Kragujevac J. Math. 32 (2009) 123–131.

D-EQUIENERGETIC SELF-COMPLEMENTARY GRAPHS

Gopalapillai Indulal¹ and Ivan Gutman²

¹Department of Mathematics, St. Aloysius College, Edathua, Alappuzha–689573, India (e-mail: indulalgopal@yahoo.com)

²Faculty of Science, University of Kragujevac, P.O. Box 60, 34000 Kragujevac, Serbia (e-mail: gutman@kg.ac.rs)

(Received December 29, 2008)

Abstract. The *D*-eigenvalues $\{\mu_1, \mu_2, \ldots, \mu_n\}$ of a graph *G* are the eigenvalues of its distance matrix *D* and form the *D*-spectrum of *G* denoted by $spec_D(G)$. The *D*-energy $E_D(G)$ of the graph *G* is the sum of the absolute values of its *D*-eigenvalues. We describe here the distance spectrum of some self-complementary graphs in the terms of their adjacency spectrum. These results are used to show that there exists *D*-equienergetic self-complementary graphs of order n = 48t and 24(2t + 1) for $t \ge 4$.

1. INTRODUCTION

Let G be a simple graph on n vertices and let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of its adjacency matrix A. The energy of a graph is defined as

$$E = E(G) = \sum_{i=1}^{n} |\lambda_i| .$$

For details on this currently much studied graph-spectral invariant see [4, 5, 6]. After the introduction of the analogous concept of Laplacian energy [7], it was recognized [1] that other energy-like invariants can be defined as well, among them the *distance* energy.

Let G be a connected graph with vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$. The distance matrix D = D(G) of G is defined so that its (i, j)-entry d_{ij} is equal to $d_G(v_i, v_j)$, the distance between the vertices v_i and v_j of G. The eigenvalues of D(G) are said to be the D-eigenvalues of G and form the D-spectrum of G, denoted by $spec_D(G)$. Since the distance matrix is symmetric, all its eigenvalues μ_i , $i = 1, 2, \ldots, n$, are real and can be labelled so that $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_n$.

The *D*-energy, $E_D(G)$, of *G* is then defined as

$$E_D(G) = \sum_{i=1}^{n} |\mu_i| .$$
 (1)

The concept of *D*-energy, Eq. (1), is recently introduced [11]. This definition was motivated by the much older and nowadays extensively studied graph energy. This invariant was studied by Consonni and Todeschini [1] for possible use in QSPR modelling. Their study showed, among others, that the distance energy is a useful molecular descriptor, since the values of $E_D(G)$ or $E_D(G)/n$ appear among the best univariate models for the motor octane number of the octane isomers and for the water solubility of polychlorobiphenyls. For some recent works on *D*-spectrum and *D*-energy of graphs see [8, 9, 10, 11, 13].

Two graphs with equal *D*-energy are said to be *D*-equienergetic. *D*-cospectral graphs are evidently *D*-equienergetic. Therefore, in what follows we focus our attention to *D*-equienergetic non-*D*-cospectral graphs. In this paper we search for self-complementary graphs of this kind. A similar work on pairs of ordinary equienergetic self-complementary graphs is [12].

All graphs considered in this paper are simple and we follow [2] for spectral graph theoretic terminology. We shall need:

Lemma 1. [2] Let G be an r-regular connected graph, with

$$spec(G) = \{r, \lambda_2, \dots, \lambda_n\} \cdot Then$$
$$spec(L^2(G)) = \begin{pmatrix} 4r - 6 & \lambda_2 + 3r - 6 & \cdots & \lambda_n + 3r - 6 & 2r - 6 & -2 \\ 1 & 1 & \cdots & 1 & \frac{n(r-2)}{2} & \frac{nr(r-2)}{2} \end{pmatrix}$$

Let G be a graph. Then the following construction [3] results in a self-complementary graph \mathcal{H} . Recall that a graph \mathcal{H} is said to be self-complementary if $\mathcal{H} \cong \overline{\mathcal{H}}$, where $\overline{\mathcal{H}}$ is the complement of \mathcal{H} .

Construction of \mathcal{H} :

Replace each of the end vertices of P_4 , the path on 4 vertices, by a copy of G and each of the internal vertices by a copy of \overline{G} . Join the vertices of these graphs by all possible edges whenever the corresponding vertices of P_4 are adjacent.

2. DISTANCE SPECTRUM OF \mathcal{H}

Theorem 1. Let G be a connected k-regular graph on n vertices, with an adjacency matrix A and spectrum $\{k, \lambda_2, \ldots, \lambda_n\}$. Then the distance spectrum of \mathcal{H} consists of $-(\lambda_i + 2)$ and $\lambda_i - 1$, $i = 2, 3, \ldots, n$, each with multiplicity 2, together with the numbers

$$\frac{1}{2} \left[7n - 3 \pm \sqrt{\left(2k + 1\right)^2 + 45n^2 - 12nk - 6n} \right]$$

and

$$-\frac{1}{2}\left[n+3\pm\sqrt{(2k+1)^2+5n^2+4nk+2n}\right] .$$

Proof. Let G be a connected k-regular graph on n vertices with an adjacency matrix A and spectrum $\{k, \lambda_2, \ldots, \lambda_n\}$. Let \mathcal{H} be the self-complementary graph obtained from G by the above construction. Then the distance matrix D of \mathcal{H} has the form

$$\begin{bmatrix} 2(J-I) - A & J & 2J & 3J \\ J & J-I + A & J & 2J \\ 2J & J & J-I + A & J \\ 3J & 2J & J & 2(J-I) - A \end{bmatrix}$$

As a regular graph, G has the all-one vector j as an eigenvector corresponding to eigenvalue k, while all other eigenvectors are orthogonal to j. Also corresponding to the eigenvalue $\lambda \neq k$ of G, \overline{G} has the eigenvalue $-1 - \lambda$ such that both λ and $-1 - \lambda$ have same multiplicities and eigenvectors.

Let λ be an arbitrary eigenvalue of the adjacency matrix of G with corresponding eigenvector x, such that $j^T x = 0$. Then $\begin{pmatrix} x & 0 & 0 & 0 \end{pmatrix}^T$ and $\begin{pmatrix} 0 & 0 & 0 & x \end{pmatrix}^T$ are the eigenvectors of D corresponding to eigenvalue $-\lambda - 2$. Corresponding to an arbitrary eigenvalue λ of G, $-\lambda - 2$ is an eigenvalue of D with multiplicity 2. Similarly $\begin{pmatrix} 0 & x & 0 & 0 \end{pmatrix}^T$ and $\begin{pmatrix} 0 & 0 & x & 0 \end{pmatrix}^T$ are the eigenvectors of D corresponding to the eigenvalue $\lambda - 1$.

In this way, forming eigenvectors of the form

$$\begin{pmatrix} x & 0 & 0 & 0 \end{pmatrix}^T$$
, $\begin{pmatrix} 0 & x & 0 & 0 \end{pmatrix}^T$, $\begin{pmatrix} 0 & 0 & x & 0 \end{pmatrix}^T$, $\begin{pmatrix} 0 & 0 & 0 & x \end{pmatrix}^T$

we can construct a total of 4(n-1) mutually orthogonal eigenvectors of D. All these eigenvectors are orthogonal to the vectors

$$\begin{pmatrix} j & 0 & 0 & 0 \end{pmatrix}^T$$
, $\begin{pmatrix} 0 & j & 0 & 0 \end{pmatrix}^T$, $\begin{pmatrix} 0 & 0 & j & 0 \end{pmatrix}^T$, $\begin{pmatrix} 0 & 0 & 0 & j \end{pmatrix}^T$.

The four remaining eigenvectors of D are of the form $\Psi = (\alpha j, \beta j, \gamma j, \delta j)^T$ for some $(\alpha, \beta, \gamma, \delta) \neq (0, 0, 0, 0)$.

Now, suppose that ν is an eigenvalue of D with an eigenvector Ψ . Then from $D\Psi = \nu \Psi$, we get

$$[2(n-1)-k]\alpha + n\beta + 2n\gamma + 3n\delta = \nu\alpha$$
⁽²⁾

$$n\alpha + (n-1+k)\beta + n\gamma + 2n\delta = \nu\beta$$
(3)

$$2n\alpha + n\beta + (n-1+k)\gamma + n\delta = \nu\gamma \tag{4}$$

$$3n\alpha + 2n\beta + n\gamma + [2(n-1) - k]\delta = \nu\delta.$$
⁽⁵⁾

Claim: $\alpha \neq 0$. If $\alpha = 0$, then by solving equations (3)–(5) we get $\beta = g_1 \gamma$ and $\delta = g_2 \gamma$ for some constants g_1 and g_2 . Then using $\beta + 2\gamma + 3\delta = 0$, we obtain

$$\left[11n^{2} + n\left(4k + 2\right) + 12k^{2} + 12k + 3\right]\gamma = 0$$

which implies that $\gamma=\beta=\delta=0\,,$ which is impossible.

Thus $\alpha \neq 0$ and without loss of generality we may set $\alpha = 1$.

Then by solving equations (3)–(5) for β, γ , and δ , and substituting these values into equation (2), we arrive at a biquadratic equation in ν :

$$\left[\nu^{2} - (7n - 3)\nu + n(n + 3k - 9) - (k^{2} + k - 2)\right]$$

$$\times \left[\nu^{2} + (n + 3)\nu - n(n + k - 1) - (k^{2} + k - 2)\right] = 0$$

whose solutions

$$\frac{1}{2} \left[7n - 3 \pm \sqrt{\left(2k + 1\right)^2 + 45n^2 - 12nk - 6n} \right]$$

and

$$-\frac{1}{2}\left[n+3\pm\sqrt{(2k+1)^2+5n^2+4nk+2n}\right]$$

as easily seen, represent the four remaining eigenvalues of D. Hence the theorem. \Box

Corollary 1. Let G be a connected k-regular graph on n vertices with an adjacency matrix A and spectrum $\{k, \lambda_2, \ldots, \lambda_n\}$. Let \mathcal{H} be the self-complementary graph obtained from G by the above described construction. Then

$$E_D(\mathcal{H}) = 7n - 3 + \sqrt{(2k+1)^2 + 5n^2 + 4nk + 2n} + \sum_{i=2}^n |\lambda_i + 2| + \sum_{i=2}^n |\lambda_i - 1| .$$

3. A PAIR OF D-EQUIENERGETIC SELF-COMPLEMENTARY GRAPHS

In this section we demonstrate the existence of a pair of *D*-equienergetic selfcomplementary graphs on *n* vertices for n = 48t and n = 24(2t+1) for all $t \ge 4$. For this we first prove:

Theorem 2. For every $n \ge 8$, there exists a pair of 4-regular non-cospectral graphs on n vertices.

Proof. We shall consider the following two cases.

Case 1: n = 2t, $t \ge 4$. In this case form two t-cycles $u_1u_2 \ldots u_t$ and $v_1v_2 \ldots v_t$ and join u_i to v_i for each i. Let \mathcal{A} be the resulting graph. Let \mathcal{B}_1 be the graph obtained from \mathcal{A} by making u_i adjacent with v_{i+1} for each i and \mathcal{B}_2 be obtained by making u_i adjacent with v_{i+2} for each i where suffix addition is modulo t. Then both \mathcal{B}_1 and \mathcal{B}_2 are 4-regular and the number of triangles in \mathcal{B}_1 is 2t and that in \mathcal{B}_2 is zero. Thus \mathcal{B}_1 and \mathcal{B}_2 are non-cospectral.

In Figure 1 we illustrate the above construction for t = 4.

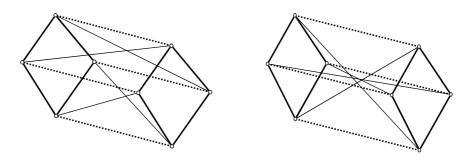


Figure 1. The graphs \mathcal{B}_1 and \mathcal{B}_2 in the case t = 4.

Case 2: n = 2t + 1, $t \ge 4$.

In this case form the (t + 1)-cycle $v_1v_2 \dots v_tv_{t+1}$ and the t-cycle $u_1u_2 \dots u_t$. Now make v_{t-1} adjacent with v_1 and v_i with u_i , $i = 1, \dots, t$. Then join v_j to u_{j+2} , $j = 2, \dots, t-2$, v_t to u_2 and then v_{t+1} to u_1 and u_3 . Let \mathcal{F}_1 be the resulting graph. Then \mathcal{F}_1 is 4-regular and contains two triangles $v_1v_2v_3$ and $v_5u_1v_1$ for t = 4 and only one triangle $v_{t+1}u_1v_1$ for $t \geq 5$.

To get the other 4-regular graph, form the (2t + 1)-cycle $v_1v_2 \ldots v_tv_{t+1} \ldots v_{2t+1}$. Join v_i to v_{i+2} , $i = 1, 3, 5, \ldots, 2t + 1, 2, 4, 6, \ldots, 2t$. Let \mathcal{F}_2 be the resulting graph. Then it is 4-regular and contains 2t + 1 triangles. Thus the graphs \mathcal{F}_1 and \mathcal{F}_2 are not cospectral.

In Figure 2 we illustrate the above construction for t = 4.

128

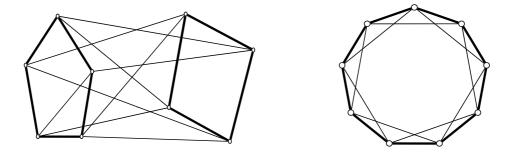


Figure 2. The graphs \mathcal{F}_1 and \mathcal{F}_2 in the case t = 4.

Theorem 3. Let G be a connected 4-regular graph on n vertices, with an adjacency matrix A and spectrum $\{4, \lambda_2, \ldots, \lambda_n\}$. Let $H = L^2(G)$ and \mathcal{H} be the P_4 selfcomplementary graph obtained from H, according to the above described construction. Then

$$E_D(\mathcal{H}) = 3[8(3n-1) + \sqrt{20n^2 + 28n + 49}]$$

Proof follows from Theorem 1, Lemma 1, and the fact that both $\lambda_i + 3r - 4$ and $\lambda_i + 3r - 7$ are positive when r = 4.

Theorem 4. For every n = 48t and n = 24(2t + 1), $t \ge 4$, there exists a pair of *D*-equienergetic self-complementary graph.

Proof. Case 1: n = 48t

Let \mathcal{B}_1 and \mathcal{B}_2 be the two non-cospectral 4-regular graphs on 2t vertices as given by Theorem 2. Let \mathbb{B}_1 and \mathbb{B}_2 respectively denote their second iterated line graphs. Then both are on 12t vertices and are 6-regular. Let \mathfrak{B}_1 and \mathfrak{B}_2 be the respective self-complementary graphs on 48t vertices. Then by Theorem 3, \mathfrak{B}_1 and \mathfrak{B}_2 are D-equienergetic.

The other case n = 24(2t + 1) can be proven in a similar manner by considering the two non-cospectral 4-regular graphs on 2t + 1 vertices whose structure is outlined in Theorem 2.

4. D-ENERGY OF SOME SELF-COMPLEMENTARY GRAPHS

The *D*-energy of some self-complementary graphs \mathcal{H} is easily deduced from the adjacency spectra of the respective parent graphs *G*.

1. If $G \cong K_n$, the complete graph on *n* vertices, then

$$E_D(\mathcal{H}) = \begin{cases} 4 + 2\sqrt{10} & \text{for } n = 1\\ 6 + 3\sqrt{17} + \sqrt{41} & \text{for } n = 2\\ 22 + 2\sqrt{85} & \text{for } n = 3\\ 13n - 9 + \sqrt{13n^2 - 6n + 1} & \text{for } n \ge 4 \end{cases}$$

2. If $G \cong K_{p,p}$, the complete bipartite graph on n = 2p vertices, then

$$E_D(\mathcal{H}) = 15n - 17 + \sqrt{8n^2 + 4n + 1}$$
.

3. If $G \cong CP(n)$, the cocktail party graph on n vertices, then

$$E_D(\mathcal{H}) = 13n - 9 + \sqrt{13n^2 - 18n + 9}$$
.

Acknowledgements: G. Indulal thanks the University Grants Commission of Government of India for supporting this work by providing a grant under the minor research project. I. Gutman thanks the Serbian Ministry of Science for partial support of this work, through Grant no. 144015G.

References

- V. Consonni, R. Todeschini, New spectral indices for molecule description, MATCH Commun. Math. Comput. Chem. 60 (2008), 3–14.
- [2] D. M. Cvetkovic, M. Doob, H. Sachs, Spectra of Graphs Theory and Application, Academic Press, New York, 1980.
- [3] A. Farrugia, Self-complementary graphs and generalisations: A comprehensive reference manual, M. Sc. Thesis, University of Malta, 1999.

- [4] I. Gutman, The energy of a graph: old and new results, in: A. Betten, A. Kohnert, R. Laue, A. Wassermann (Eds.), Algebraic Combinatorics and Applications, Springer-Verlag, Berlin, 2001, pp. 196–211.
- [5] I. Gutman, X. Li, J. Zhang, Graph energy, in: M. Dehmer, F. Emmert–Streib (Eds.), Analysis of Complex Networks. From Biology to Linguistics, Wiley–VCH, Weinheim, 2009, in press.
- [6] I. Gutman, O. E. Polansky, Mathematical Concept in Organic Chemistry, Springer-Verlag, Berlin, 1986, Chapter 8.
- [7] I. Gutman, B. Zhou, Laplacian energy of a graph, Lin. Algebra Appl. 414 (2006), 29–37.
- [8] G. Indulal, Sharp bounds on the distance spectral radius and the distance energy of graphs, Lin. Algebra Appl. **430** (2009), 106-113.
- [9] G. Indulal, *D*-spectra and *D*-energy of the complements of iterated line graphs of regular graphs, communicated.
- [10] G. Indulal, I. Gutman, On the distance spectra of some graphs, Math. Commun. 13 (2008), 123–131.
- [11] G. Indulal, I. Gutman, A. Vijayakumar, On distance energy of graphs, MATCH Commun. Math. Comput. Chem. 60 (2008), 461–472.
- [12] G. Indulal, A. Vijayakumar, Equienergetic self-complementary graphs, Czechoslovak Math J. 58 (2008) 911–919.
- [13] D. Stevanović, G. Indulal, *The distance spectrum and energy of the compositions* of regular graphs, communicated.