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NONIMMERSION RESULTS FOR

THE REAL FLAG MANIFOLDS RF (1, 1, 1, n− 3)

DEBORAH OLAYIDE A. AJAYI

Abstract. By computing non-vanishing dual Stiefel-Whitney classes of the in-
complete real flag manifold of length 3, RF (1, 1, 1, n − 3), n > 4, we obtain non-
immersion and non-embedding results for the manifold and give solution to the
immersion / embedding problem for n = 5, 6 and 7 by showing that Lam’s estimate
are best possible for these.

1. Introduction

Let n = n1 + n2 + . . . + nq, q > 2, be the partition of the positive integer n. The

real flag manifold,

RF (n1, n2, . . . , nq) = O(n)/O(n1)× . . .×O(nq),

(where O(n), O(n1), . . . , O(nq) are the appropriate orthogonal groups) is a smooth

compact connected homogeneous manifold of dimension
1

2
(n2−

q∑

i=1

n2
i ). In particular

when n1 = n2 = . . . = np = 1, p = q−1, we have the incomplete flag manifold of length

p, RF (1, 1, . . . , 1,︸ ︷︷ ︸
p−times

n − p). The incomplete flag manifold of length 1, RF (1, n − 1) is

the real projective space RP n−1. For any smooth compact manifold Mm of dimension

m, the problem of finding integers k and s such that Mm can be embedded in Rm+k

(denoted by Mm ⊂ Rm+k) and immersed in Rm+s (denoted by Mm ⊆ Rm+s), has
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its starting point, for calculating upper bounds in the classical theorems of Whitney

[16], [17], that Mm ⊂ R2m and Mn ⊆ R2m−1. The problem of immersion/embedding

of the projective spaces and other real flag manifolds has been studied very much

by different methods (see for examples, [7], [6], [12], [13], [14]) and is still unsolved.

A table of known embedding and immersion results for real projective spaces can

be viewed at [5]. Lam [9] gave upper bounds for immersing any flag manifold in

the Euclidean space which improved on the classical Whitney’s result and Cohen’s

theorem (cf. [4]), Mm ⊆ R2m−α(m) (where α(m) is the number of 1’s in the dyadic

expansion of m) only for n = 5 to 10 in the case of RF (1, 1, 1, n− 3), although Stong

[15] showed that for many cases of real flag manifolds, Lam’s immersion results are

best possible. In [2], Ajayi and Ilori, obtained lower bounds for the embeddings and

immersions of RF (1, 1, n − 2) in the Euclidean space by finding some non-vanishing

dual Stiefel-Whitney classes and showed that for RF (1, 1, n − 2), Lam’s immersions

for n = 4 and 5 are best possible. In this paper, we obtain some lower bounds for

immersion and embedding of RF (1, 1, 1, n− 3) in the Euclidean space and show that

Lam’s estimate are best possible for n = 5, 6 and 7 thereby giving solution to the

immersion/ embedding problem for these manifolds.

2. Statement of Results

Let s = 2r be the integer defined by 2r+1 < 3n < 2r+2, n > 4 we have

Theorem 2.1. The following hold

(i) RF (1, 1, 1, n− 3) 6⊂ R3s−3

RF (1, 1, 1, n− 3) * R3s−4 if 2
3
s < n ≤ s− 1;

(ii) RF (1, 1, 1, n− 3) 6⊂ R3(2s−1)

RF (1, 1, 1, n− 3) * R2(3s−2) if s + 3 ≤ n < 4
3
s;

(iii) RF (1, 1, 1, n− 3) 6⊂ R3n−3

RF (1, 1, 1, n− 3) * R3n−4 if n = 2r;

(iv) RF (1, 1, 1, n− 3) 6⊂ R3s−2

RF (1, 1, 1, n− 3) * R3s−3 if n = s + 1;

(v) RF (1, 1, 1, n− 3) 6⊂ R3(s+1)

RF (1, 1, 1, n− 3) * R3s+2 if n = s + 2.

Corollary 2.1. Let imm(M) be the immersion dimension of a manifold M . Then,

immRF (1, 1, 1, 2) = 10,
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immRF (1, 1, 1, 3) = 15,

immRF (1, 1, 1, 4) = 21.

3. Proof of Results

Put F = RF (1, 1, 1, n − 3) and let ν1, ν2, ν3 be the canonical line bundles over F

and x = w1(ν1), y = w1(ν2), z = w1(ν3) be the Stiefel-Whitney classes of ν1, ν2, ν3

respectively. Let

σ1 = x + y + z, σ2 = xy + yz + xz, σ3 = xyz.

To prove the results we need the following:

Lemma 3.1. [1]

w(F ) = (1 + σ1 + σ2 + σ3)
n · (1 + σ2

1 + σ2 + σ1σ2 + σ3)
−1.

Proof. Over F , ν1 ⊕ ν2 ⊕ ν3 ⊕ ξ is an n-plane trivial bundle, where ξ is an (n − 3)-

plane bundle. From [9]

τ(F ) ∼= (ν1 ⊗ ν2)⊕ (ν1 ⊗ ν3)⊕ (ν2 ⊗ ν3)⊕ (ν1 ⊗ ξ)⊕ (ν3 ⊗ ξ)

and

τ(F )⊕ (ν1 ⊗ ν1)⊕ nξ ⊕ (ν1 ⊗ ν2)⊕ (ν2 ⊗ ν2)⊕ (ν1 ⊗ ν3)⊕ (ν2 ⊗ ν3)⊕ (ν1 ⊗ ν3)

is an n2-plane trivial bundle. Therefore taking the total Stiefel-Whitney classes and

using the Whitney product formula, we have

w(F ) · w(ν1 ⊗ ν2) · w(ν1 ⊗ ν3) · w(ν2 ⊗ ν3)w(nξ) = 1

i.e.

w(F ) = w̄(nξ)w(ν1 ⊗ ν2) · w̄(ν1 ⊗ ν3) · w̄(ν2 ⊗ ν3)

where w̄ is the total dual Stiefel-Whitney class of F , and

w(F ) = [w(ν1 ⊕ ν2 ⊕ ν3]
n · (1 + x + y)−1 · (1 + x + z)−1 · (1 + y + z)−1

= (1 + σ1 + σ2 + σ3)
n · (1 + σ2

1 + σ2 + σ1σ2 + σ3)
−1.

¤

Proposition 3.1. Let w̄ be the total dual Stiefel-Whitney class of F then

w̄(F ) = (1 + σ1 + σ2 + σ3)
2s−n · (1 + σ2

1 + σ2 + σ1σ2 + σ3).
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Proof. From the above lemma,

w(F ) = (1 + σ1 + σ2 + σ3)
n · (1 + σ2

1 + σ2 + σ1σ2 + σ3)
−1.

Let s = 2r, be the integer such that 2r+1 < 3n < 2r+2, we have

(1 + σ1 + σ2 + σ3)
2s = [(1 + σ1 + σ2 + σ3)

2]s

= 1 + σ2s
1 + σ2s

2 + σ2s
3

= 1 + (x + y + z)2s + (xy + yz + xz)2s + (xyz)2s

= 1 + x2s + y2s + z2s + x2sy2s + y2sz2s + x2sz2s + x2sy2sz2s

= 1

since 2s > n and the Z2-cohomology algebra H∗(F,Z2) can be identified with Z2[x, y, z]

subject to the relations σ̄n−2 = σ̄n−1 = σ̄n = 0 where σ̄i = σ̄i(x, y, z) is the i-th com-

plete symmetric function in x, y and z so that xn = 0 = yn = zn [3]. An additive

basis for H∗(F,Z2) is the set {xiyjzk|0 ≤ i ≤ n− 1, 0 ≤ j ≤ n− 2, 0 ≤ k ≤ n− 3}
and we have σa

1 6= 0, σb
2 6= 0, σc

3 6= 0, 1 ≤ a, b, c ≤ n− 3.

Hence since

w(F ) = (1 + σ1 + σ2 + σ3)
n · (1 + σ2

1 + σ2 + σ1σ2 + σ3)
−1

and using

w(F )w̄(F ) = 1

where w̄ is the total dual Stiefel-Whitney class of F we have

w̄(F ) = (1 + σ1 + σ2 + σ3)
2s−n · (1 + σ2

1 + σ2 + σ1σ2 + σ3).

¤

From the Proposition above, if n ≥ s + 3, the Stiefel-Whitney class of maximal

dimension is

w̄6s−3n+3 = (σ1σ2 + σ3)σ
2s−n
3 .

Since σ1σ2 + σ3 6= 0 (cf. [8] and [1]) and 2s − n ≤ n − 3 for s + 3 ≤ n < 4
3
s, then

w̄6s−3n+3 is the non-zero class in the top dimension of H∗(F,Z2) for n ≥ s + 3. Using

the fact that if w̄k(M) 6= 0 then M 6⊂ Rm+k and M * Rm+k−1 where M is a smooth

manifold of real dimension m [11], we have,

RF (1, 1, 1, n− 3) 6⊂ R6s−3
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and

RF (1, 1, 1, n− 3) * R6s−4

for s + 3 < n < 4
3
s.

If 2
3
s ≤ n < s, then 2s − n = s + q, 0 < q < 1

3
s. Therefore, from the Proposition,

we have,

w̄(F ) = (1 + σ1 + σ2 + σ3)
s+q · (1 + σ2

1 + σ2 + σ1σ2 + σ3)

= (1 + σs
1 + σs

2 + σs
3) · (1 + σ1 + σ2 + σ3)

q · (1 + σ2
1 + σ2 + σ1σ2 + σ3)

= (1 + σ1 + σ2 + σ3)
q · (1 + σ2

1 + σ2 + σ1σ2 + σ3) since s > n.

The maximal class

w̄3(s−n) = (σ1σ2 + σ3)σ
s−n
3 6= 0 for n < s.

And (i) follows.

Now if n = 2r, r > 2, then

w̄(F ) = (1 + σ1 + σ2 + σ3)
2s−n · (1 + σ2

1 + σ2 + σ1σ2 + σ3)

and

(1 + σ1 + σ2 + σ3)
n = 1 + (xn + yn + zn) + (xnyn + ynzn + xnzn) + (xnynzn)

= 1 + σn
1 + σn

2 + σn
3

= 1.

Thus,

w̄(F ) = 1 + σ2
1 + σ2 + σ1σ2 + σ3.

and

w̄3(F ) = σ1σ2 + σ3 6= 0.

Therefore

RF (1, 1, 1, n− 3) 6⊂ R3n−3

and

RF (1, 1, 1, n− 3) * R3n−4.
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For n = s + 1, we have from the Proposition,

w̄(F ) = (1 + σ1 + σ2 + σ3)
s−1 · (1 + σ2

1 + σ2 + σ1σ2 + σ3)

= (1 + σ1 + σ2 + σ3)
s−1 · ((1 + σ1)(1 + σ1 + σ2) + σ3)

= ((1 + σ1)(1 + σ1 + σ2) + σ3)
s−1∑

k=0

(1 + σ1 + σ2)
s−k−1σk

3

= (1 + σ1)
s−1∑

k=0

(1 + σ1 + σ2)
s−kσk

3 +
s−1∑

k=0

(1 + σ1 + σ2)
s−k−1σk+1

3

= (1 + σ1)(1 + σ1 + σ2)
s + σ1

s−1∑

k=0

(1 + σ1 + σ2)
s−kσk

3

= 1 + σ1 + σs
1 + σs+1

1 + σ1σ
s
2 + σs

2 + σ1

s−1∑

k=1

(1 + σ1 + σ2)
s−kσk

3

and

w̄1 = σ1 6= 0 for n = s + 1.

This proves (iv).

For n = s + 2, we have,

w̄(F ) = (1 + σ1 + σ2 + σ3)
s−2 · (1 + σ2

1 + σ2 + σ1σ2 + σ3).

The only three dimensional terms appearing in w̄(F ) for n = s + 2, are σ1σ2 and

σ3, in the second factor, and it is non-zero in F , therefore

w̄3 = σ1σ2 + σ3 6= 0.

Hence the results. ¤

To prove the corollary note that in [9], K. Y. Lam proved, the following:

The real flag manifold RF (n1, n2, . . . , ns) can be immersed in Euclidean space with

codimension 1
2

∑
ni(ni − 1) provided the codimension is non-zero.

From Lam’s result we have, RF (1, 1, 1, 2) ⊆ R10, RF (1, 1, 1, 3) ⊆ R15, RF (1, 1, 1, 4) ⊆
R21. Combining these with result (iv) above for n = 5, RF (1, 1, 1, 2) * R9, result (v)

for n = 6, RF (1, 1, 1, 3) * R14 and (ii) for n = 7, RF (1, 1, 1, 4) * R20; verify that

Lam’s estimates are best possible and give the immersion dimension in these three

cases.
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Remarks

(a) The non-embedding/ non-immersion results obtained in (i) (ii) and (iii) above

are the best which could be obtained using Stiefel-Whitney classes, since we

were able to obtain the non-zero dual Stiefel-Whitney class of maximal dimen-

sion. We have the strongest of the results when n = s + 3.

(b) In cases (iv) and (v), the results could be improved on but for s = 4, the

results are best possible.

(c) Lam’s immersions results, are not interesting for n > 10 since the estimates

exceeds 2m, Whitney’s estimate.

(d) The results of the corollary coincides with the results in the table in [10] which

was generated using the software Maple V Release 4.
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