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Abstract. We give a new and simple proof of monotonicity for the well known classes of
Stolarsky and Gini mean values.

1. INTRODUCTION

There is a huge amount of papers investigating properties of the so-called Stolarsky

(or extended) two-parametric mean value, defined as

S __ 8 1/(s—r)
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1 x%logx — y®logy
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Therefore E is continuous on the domain
{(r,s;2z,y):r,s € R; x,y € R"},

and in this form is introduced by K. Stolarsky in [1].

Most of the classical two variable means are special cases of E. For example, Ej 5
is the arithmetic mean, Ej( is the geometric mean, £_5 _; is the harmonic mean, Eq
is the logarithmic mean, etc. More generally, the rth power mean is equal to £} .

The second family of widely known bivariate means was introduced by C. Gini

[7]; they will be denoted by D, (-, -) and are defined as follows

<$s+ys>1/(5_7")
; r#s,
:L»’I“_i_y’l”
x*logx + y°logy
D, (x,y) =< ex ) r=s%#0,
(@) P( pra 7
VY, r=s=0,
x, x=1y>0.

Therefore, Dy _; is the harmonic mean, Dy is the geometric mean, D, is the
arithmetic mean, etc. Alzer and Ruscheweyh have proven in [8] that the joint mem-

bers in the families of the Stolarsky and Gini means are exactly the power means

s s\ 1/s
(x _2|—y ) - EQs,s(xay) = D570($,y>-

2. RESULTS

We shall give here an elementary proof of one of the crucial properties of the

means £ and D.

Proposition 1. The family of Stolarsky means E, s(x,y) increases with increase

i either r or s.

Proposition 2. The family of Gini means D, s(x,y) increases with increase in

either r or s.
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3. PROOFS

Proof of Proposition 1. Since E, ((z,y) = Es,.(z,y) and E, ;(z,y) = E,s(y, z),
we can assume without any loss that + >y > 0;s > r € R.

Now, consider the function e(x,y) defined as

S S

S— s #0,
es(x,y) == s

log x — log y, s =0.

Therefore, es(z,y) is a positive and continuous function in s for z >y > 0,s € R.

Also, there is an evident representation in the form

es(x,y) :/ u*'du, s € R.
y
Since for arbitrary a,b,s,t € R,

a’es(z,y) + 2ab ey j2(x,y) + ez, y) = / (au*~! + 2abuTD/271 L B2yt du
Yy

_ /x(au(s—l)/Q 4 buD2)24 > 0,
y

by the discriminant test for the nonnegativity of second-order polynomials, we con-

clude that
6S(ZE, y>6t<x7y) - (6(5+t)/2(17,y))2 Z O’

i.e., that loge(z,y) is a convex function in s, s € R. Since it is also continuous, by

the well known result (cf [1], p. 74), we obtain that for arbitrary r < s < t,
(t—s)loge,(x,y) + (r —t)loges(z,y) + (s — ) logei(z,y) > 0. (%)
This inequality is equivalent to
(t —r)(loges(z,y) —loge(z,y)) < (s —r)(loge(w,y) — loge(z,y)),

i.e., getting rid of the logarithms, we finally obtain

1/(s—r) 1/(t—r)
B, (x,y) = <6s(m,y)> < (et(x,y)> = B y(z,y), t>s.

er(z,9) er(z,y)
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Also, letting s | r, we get
Er,t(xﬂU) > }9% ET,S(xa y) = Em«(:[, y), t>1.

Therefore we prove that E, (z,y) is increasing in s.

Since E, s(z,y) = Es,(z,y), the same is valid for r and the proof is done. O

Proof of Proposition 2. The proof goes essentially along the same lines as the

previous one. Namely, defining
ds(z,y) :==2°+9y°, =,y >0,s € R,
and noting that
dy(,y)di(w,y) = (deornyo(w,y))® = (2722 —aty>2)? > 0,

we conclude that logds(z,y) is a convex function in s for x,y > 0.
Now, applying the inequality () with log ds(z, y) instead of log es(x, y), after some
calculation we get

ds(2,y) ) e (dt(% y) ) e
D, (x,y) = < =D, (x,y), t>s.
f ( y) (dr(% y) dr(ZE, y) t( y)

Therefore D, ;(x,y) is increasing in s. Since D, s(x,y) = Dy, (z,y), the same is

valid for r and the proof is completed. O
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