especially when

fractals are to be modeled.
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