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Abstract. The concept of Morgan tree [6] is shown to be useful in generation of all non-
isomorphic trees. Namely, to each tree one can assign canonical Morgan tree. Since, the
number of Morgan trees [5, 1] is much larger then number of canonical Morgan trees, it is
of interest to create an efficient algorithm that creates only a fraction of Morgan trees not
eliminating the single canonical Morgan tree. Then, in the second step, non-canonical trees
are eliminated. The rules for the recognition of non-canonical trees are proposed in [4, 3].
However, it seems that Rule 3 in [4] and Rule 1se in paper [3] are not correct. In this paper,
we present the counter-examples to these rules.

1. INTRODUCTION

The number of all labeled trees with the prescribed number of vertices is much

larger then the number of all non-isomorphic trees with the same number of vertices.

Hence, if one is interested in generation of the set of all non-isomorphic graphs, it

would be quite inefficient to generate all labeled trees and then to eliminate isomorphic

ones. That’s why a considerable effort has been put in finding a smaller classes of

graphs that contain all non-isomorphic trees (with as little duplicates as possible).
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The idea in paper [2] was to generate a subclass of labeled trees named physical

trees by assigning labels consecutively in such way that each vertex to be labeled

must be adjacent to an already labeled vertex. It can be seen that physical trees are

proper subset of labeled trees and that they contain all non-isomorphic trees.

Further restriction was introduced in [6] with the concept of Morgan trees. La-

beling follows this procedure:

1) Assign number 1 to any vertex v.

2) Assign numbers 2,. . . ,d (v) + 1 to its neighbors, where d (v) is degree of vertex

v.

3) Consider next vertex possessing the lowest label and having non-labeled neigh-

bors and label them by the following (unused) consecutive numbers.

4) Repeat this procedure till all vertices are labeled.

We illustrate these three concepts by the following figure:

a) b) c) d)

Figure 1. Labeled graphs

Graph on Figure 1a is a chemical tree, but it is not a physical tree since vertex

labeled by 2 is not adjacent to previous vertices (i.e. to vertex labeled by 1). Graph

of Figure 1b) is a physical tree, but it is not a Morgan tree, because vertex labeled by

4 should not be labeled until all neighbors of 2 got their labels. Graphs on Figures

1c) and 1d) are Morgan trees. For the sake of the simplicity vertex labeled by i will

be denoted by vi.

Morgan trees have an interesting property that each vertex (except 1) is labeled

to a single vertex with the smaller label [4,3]. This can be utilized to assign to each

graph CAM (condensed adjacency matrix) [4, 3] which is an ordered (n− 1)-tuple

(where n is the number of vertices of the graph) such that CAMi = j if vj is the

neighbor of vi+1 such that j < i+1. E. g., CAM of Morgan tree presented on Figures

1c) and 1d) are (1, 2, 2, 2, 3) and (1, 2, 2, 2, 5), respectively.
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Note that different CAM, may correspond to the isomorphic graphs. In order to

overcome this difficulty, the concept of lexicographical order is needed. On the set of

all sequences of integers of length n, lexicographical order is defined by a < b if and

only if there is j ∈ {1, ..., n} such that ai = bi for each i < j and aj < bj. The name

lexicographical order is used since this is the ordering used in lexicons.

It is defined that Morgan tree M corresponding to unlabeled tree T is canonical

if for each Morgan tree M ′ corresponding to the same unlabeled tree T , it holds

CAM (M) ≥ CAM (M ′). In this case, we say that CAM (M) is canonical CAM

of T . Canonical CAMs uniquely determine non-isomorphic trees [4, 3]. Since, the

number of Morgan trees is still much larger then the number of non-isomorphic trees,

it is of interest to further restrict the class of Morgan trees.

LDF-Morgan trees are trees in which we use the same methodology of labeling

as in Morgan trees with one additional rule – we always first assign the labels to

the vertices with the smaller degree. Note that graph on the Figure 1c) is not LDF-

Morgan tree, because during the labeling of neighbors of v2 label 3 is given to the

vertex of higher degree then vertices labeled by 4 and 5. The graph on Figure 1d) is

LDF-Morgan tree.

It can be shown that each canonical Morgan tree is LDF-Morgan tree [4, 3]. Hence,

indeed we can restrict ourselves to observing only LDF-Morgan trees. However, dif-

ferent LDF-Morgan trees can still correspond to the same graph. In Figure 2, the

isomorphic LDF-Morgan trees are presented:

a) b)

Figure 2. LDF-Morgan trees

CAMs of the isomorphic graphs presented on the Figures 2a) and 2b) are (1, 2,

2, 2, 5) and (1, 2, 3, 3, 3), respectively. Therefore further rules which eliminate

non-canonical LDF-Morgan trees are needed. In papers [4, 3] several such rules are

presented.
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However, we claim that these rules are not all correct. Namely, we claim that the

following rules are not correct:

Rule A (Rule 3 in [4]) Delete any CAM = (1, 2, ..., X, ..., X, Z) if Z < n− 1 (in

words [4]: if the last digit is not equal to n − 1 and it is preceded by at least two

identical digits, then the CAM has to be deleted).

Rule B (Rule 1se in [3]) Consider paths connecting vertex 1 (an end point) and

any other end point x of T in turn, and write down the valences belonging to this

path starting with the degree of vertex 1, then with the degree of its first neighbor,

then with the degree of its second neighbor, etc. In this way a valence code has been

created. Repeat the same procedure starting with a vertex x of the same path if the

“reversed” valence code is less then the original code, delete the underlying CAM.

2. COUNTER-EXAMPLE TO RULE A

Let T be a tree given by Figure 3a). It can be easily checked manually (or by

computer) that its canonical Morgan tree is given by Figure 3b).

a) b)

Figure 3. Unlabeled tree and corresponding canonical Morgan tree

CAM that corresponds to canonical Morgan tree reads as (1, 2, 3, 4, 4, 5, 6, 6, 7,

7, 9). It can be easily seen that digits on the places n − 2 and n − 3 are the same,

but never the less the last digit is different then n− 1 which is contradiction.
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3. COUNTER-EXAMPLE TO RULE B

Let T be a tree given by Figure 4a). It can be easily checked manually (or by

computer) that its canonical Morgan tree is given by Figure 4b).

a) b)

Figure 4. Unlabeled tree and corresponding canonical Morgan tree

Figure 4b) corresponds to CAM (1, 2, 3, 3, 4, 5, 5, 6, 9, 9, 11, 12, 12, 14).

Now, let us observe the valence sequence from v1 to v13. This sequence reads as:

(1,2,3,2,3,2,2,3,2,1). The reverse of this sequence reads as: (1,2,3,2,2,3,2,3,2,1). Note

that reversed sequence is smaller then the original one. Hence, this Morgan tree

according to the rule B should be eliminated. But, this is not true – this is canonical

tree.
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